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Abstract

Background: Standard preprocessing of single-cell RNA-seq UMI data includes
normalization by sequencing depth to remove this technical variability, and nonlinear
transformation to stabilize the variance across genes with different expression levels.
Instead, two recent papers propose to use statistical count models for these tasks:
Hafemeister and Satija (Genome Biol 20:296, 2019) recommend using Pearson residuals
from negative binomial regression, while Townes et al. (Genome Biol 20:295, 2019)
recommend fitting a generalized PCA model. Here, we investigate the connection
between these approaches theoretically and empirically, and compare their effects on
downstream processing.

Results: We show that the model of Hafemeister and Satija produces noisy parameter
estimates because it is overspecified, which is why the original paper employs post hoc
smoothing. When specified more parsimoniously, it has a simple analytic solution
equivalent to the rank-one Poisson GLM-PCA of Townes et al. Further, our analysis
indicates that per-gene overdispersion estimates in Hafemeister and Satija are biased,
and that the data are in fact consistent with the overdispersion parameter being
independent of gene expression. We then use negative control data without biological
variability to estimate the technical overdispersion of UMI counts, and find that across
several different experimental protocols, the data are close to Poisson and suggest very
moderate overdispersion. Finally, we perform a benchmark to compare the
performance of Pearson residuals, variance-stabilizing transformations, and GLM-PCA
on scRNA-seq datasets with known ground truth.

Conclusions: We demonstrate that analytic Pearson residuals strongly outperform
other methods for identifying biologically variable genes, and capture more of the
biologically meaningful variation when used for dimensionality reduction.
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Introduction
The standard preprocessing pipeline for single-cell RNA-seq data includes sequencing
depth normalization followed by log-transformation [1, 2]. The normalization aims to
remove technical variability associated with cell-to-cell differences in sequencing depth,
whereas the log-transformation is supposed to make the variance of gene counts approx-
imately independent of the mean expression. Two recent papers argue that neither step
works very well in practice [3, 4]. Instead, both papers suggest to model UMI (unique
molecular identifier) data with count models, explicitly accounting for the cell-to-cell
variation in sequencing depth (defined here as the total UMI count per cell). Hafemeis-
ter and Satija [3] use a negative binomial (NB) regression model (scTransform package
in R), while Townes et al. [4] propose Poisson generalized principal component analysis
(GLM-PCA). These two models are seemingly very different.
Here, we show that the model used by Hafemeister and Satija [3] has a too flexible

parametrization, resulting in noisy parameter estimates. As a consequence, the original
paper employs post hoc smoothing to correct for that.We show that a more parsimonious
model produces stable estimates even without smoothing and is equivalent to a special
case of GLM-PCA. We then demonstrate that the estimates of gene-specific overdisper-
sion in the original paper are strongly biased and further argue that UMI data do not
require gene-specific overdispersion parameters to account for technical noise. Rather,
the technical variability is consistent with the same overdispersion parameter shared
between all genes. We use available negative control datasets to estimate this technical
overdispersion. Furthermore, we compare Pearson residuals, GLM-PCA, and variance-
stabilizing transformations for highly variable gene selection and as data transformation
for downstream processing.
Our code in Python is available at http://github.com/berenslab/umi-normalization.

Analytic Pearson residuals will be included into upcoming Scanpy 1.9 [5].

Results
Analytic Pearson residuals

A common modeling assumption for UMI or read count data without biological vari-
ability is that each gene g takes up a certain fraction pg of the total amount nc of counts
in cell c [4, 6–10]. The observed UMI counts Xcg are then modeled as Poisson or nega-
tive binomial (NB) [11] samples with expected value μcg = pgnc without zero-inflation
[10, 12]:

Xcg ∼ Poisson(μcg) or NB(μcg , θ), (1)

μcg = ncpg . (2)

The Poisson model has a maximum likelihood solution (see “Methods”) that can be writ-
ten in closed form as n̂c = ∑

g Xcg (sequencing depths), p̂g = ∑
c Xcg/

∑
c n̂c, or, put

together,

μ̂cg =
∑

j Xcj · ∑
i Xig

∑
ij Xij

(3)

http://github.com/berenslab/umi-normalization
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For the negative binomial model this holds only approximately. Using this solution, the
Pearson residuals are given by

Zcg = Xcg − μ̂cg
√

μ̂cg + μ̂2
cg/θ

, (4)

where μcg + μ2
cg/θ is the NB variance and θ → ∞ gives the Poisson limit. The variance

of Pearson residuals is, up to a constant, equal to the Pearson χ2 goodness-of-fit statistic
[13] and quantifies howmuch each gene deviates from this constant-expressionmodel. As
pointed out by Aedin Culhane [14], singular value decomposition of the Pearson residuals
under the Poisson model is known as correspondence analysis [15–18], a method with a
longstanding history [19].
Hafemeister and Satija [3] suggested using Pearson residuals from a related NB regres-

sion model for highly variable gene (HVG) selection and also as a data transformation
for downstream processing. In parallel, Townes et al. [4] suggested using deviance resid-
uals (see “Methods”) from the same Poisson model as above for HVG selection and also
for PCA as an approximation to their GLM-PCA. In the next sections, we discuss the
relationships between these approaches.

The regression model in scTransform is overspecified

Hafemeister and Satija [3] used the 33k PBMC (peripheral blood mononuclear cells,
an immune cell class that features several distinct subpopulations) dataset from 10X
Genomics in their work on normalization of UMI datasets. For each gene g in this dataset,
the authors fit an independent NB regression

Xcg ∼ NB(μcg , θg) (5)

ln(μcg) = β0g + β1g log10(n̂c). (6)

Here, θg is the gene-specific overdispersion parameter, n̂c are observed sequencing depths
as defined above, and β0g and β1g are the gene-specific intercept and slope. The natu-
ral logarithm follows from the logarithmic link function that is used in NB regression by
default. The original paper estimates β0g and β1g using Poisson regression and then uses
the obtained estimates to find the maximum likelihood estimate of θg . The resulting esti-
mates for each gene are shown in Fig. 1a–c, reproducing Figure 2A from Hafemeister and
Satija [3].
The authors observed that the estimates β̂0g and β̂1g were unstable and showed high

variance for genes with low average expression (Fig. 1a–b). They addressed this with a
“regularization” procedure that re-set all estimates to the local kernel average estimate
for a given expression level. This is similar to some approaches to bulk RNA-seq analysis
[6, 7] but with post hoc correction instead of Bayesian shrinkage. This kernel smoothing
resulted in an approximately linear increase of the intercept with the logarithm of the
average gene expression (Fig. 1a) and an approximately constant slope value of β̂1g ≈ 2.3
(Fig. 1b). The nature of these dependencies was left unexplained. Moreover, we found that
β̂0g and β̂1g were strongly correlated (ρ = −0.91), especially for weakly expressed genes
(Fig. 1d). Together, these clear symptