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Abstract

Background: Cancer is a set of diseases characterized by unchecked cell proliferation
and invasion of surrounding tissues. The many genes that have been genetically
associated with cancer or shown to directly contribute to oncogenesis vary widely
between tumor types, but common gene signatures that relate to core cancer
pathways have also been identified. It is not clear, however, whether there exist
additional sets of genes or transcriptomic features that are less well known in cancer
biology but that are also commonly deregulated across several cancer types.

Results: Here, we agnostically identify transcriptomic features that are commonly
shared between cancer types using 13,461 RNA-seq samples from 19 normal tissue
types and 18 solid tumor types to train three feed-forward neural networks, based
either on protein-coding gene expression, lncRNA expression, or splice junction use, to
distinguish between normal and tumor samples. All three models recognize
transcriptome signatures that are consistent across tumors. Analysis of attribution
values extracted from our models reveals that genes that are commonly altered in
cancer by expression or splicing variations are under strong evolutionary and selective
constraints. Importantly, we find that genes composing our cancer transcriptome
signatures are not frequently affected by mutations or genomic alterations and that
their functions differ widely from the genes genetically associated with cancer.

Conclusions: Our results highlighted that deregulation of RNA-processing genes and
aberrant splicing are pervasive features on which core cancer pathways might
converge across a large array of solid tumor types.

Keywords: Cancer genomics, Transcriptomics, Deep learning

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02681-3&domain=pdf
http://orcid.org/0000-0001-9945-8123
mailto: anupamaj@seas.upenn.edu
mailto: mathieu.quesnel-vallieres@pennmedicine.upenn.edu
mailto: mathieu.quesnel-vallieres@pennmedicine.upenn.edu
mailto: yosephb@pennmedicine.upenn.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Jha et al. Genome Biology          (2022) 23:117 Page 2 of 23

Background
Cancer is a loosely defined term that designates cells that have acquired pathological
properties, mainly loss of cell cycle regulation, high proliferation rate, and loss of con-
tact inhibition leading to invasion of surrounding tissues. In time, tumor cells disrupt the
normal function of tissues where they are located and can metastasize to other tissues.
Oncogenes contribute to cell transformation while tumor suppressor genes stop aber-
rant cell proliferation. Changes in the expression, activation, or function of these genes
are expected to lead to cancer-like phenotype in various cell or tissue types and many
such genes are commonly affected by genomic lesions in cancer. In addition to mutations
to hallmark oncogenes and tumor suppressor genes, cancer driver mutations that con-
tribute to disease onset and progression are found in subsets of cancer types [1]. While
these genetic alterations are diverse, several genes that are altered in cancer converge on
a few molecular mechanisms that are commonly involved in tumorigenesis [2]. These
pathways have wide-ranging effects that span the cell cycle, inflammation, and apoptosis,
among others. Themechanisms throughwhich they operate in cancer are therefore highly
diverse andmolecularly heterogeneous, but they are also interrelated. In addition, a recent
gene network analysis identified a relatively small number of regulatorymodules onwhich
a majority of somatic mutations in cancer converge [3]. Because changes in cellular path-
ways and biological activity ultimately impact gene expression and post-transcriptional
regulation, this leaves the possibility that tumors that arise from the disruption of different
pathways share common molecular signatures in the form of transcriptomic variations.
Previous studies have attempted to leverage these projected common signatures of can-

cer in order train computational models to distinguish tumors from normal samples or
distinguish different tumor types. Typically, these studies rely on protein-coding gene
expression data combined with deep neural networks or other machine learning algo-
rithms that classify samples into two or more categories [4–10]. These studies showed
that machine learning models can successfully distinguish between normal tissues and
tumors given a certain set of conditions, including the pre-selection of biological features
before model training. Several automatic feature selection methods exist to lower the
number of genes used as input and thus facilitate the training of such machine learning
models [10–16]. However, pre-selecting genes on the basis of their functions or differen-
tial expression in cancer, or removing redundant genes identified by automatic selection
prior to model training deprives the models from learning about potentially novel genes
contributing to the transcriptomic signature of cancer. In addition, the application of such
approaches has not been tested on large heterogeneous sets of tissues.
Recent methods for the interpretation of deep neural networks offer the opportunity to

agnostically discover transcriptomic variations characterizing cancer biology from mod-
els that successfully predict biological classes [17, 18]. In particular, we recently described
enhanced integrated gradients (EIG), a method for deep neural network interpretation
[19] that generates attribution values as a measure of the weight or importance of each
biological input feature in themodel. For example, we used EIG to find splicing events that
are differentially included in the brain compared to other tissues without prior knowledge
of splicing variations [19].
Here, we aimed to draft a molecular profile of cancer that applies to most solid tumor

types by leveraging the predictive power of deep neural networks along with the inter-
pretation capability of enhanced integrated gradients to identify common transcriptomic
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signatures across a large array of tumor types. We trained feed-forward neural networks
with protein-coding gene expression, lncRNA gene expression or splice junction usage
data from several normal tissue and tumor types. We then derive attribution values from
these models and establish a list of high-attribution features corresponding to a common
signature of cancer, which could be causally involved in cancer or result from oncogenic
transformation, or both. Finally, we assess the biological functions of these transcriptomic
variations.

Results
A feed forward neural network trained with protein-coding gene expression distinguishes

between normal and cancer tissues

We aimed to uncover the transcriptomic features that commonly define cancer state. Per-
forming differential gene expression analysis on 11 normal tissue-tumor pairs from GTEx
and TCGA and then looking at the overlap in the genes that are deregulated between
these analyses show that few protein-coding genes are consistently up- or downregulated
(abs(log2FC) > 2, adjusted p-value < 0.01) in six or more tumor types and that none is
consistently deregulated in more than nine tumor types (Fig. 1A and Additional file 1:
Fig. S1A). Instead, a large fraction of cancer-deregulated genes are specific to a single
tumor type (Fig. 1A and Additional file 1: Fig. S1B). In addition, while hallmark onco-
genes are expected to be disrupted in many cancer types, we observe in a sampling of
11 oncogenes that these are either not significantly differentially expressed in any of the
11 tumors analyzed (e.g., BCR, CTNNB1, DDX6, FUS, KRAS, MDM2, TPR) or only dis-
rupted in certain tumors (e.g., EGFR, ETV4, JUN,MYC; Additional file 1: Fig. S1C). Such
apparent inconsistency between the function of oncogenes and their lack of change in
expression in many tumor types can be partially explained by alternative mechanisms of
activation that are independent of changes in transcript levels. Nonetheless, these results
demonstrate that using a simple differential gene expression analysis fails to capture the
complexity and heterogeneity of the transcriptomic variations existing across various
cancer types.
In order to overcome the limitations of such naive searches for common cancer tran-

scriptome signatures, we sought to train interpretable deep learning models capable
of distinguishing between normal and cancer samples. We assembled a large RNA-Seq
dataset comprising 13,461 samples from 19 normal tissue types and 18 tumor types and
split the data into two classes reflecting cancer state: normal or tumor (Fig. 1B; 5622
total normal samples and 7839 total tumor samples). Samples were sourced from TCGA
(https://www.cancer.gov/tcga), GTEx [20] and 12 other datasets (Fig. 1C). Because techni-
cal biases and batch effects are a major concern when using large-scale RNA-Seq datasets,
especially when comparing perfectly confounded datasets like GTEx and TCGA, we
included in our compendium 12 smaller datasets containing either only tumor samples
or tumor and matched normal tissue samples from the same donors. These additional
datasets allowed us tomitigate dataset-specific biases and focus on cancer-specific signals
by performing a tissue/tumor-specific mean correction across the 14 datasets (see Addi-
tional file 1: Fig. S2A-B). We also considered alternatives to mean correction, such as the
commonly used COMBAT method [21], but this approach severely limited the data and
gene sets that could be used for model training (see the “Batch correction” section in the
“Methods” section for details).

https://www.cancer.gov/tcga
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Fig. 1 A Upset plot summarizing pairwise differential gene expression analyses performed on tumors and
their corresponding normal tissue. No gene is significantly deregulated in more than 9 out of 11 cancer types
tested. B, C Dataset assembled to train and test binary models to distinguish between normal and tumor
samples shown by tissue type (B) or dataset (C). D Graphical representation of the computational framework
used to train, test, and interpret the models. E Performance of models trained with protein-coding gene
expression, lncRNA gene expression, or splicing variations evaluated by area under the precision-recall curve
(AUPRC) and accuracy (sum of true positives and true negatives over the total population). F Accuracy of
models trained with protein-coding gene expression, lncRNA gene expression, or splice junction usage
across the 13 datasets used to assemble the training set. G Performance of models trained with
protein-coding gene expression, lncRNA gene expression, or splice junction usage on an independent
dataset consisting of normal and cancer lung samples. H Performance of the deep learning model, SVM, and
random forest using protein-coding gene expression on unseen tissue types (blood cancers) with no batch
correction. The training set consists of solid tumors only

We first used the mean corrected expression data from 19,657 protein-coding genes to
train an autoencoder for dimensionality reduction, followed by a supervised deep neural
network to predict cancer state (normal tissue versus tumor, Fig. 1D; see the “Methods”
section for details about dimensionality reduction and model training). We divided our
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dataset into training (8504 samples), validation (2127 samples), and test sets (2658 sam-
ples). We tuned model hyperparameters (learning rate, hidden layers, number of nodes,
activation functions, and dropout probability) on the validation set and fixed our model
architecture using the hyperparameters with the best performance on the validation set
(see Additional file 2: Table S1 for the final model architecture of the deep neural network
model for the protein-coding genes). To ensure that our model did not learn dataset-
specific biases, we evaluated model performance on a previously unseen set of samples
(test set with 2658 samples) extracted from the 13 datasets used for training as well as
one independent dataset (PRJEB2784) that was not used during training but that com-
prises 172 samples of tissue types that were included in the training set (normal and
tumor lung samples). Our protein-coding gene expression model accurately predicted
whether an individual sample corresponds to a normal tissue or a tumor (accuracy 98.62%
± 0.20% and area under the precision-recall curve (AUPRC) 99.88% ± 0.01%, Fig. 1E and
Additional file 1: Fig. S3), and this performance generalizes over all 13 datasets despite
the dataset imbalance (Fig. 1F, see numbers in the bars for the number of samples in
each dataset). The only datasets where the performance is variable have very few samples
(PRJNA340880 has 1 sample and PRJNA288518 has 3 samples). Importantly, the model
performs almost as well when applied on the independent dataset (Fig. 1G and Additional
file 1: Fig. S4).
To evaluate how our model generalizes to cancer types not included in the training set,

we assembled a group of normal (macrophages, monocytes, and lymphocytes) and malig-
nant (acute myeloid leukemia and acute lymphoblastic leukemia) blood cells from three
datasets (ArrayExpress E-MTAB-2319, Blueprint, and TARGET consortia, see Additional
file 2: Table S2 for details on the samples). We omitted batch correction on these samples
to assess how our model would fare on a dataset that considerably differs from the train-
ing set both at the biological (solid tissues and tumors in training set vs. hematologic cells
and tumors in the test set) and technical levels (batch-corrected in training set vs. uncor-
rected test set). Strikingly, despite these significant differences between training and test
sets, our deep neural network model successfully distinguishes normal and cancer sam-
ples from blood (Fig. 1H and Additional file 1: Fig. S5), although, as expected, we observe
a reduction in accuracy.
Finally, in order to assess how our deep neural network model compares to other

machine learning algorithms, we first trained support vector machine and random forest
models using the same training set as for our deep neural network model and then tested
them on the same independent dataset consisting of batch-corrected normal and can-
cer lung samples. Under these conditions, all three models perform similarly (Additional
file 2: Table S3). However, in sharp contrast with the deep neural network model, both the
support vector machine and random forest models completely fail when applied to the
hematologic dataset (Fig. 1H). In summary, these results demonstrate that our deep neu-
ral network model can more accurately and robustly identify cancer samples compared to
commonly used machine-learning methods and motivate the subsequent analysis of the
associated features.

lncRNA expression or splice site usage profiles suffice to define cancer state

Other types of transcriptomic features, including lncRNA expression and RNA splicing,
have been used as prognostic markers or to predict drug response in cancer [22–24]. In
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addition, a small number of mutations located in lncRNA genes or disrupting splicing
in protein-coding genes have been shown to drive cancer [25]. However, it is not known
whether widespread changes in lncRNA expression or RNA splicing commonly charac-
terize cancer state. We thus asked if these other types of transcriptomic features could
be used to distinguish between normal and tumor samples, similar to what we found for
protein-coding gene expression.
We used the same strategy as for the model trained with protein-coding gene expres-

sion above and trained models with expression data from 14,257 lncRNA genes or splice
site usage data from 40,147 splice junctions. Similar to protein-coding genes, we tuned
the hyperparameters for deep neural network models using lncRNA and splicing junc-
tions on the validation set and evaluatedmodel generalization performance on the test set
(see Additional file 2: Tables S4 and S5 for the final architectures of the lncRNA and splice
junction deep neural networks, respectively). Remarkably, these models achieved 98.57%
± 0.1% and 98.78%± 0.09% accuracy, respectively, with high AUPRC (99.84%± 0.06% for
lncRNA expression and 99.82% ± 0.06% for splice junction usage, Fig. 1E). As observed
with the protein-coding gene expression-trained model, the lncRNA gene expression and
the splice junction usage-trained models perform consistently well across all of the test
datasets on the task of predicting the cancer state, again despite the dataset imbalance
(Fig. 1F), or when tested on an independent dataset (Fig. 1G), These results further sup-
port the robustness of our models as capable of identifying true biological signals rather
than confounders.
As for the protein-coding genes model, we compared our deep neural network model

for lncRNA gene expression with support vector machine and random forest models on
the same two datasets. All three models performed well on the batch-corrected dataset
consisting of normal and tumor lung samples (Additional file 2: Table S3B). However,
while our deep neural networkmodel also correctly predicted cancer state with the hema-
tologic dataset (normal leukocyte and leukemia samples), both support vector machine
and random forest models completely failed again on this dataset (Additional file 2: Table
S6). On the splicing data, our deep neural network model outperforms both the support
vector machine and random forest models on the independent batch-corrected nor-
mal and tumor lung dataset (Additional file 2: Table S3C). The strong performance of
our lncRNA- and splicing-trained models indicates that tumor samples can be defined
not only by their protein-coding gene expression profile, but also using exclusively their
lncRNA gene expression or splice junction usage profile.

Interpretation of deep learning networks uncovers new transcriptomic features

characterizing cancer state

Given the high performance of our models, we wanted to know what transcriptomic fea-
tures are the most important in each of our models and whether these features consist
mostly of the usual suspects, i.e., genes known to be genetically associated with cancer.
To do this, we generated feature importance scores known as attribution values for tumor
samples using enhanced integrated gradients (EIG) [19]. Briefly, EIG measures a feature’s
contribution, either positive or negative, to the model label predictions (normal tissue
versus cancer) when comparing a cancer sample to a baseline. Following our previous
work [19], we used the median of normal samples as the baseline (see the “Methods” and
“Interpretation of tumor classification models” sections for details).
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We selected 1768 protein-coding genes, 1763 lncRNAs and 562 splice junctions that
have high median attribution values across tumor types (Fig. 2A and Additional file 2:
Tables S7-S9; see the “Methods” and “Selection of feature sets” sections for the selection
criteria and Additional file 1: Fig. S6). We also defined “neutral” sets with a sample size
equivalent to sets of high-attribution features using features that display attribution values
close to zero (Additional file 2: Tables S10-S12). When looking at the cancer type-specific
attribution values across 14 tumor types for the top 100 features with positive or negative
attribution, we found that protein-coding genes, lncRNAs and splice junctions with the

Fig. 2 A Selection of high-attribution features from models trained with protein-coding gene expression,
lncRNA gene expression or splice junction usage. Dotted lines show cutoffs used; purple points around
coordinates (0,0) show features selected in neutral sets. BMedian attribution values of 100 protein-coding
genes, lncRNAs or splice junctions with the highest positive and negative attributions across tumor tissues.
CMedian attribution values of genes associated with cancer from the COSMIC database. D Overlap between
COSMIC oncogenes and TSGs, and genes with high positive (top panel) or negative (bottom panel)
attribution values, or between COSMIC tier 1 genes (high confidence for causal role in cancer) and tier 2
genes (some evidence of causal involvement in cancer), and all high-attribution genes (central panel).
E Overlap between genes associated with cancer and genes harboring junctions with high attribution values.
In both D and E, enrichment or depletion factors were calculated from the ratio of observed vs. expected
overlapping genes between sets, and p-values were calculated using the hypergeometric test
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highest median attribution values across all tumor samples have consistently high attri-
bution values in most if not all cancer types (Fig. 2B), highlighting that our models are not
driven by outlier expression or splice junctions usage in cancer types with a large sample
size, but rather rely on common transcriptomic features of cancer.
In agreement with our differential gene expression analysis that showed that no gene is

significantly deregulated in the same manner across all tumor types, we find that the sign
of the attribution value for a given gene does not necessarily reflect the change in expres-
sion in cancer. In other words, a gene with a high positive attribution value would not nec-
essarily be upregulated in all or most cancers, and conversely, a gene with a high negative
attribution value would not necessarily be downregulated in all or most cancers. Thus,
rather than highlighting genes and splicing variations that are similarly altered in many
cancer types, the interpretation of ourmodels exposes transcriptomic variations that con-
sistently deviate from the norm in cancer. The transcriptomic variations that they identify
could reflect changes that cause or are a consequence of cancer, or a mixture of both.
We next sought to assess the relation between model attributions and known onco-

genes or tumor suppressor genes (TSGs). Strikingly, we found a clear separation between
the latter two groups with oncogenes receiving positive attribution and TSGs receiving
negative values (Fig. 2C). However, most of the known oncogenes and TSGs have lower
attribution values relative to our top-scoring features, with many having neutral attribu-
tion values (close to 0). This result was observed with attribution values from both the
expression of COSMIC genes or usage of splice junctions found in those genes. We only
observed a small, although statistically significant, enrichment of COSMIC genes among
our high negative attribution genes (Fig. 2D). Of note, well-known oncogenes and TSGs
are depleted among genes that have splice junctions with high attributions, meaning that
there are fewer oncogenes and TSGs with high-attribution splice junctions than would be
expected by chance (Fig. 2E). These results show that our models rely on gene expression
and splicing variations in genes that mostly differ from established oncogenes and TSGs
to predict tumor samples and that the transcriptomic definition of cancer that we pro-
vide here largely differs from genes harboring hallmark mutations causally implicated in
cancer.

Frequency of genetic alterations in transcriptomic features characterizing cancer state

Next, we wondered if previously unreported genetic alterations in our high-attribution
genes might be driving the transcriptomic variations highlighted by our models. We first
postulated that high-attribution genes would rarely carry driver mutations since these
genes are not known to be genetically linked to cancer, which we confirmed by investigat-
ing TCGA samples and finding that less than 2% of high-attribution genes carry a driver
mutation in at least one of any of the samples in TCGA (Fig. 3A). While high-attribution
genes do not carry driver mutations, our analysis shows that genes with high negative
attribution values by expression display a higher frequency of passenger mutations than
their reference neutral set and that the frequency of passenger mutations in high negative
attribution genes is as high as in COSMIC oncogenes (Fig. 3B). The frequency of struc-
tural variants, although higher in high-attribution genes than their reference neutral sets,
is lower for all sets of high-attribution genes than for COSMIC genes (Fig. 3C). Similarly,
the frequency at which high-attribution genes are impacted by amplification (Fig. 3D) or
deletion events (Fig. 3E) is not significantly different from the neutral sets or the COSMIC
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Fig. 3 Fraction of genes with driver mutations (A), frequency of passenger mutations (B), structural variants
(C), amplification events (D), or deletion events (E) in the TCGA cohort. The analysis was performed on the
following sets of genes: COSMIC oncogenes (yellow), COSMIC tumor-suppressor genes (TSGs, green), genes
with high positive (“protein-coding positive,” red), high negative (“protein-coding negative,” blue), or neutral
attribution values by expression (“protein-coding neutral,” gray) or genes with splice junctions with high
(“splicing high,” light red) or neutral (“splicing neutral,” light gray) attribution values in our models. p-values
were calculated using a one-way ANOVA with Tukey post hoc tests

genes. Overall, we conclude that the cancer transcriptomic features we identified are not
frequently affected by genetic alterations, which suggests that the cancer expression and
splicing patterns obtained from our models are not driven by genetic variations in these
genes.

High evolutionary and selective constraints in transcriptomic features defining tumor state

After establishing a list of genes with high attribution values by expression or splice
junction usage and discovering that most of these genes do not correspond to COSMIC
oncogenes or TSGs, we wondered whether transcriptomic features that carry high attri-
bution values in our models have properties that may indicate important roles in cells. We
discovered that protein-coding genes, lncRNA genes and genes with splice junctions cor-
responding to high-attribution features in our models are highly evolutionarily conserved
relative to the neutral sets (Fig. 4A). We noted that protein-coding genes that have high
negative attributions as well as lncRNA genes that have high positive or negative attribu-
tions are in general significantly longer than the reference neutral sets, but that genes with
splice junctions with high attributions are significantly shorter (Fig. 4B).We also observed
that protein-coding genes and genes with splice junctions with high attributions display
high selective pressure against loss of function mutations, as estimated by the gnomAD
LOEUF score [26] (Fig. 4C).
Finally, we inferred the functional impact of lncRNA genes with high attributions by

examining the density of a class of DNA motifs termed pyknons. Pyknons are located in
loci that were previously reported as often differentially transcribed between normal and
colorectal cancer tissues and that can affect the oncogenic functions of lncRNAs [27–29].
We found that high-attribution lncRNA genes carry a higher density of pyknons (Fig. 4D)
than lncRNA genes from the neutral set. This was true for both positive- and negative-
attribution lncRNAs, but it was particularly marked in negative-attribution lncRNAs,
where average pyknon density is seven times higher than neutral-attribution lncRNAs.
Together, these findings show that high attribution protein-coding and lncRNA genes by
expression or splicing are under strong evolutionary and selective constraints and sug-
gest that these protein-coding genes and lncRNAs with altered expression or abnormal
splicing in cancer have essential functions in cells.
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Fig. 4 A Evolutionary conservation of protein-coding genes (left panel), genes with variable splice junctions
(middle panel) or lncRNA genes (right panel) across human, chimpanzee, mouse, cattle, xenopus, zebrafish,
and chicken. B Gene length derived from the longest annotated transcript in Ensembl (hg38) for
protein-coding genes (left panel), genes with variable splice junctions (middle panel), or lncRNA genes (right
panel). C Selective pressure against loss-of-function mutations in the human population as assessed by
gnomAD LOEUF score [26], showing score for protein-coding genes (left panel) or genes with splice
junctions (right panel) with high attribution values. A low LOEUF score implies high selective pressure against
loss of function. D Pyknon density in lncRNA genes with high attribution values. All p-values shown are
calculated using an unpaired t-test

Characterization of splice junctions with high attributions

While it is easy to conceive how changes in the expression level of a gene can drive
tumorigenesis, interpreting the impact of splicing changes in disease is not as straightfor-
ward. We thus wanted to assess how variable splice junctions with high attributions are
predicted to impact protein sequence and function. We first noted that high-attribution
junctions are predicted to disrupt the reading frame of the gene as often as our reference
neutral junction set (Additional file 1: Fig. S7A). Previous studies have shown that alter-
native splicing can modulate protein-protein interactions by targeting disordered regions
[30–32]. Therefore, we looked at predicted disorderness of the peptide sequence cor-
responding to the two exons immediately upstream and downstream of variable splice
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junctions but found that the predicted peptide disorderness level is no different in high-
attribution junctions from what we observe in the neutral set (Additional file 1: Fig. S7B).
We then assessed whether high-attribution splice junctions affect known protein

domains by predicting the protein domains encoded from the two exons immediately
upstream and downstream of high-attribution junctions using the NCBI Conserved
Domain Database. Interestingly, we discovered that 11 splice junctions in 10 genes
(CSNK2A2, MAPK9, RIOK1, PRKDC, TYK2, PAK1, IRAK1, CSNK2A1, VRK1, MARK3)
affect a part of the transcript matching sequences of protein kinase C (PKC)-like super-
family domains (Fig. 5). Genes contributing to PKC signaling have been implicated in
cancer as oncogenes or tumor suppressors [33], but little is known about the impact of
splicing variations altering PKC-like superfamily domains in cancer. We also found addi-
tional high-attribution splice junctions that affect other domains that are linked to cancer
signaling, in particular DEAD-like, RING, and C2 domains. Thus, it is possible that some
of the high-attribution splice junctions that we uncovered regulate cancer through the
alteration of cancer signaling protein domains.

Contrasting functions of genes with high positive or negative attributions by expression or

splicing in cancer

Finally, given that a majority of the protein-coding genes or genes with splice junctions
with high attribution values in our models were not previously associated with cancer, we
sought to understand the functions of those genes. We first checked whether genes that
have high attribution values by expression differ from the genes that have high attribu-
tions by splice junction usage and confirmed that a large majority of the genes with high
attributions by expression differ from the genes with high attributions by splice junction
usage (Fig. 6A). We performed a Gene Ontology analysis for protein-coding genes with
high attribution values and found that protein-coding genes with high negative attribution
values are enriched for functions related to transcription, mitosis, histone modification,
chromatin regulation, and localization to the centrosome, in line with the traditional view
of cancer (Additional file 1: Fig. S8A). In sharp contrast, protein-coding genes with high
positive attribution values are enriched for post-transcriptional and post-translational
modifications, in particular tRNA modification, RNA splicing and protein neddylation,
as well as membrane-bound organelles (Additional file 1: Fig. S8B). Similar to protein-
coding genes with high positive attribution values, genes with splice junctions with high

Fig. 5 Protein domains that are affected by at least two splice junctions with high attributions
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Fig. 6 A Overlap between genes with high positive (red set) or negative (blue set) attribution values and
genes with splice junctions that have high attribution values (light red set) with the list of genes overlapping
between sets. B Enrichment map showing GO terms related to biological processes that are enriched among
protein-coding genes with high negative (protein-coding negative, blue) or positive (protein-coding
positive, red) attributions by expression, genes with high-attribution splice junctions (splice junctions, light
red), or enriched both in protein-coding positive and splice junction genes (protein-coding positive and
splice junctions, dark red). Each node is a GO term and the color of the nodes corresponds to gene sets in
which they are enriched. The thickness of edges corresponds to the number of genes in common between
GO terms. C Heatmap of terms obtained from an Ingenuity Pathway Analysis (QIAGEN) for molecular and
cellular functions. D Gene set enrichment analysis on high-attribution protein-coding genes by expression
showing an enrichment in KRAS signaling among negative attribution genes. High-attribution genes were
ranked on the x-axis from high positive (left, red) to high negative attribution (right, blue)

attribution values are also enriched for functions related to RNA processing, in partic-
ular, splicing and transport, but also carry a component of terms related to chromatin
(Additional file 1: Fig. S8C). Of note, the set of genes with neutral attribution values by
expression are enriched for heterogeneous and unrelated terms (Additional file 1: Fig.
S8D) and genes with neutral attribution values by splice junction usage failed to return any
terms with an adjusted p-value < 0.05, indicating that our high-attribution genes consist
of sets of biologically related and consistent functions.
An enrichmentmap built fromGO terms related to biological processes shows that high

positive attribution genes by expression or splicing form a highly interconnected network
whose core relates to functions associated with RNA biology (Fig. 6B). The network core
from high positive attribution genes by expression or splicing differs from the highly inter-
connected network core drawn from genes with high negative attributions by expression,
which are associated with gene expression and transcription (Fig. 6B). Ingenuity Pathway
Analysis for molecular and cellular functions associated with high-attribution genes con-
firmed that functions of high negative attribution genes are distinct from those of high
positive attribution genes, with transcription and RNA processing being predominant
in each group, respectively (Fig. 6C). Pathway analysis also revealed how high negative
attribution genes by expression and genes with high attribution by splice junction usage
partially overlap in functions related to cell survival and how high attribution genes by
splice junction usage are involved in the cell cycle. Finally, gene set enrichment analysis
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unveiled an enrichment of high negative attribution genes for KRAS signaling (Fig. 6D),
while no significant enrichment was found for genes with high positive attributions by
expression or splicing.
Thus, while genes that have high negative attribution values in cancer share functions

of known oncogenes and TSGs, including in how they are implicated in genome main-
tenance and transcription, genes that have high positive attributions by expression or
splicing have distinct functions, several of which are related to RNA regulation and RNA
processing.

Discussion
Our results demonstrate that feed-forward neural networks can be used to distinguish
between normal and tumor samples using transcriptomic features. Importantly, we show
that models trained with lncRNA expression or splice junction usage perform as well as,
if not better than, a model trained with protein-coding expression data. This observation
highlights how various elements of the transcriptome can inform on disease state and
emphasizes the importance of pursuing molecular markers beyond variations in protein-
coding gene expression, in particular, by assessing variations in lncRNA gene expression
and splice junction usage in cancer. Our approach uncovered common transcriptomic
profiles consisting of a number of gene expression and splicing variation markers that are
not altered in the same way across all solid tumor types, making up a novel molecular
definition of cancer that would be impossible to establish using traditional approaches
such as differential gene expression analysis.
The interpretation of our models revealed known and novel molecular features of can-

cer. Known cancer drivers were moderately enriched among genes that we find to have
high attribution values, which can be expected for genes with driver mutations result-
ing in loss of function or lower protein expression. In addition, among genes with high
negative attribution values were genes with functions typically associated with genome
integrity maintenance, such as histone modification and chromatin regulation, as well
as transcription, two long-known aspects of cancer development [34, 35]. On the other
hand, many of the protein-coding genes that have high positive attribution values have
roles in RNA regulation or RNA processing. Interestingly, RNA deregulation has become
a recurrent theme in cancer research [36]. Driver mutations have been found in sev-
eral RNA-binding proteins (e.g., SF3B1,U2AF1, SRSF2,HNRNPA2B1, SRRM2) in cancers
ranging from blood malignancies to glioblastoma [37–39], but several questions remain
regarding how widely this group of proteins and their targets are involved in cancer. Our
results suggest that RNA deregulation might be a central component of cancer, upon
which many cellular pathways involved in cancer may converge. Indeed, network analy-
sis shows that genes with high attribution values by expression or splice junction usage
and that have functions related to RNA regulation are tightly connected to the canonical
pathways of cancer (Fig. 7 and Additional file 2: Table S13).
Our transcriptomic definition of cancer includes several elements that were not pre-

viously genetically associated with cancer but that display strong sequence constraints,
which suggests that these genes or splice junctions play essential roles in cells. Inter-
estingly, several of these genes that are not listed as COSMIC oncogenes still display
tumorigenic characteristics. A few examples include DYNC1H1 [40], WSB1 [41–43],
RUFY3 [44, 45], DOCK5 [46], MYSM1 [47], DSE [48], DCUN1D5 [49, 50], SARNP [51],
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Fig. 7 Network analysis of common cancer pathways (PI3K, cell cycle, Myc, Rtk-Ras, Notch, Hippo, TP53, Hippo,
TGF-beta) together with genes in GO terms related to RNA regulation or RNA processing that are enriched in
our protein-coding or splicing models. Each node is a network as predicted with Ingenuity Pathway Analysis;
the size of the nodes represents the number of molecules in each network and the thickness of the edges
represents the number of molecules in common between two networks. Networks formed by high-
attribution genes in our protein-coding and splicing models are highlighted with a thicker node border. Only
networks comprising at least three molecules and connected by at least two shared molecules are shown.
Numbers identify networks; Additional file 2: Table S13 lists the molecules found in each network (node)

and FNTA [52, 53], which can all promote cell proliferation or transformation, at least
in some conditions. Likewise, we have identified splice junctions in cancer that devi-
ate from normal tissues in functional domains implicated in cancer signaling, such as
PKC-like [33], DEAD-like [54] and RING [55] domains, in genes associated with cancer,
such as CSNK2A1, CSNK2A2, RIOK1, PRKDC, TYK2, PAK1, and IRAK1, for which gene
expression and posttranslational modifications act as mechanisms for cancer progression
[56–61]. However, splicing variations related to cancer have not been reported for any of
these genes except PAK1, for which a JMJD6-regulated exon inclusion event altering the
PKC domain enhances MAPK signaling in melanoma [62]. While the splice junction we
identified differs from the one reported before, it also affects the PKC domain of PAK1.
IRAK1 has two well-characterized alternative splicing events [63], but there exists no evi-
dence that these events are directly involved in tumorigenesis, and they also differ from
our splice junctions with high attributions. Overall, keeping in mind that the models we
developed were not designed for clinical application, their robustness across tumor types
and the functional properties of their most informative features hint that our signatures
could be leveraged to design markers for cancer detection.
Interestingly, our analysis of variant frequency shows that high negative attribution

genes in our protein-coding gene expression model are more frequently mutated than
the neutral set, and almost as frequently as COSMIC oncogenes and TSGs. In contrast,
variant frequency is much lower for genes with high positive attributions by expression
or splicing. This observation could explain why many of these transcriptomic features
have previously been overlooked in genomic studies. In addition, while the directional-
ity of the attribution value does not directly reflect the difference in expression across
all cancer types (e.g., a gene with a high positive attribution would not necessarily have
higher expression in all cancer types), we noticed that known oncogenes generally have
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positive attribution values and known tumor suppressors generally have negative attribu-
tion values (Fig. 2C). This observation suggests that positive attribution genes could be
considered “oncogene-like” while negative attribution genes could be considered “tumor-
suppressor-like” in the way they are altered in cancer and, perhaps, in how they contribute
to cancer biology.

Conclusions
Altogether, our results show that alteration of RNA processing pathways is a hallmark
of several types of cancer. Future work should be directed at assessing whether the tran-
scriptomic features of cancer that we highlight here are causally involved in tumorigenesis
or in tumor suppression, thereby highlighting a core transcriptomic component of can-
cer development, or whether they represent the downstream consequences of genetic
alterations in core transcriptional circuitries of cancer [64].

Methods
Notation

We are interested in defining the transcriptomic signature of solid tumors. We achieve
this by first predicting the cancer state of an RNA-seq sample using a deep learningmodel
with gene expression (protein-coding or lncRNA) or splicing quantification as input. Sub-
sequently, we interpret the prediction made by the deep learning model given our input
observation by assigning attributions to each feature of the observation. Let X be the
input space and Y be the output or label space. Input x is in a p-dimensional feature space
X = R

p. Since we only consider a binary classification task for defining the cancer state,
Y = {0, 1}, where 0 represents normal tissue and 1 represents tumor. Predictions are
obtained by a prediction function on the feature space F : X → Y . The goal of the inter-
pretation step is to obtain a p-dimensional vector of attributions called attr ∈ R

p, with
each value representing how each of the p features contributes to the prediction F(x).

Datasets

In this work, we process RNA-seq samples from normal human tissues and tumors
from 14 datasets (see Additional file 2: Table S2 for a list of all samples and their
tissue/cancer identity and Fig. 1B, C for the number of samples representing each tis-
sue or tumor type and source dataset, respectively). The two largest datasets among
these are from the Genotype-Tissue Expression (GTEx) consortium and the Cancer
Genome Atlas (TCGA) program. We processed 5622 samples from 19 normal tissues
and 7839 samples from 18 cancer types. Since large datasets often suffer from batch
effects, we included 12 other datasets in our analysis. These datasets included lung
[65, 66], liver [67], stomach [68], breast [69–71], brain [72], and colon [73] tumor samples
with matched normal samples, as well as head and neck [74–76], pancreatic [77], ovarian
[78], and prostrate [79] tumor samples without matched normal samples (see Additional
file 2: Table S2 for the number of samples and dataset labels). For testing on indepen-
dent, unseen tissue and tumor types, we processed 16 macrophage samples, 8 monocyte
samples and 9 CD4+ lymphocyte samples from the Blueprint project [80], 35 CD4+ and
14 CD8+ lymphocyte samples from dataset E-MTAB-2319 [81], and 40 B-cell acute lym-
phoblastic leukemia samples and 40 acute myeloid leukemia from the pediatric TARGET
cohort [82].
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RNA-Seq data processing

In order to minimize the introduction of technical biases, all RNA-Seq samples were pro-
cessed from fastq files in the same manner. The raw reads from RNA-Seq experiments
are passed through quality control using FastQC [83]. Sequencing adapters were trimmed
with TrimGalore (v0.6.6) [84], reads were aligned with STAR (v2.5.2a) [85] against the
hg38 human genome assembly [86], and mapped reads were sorted and indexed using
samtools (v1.11). Gene expression quantification was carried out using Salmon (v0.14.0)
[87] in quasi-mapping mode using an index generated with Ensembl GRCh38 transcrip-
tome release 94. Splice junctions were quantified usingMAJIQ (v2.1) [88]. MAJIQ defines
alternative splicing in terms of local splicing variations (LSVs). LSVs can be binary or
complex. Binary LSVs comprise only two junctions and complex LSVs have more than
two junctions. We only use binary splicing variations that were quantified in at least 80%
of samples of a given tissue or tumor type and select junction usage value randomly from
one of the two junctions composing the splicing variation. The splicing quantification of
a junction in a condition is called percent spliced-in (PSI). For binary LSVs, PSI measures
the ratio of the number of reads supporting the inclusion of a junction in a condition
over the total number of reads supporting its inclusion or exclusion. MAJIQ uses a beta-
binomial distribution over the reads to quantify PSI. For more details on the statistical
model, please refer to [88].

Batch correction

To mitigate batch effects from our RNA-seq data, we take two steps. First, in addition to
GTEx and TCGA, we searched for other datasets with normal tissues and tumor samples.
This step is necessary as our signal of normal tissues versus tumor is confounded with
whether the sample came from GTEx or TCGA. GTEx consists of normal tissues and
TCGA consists of mostly tumor samples. Therefore, we added 12 other small datasets to
ensure that we learn cancer-specific signals and are not confounded by dataset-specific
technical biases. We found additional data sources for 13/19 normal tissues and 8/18
tumor types. Next, we correct dataset bias for gene expression data by mean-centering
each tissue/tumor-type separately across datasets. The batch correction step ensures our
deep learningmodels using protein-coding and lncRNA gene expression generalize across
multiple datasets.
We opted for tissue-specific mean correction for mitigating batch effects instead of

standard batch correction methods such as COMBAT because our dataset did not meet
the criteria required for traditional batch correction methods, such as the requirement
for having at least two data sources for each tissue/tumor type [21]. However, to ensure
the robustness of attributions generated by mean-corrected data, we compared it with
attributions generated by COMBAT-corrected data. We ran COMBAT batch correc-
tion on 11/19 normal tissues and 7/18 tumor types, for which data was available from
multiple sources. Two additional normal tissues and one tumor type with multiple data
sources had high imbalance, which led COMBAT to filter approximately 14,000–15,000
genes, thus making the corrections unusable. As expected, the application of COMBAT
on our gene expression data results in the loss of approximately 5500 genes. However, it
is worth noting that despite these limitations we observe a very high correlation between
the attribution values identified by both types of data pre-processing (mean correction
vs. COMBAT correction, see Additional file 1: Fig. S2C, right panel; Pearson’s R 0.90,
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Spearman’s R 0.85), indicating the stability of our top feature attributions regardless of the
batch correction method.

Tumor classification models

We train three deep learning models for defining the transcriptomic signature of solid
tumor samples. Each of these models uses a different set of transcriptomic features to
predict the cancer state of an RNA-seq sample: protein-coding gene expression, lncRNA
gene expression and quantification of splice junctions. Since we have thousands of noisy
transcriptomic features, we first train an autoencoder model for dimensionality reduction
followed by a supervised feed-forward neural network for the cancer state prediction. In
the next three sections, we describe these models in detail.

Protein-coding gene expression basedmodel

In our first model, the input features are the expression values of 19,657 protein-coding
genes. We extracted the protein-coding genes from Ensembl BioMart (see Additional
file 2: Table S14 for the list of protein-coding genes). Using these features, we first train
an autoencoder model and then, using the reduced feature set from the latent space of
the autoencoder, we train a supervised feed-forward neural network that predicts normal
tissue versus tumor for each RNA-seq sample. The encoder in our autoencoder model
has two latent layers followed by a third latent layer that produces the feature set with
reduced dimensionality. The decoder mirrors the encoder. It takes in the features from
the third latent layer of the encoder and reconstructs the gene expression values of the
protein-coding genes. Using the latent features from the encoder as input features, we
then train a discriminator network with three latent layers followed by the output layer.
Both the autoencoder and the discriminator networks use the ReLU activation function
and are trained using the adam optimizer (see Additional file 2: Table S1 for the detailed
architecture of both models).

LncRNA gene expression based model

For the nextmodel, the input features are the gene expression of 14,257 lncRNA genes.We
extract the lncRNA genes from Ensembl BioMart. See Additional file 2: Table S15 for the
list of lncRNA genes. The model architecture and training process of the lncRNA-based
model is similar to the protein-coding gene expression model described in the previ-
ous section (see Additional file 2: Table S4 for the detailed architecture of the lncRNA
autoencoder and discriminator networks).

Splicing junctions basedmodel

Finally, the input features for our third model are the splicing quantification for 40,147
alternative splice junctions from 11,219 genes. See Additional file 2: Table S16 for the
list of genes. We generated the splicing quantification for these junctions in the normal
tissues and tumors using MAJIQ (see the “RNA-Seq data processing” section for details
on quantification of these splicing junctions from the RNA-seq data). As we have thou-
sands of splicing junctions as features, we again train an autoencoder for dimensionality
reduction followed by a supervised neural network for tumor classification. The model
architecture and training process of this model is similar to the previous gene expression
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(protein-coding or lncRNA) based models (see Additional file 2: Table S5 for the detailed
architecture of the splicing junctions based models).

Interpretation of tumor classification models

In order to find the features responsible for classifying an RNA-seq sample as tumor,
we employ the enhanced integrated gradients (EIG) method for interpretation of a deep
learningmodel [19]. Here, interpretationmeans attributing the prediction of a deep learn-
ing model to its input features. Briefly, EIG computes feature attribution by aggregating
gradients along a linear/non-linear path between a sample and a class-agnostic/specific
baseline. Sample here refers to an input sample to the deep learningmodel. Baseline refers
to a model’s proxy to human counterfactual intuition. This implies that humans assign
blame for the difference in two entities on attributes that are present in one entity but
absent in the other. EIG offers multiple baselines and paths. In this work, since we want
to find features that distinguish between tumor samples from normal tissue samples, we
use normal tissues as the baseline class. Specifically, we use the median in the latent space
over the normal tissue samples. Then, we compute the attributions for the given tumor
samples by aggregating the gradients between the baseline and each tumor sample along a
linear path in the original feature space. We assess the class-wide significance of each fea-
ture by computing p-values by comparing the attribution distribution of a feature for the
tumor class versus a random mixture of normal tissues and tumors using a one-sided t-
test with FDR correction for multiple hypothesis testing. For further details on enhanced
integrated gradients, please refer to [19].

Selection of feature sets

High-attribution feature sets were selected from features with an adjusted p-value <

0.0001 (Benjamini-Hochberg FDR correction < 0.01) and ranking above the knee-point
of the curve in the case of positive attribution values or below the knee-point of the curve
in the case of negative attribution values. A neutral set of a size equivalent to the number
of high-attribution features was selected among genes that had FDR-corrected p-value
> 0.05 and ranking in the middle of the distribution of attribution values (attribution
values close to 0). The list of COSMIC oncogenes and tumor suppressor genes (TSGs)
was established from the COSMIC genes census that had a role in cancer, comprising
the annotation “oncogene” but not “TSG” for oncogenes and comprising the annotation
“TSG” but not “oncogene” for TSGs.

Gene ontology analysis, gene set enrichment analysis and Ingenuity Pathway Analysis

Gene ontology analysis was performed with EnrichR [89] v.1.0 using a 2018 release of
the GO Consortium annotations and including terms from the molecular function, cel-
lular component and biological process categories. Gene set enrichment analysis was
performed using GSEA4.1.0 [90, 91] against the msigdb.v7.4 gene set library and filtered
for enrichment corresponding to hallmark, reactome and GO gene sets with a normalized
p-value < 0.01.

Splice junction characterization

Disorderness was predicted with IUPred2 [92] from the two exons immediately upstream
and downstream of the most distant splice site corresponding to a variable junction.
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Protein domains were predicted from the same transcript region with the NCBI WEB
CD-search tool [93].

Functional characterizations

The conservation score was calculated from the summation of BLAST bit scores from 6
species: human, chimpanzee, mouse, cattle, xenopus, zebrafish, and chicken (taxids: 9606,
9598, 10,090, 8364, 7955, 9031, 9913), normalized to the length of the human transcript.
Loss of function mutation frequency is expressed as the gnomAD LOEUF score only for
genes for which a LOEUF score was reported [26]. Pyknon density was calculated using
the list of human pyknons available from the pyknon database [94] and shown as the
number of pyknons found per 1000 nt in the longest RefSeq annotated transcript.
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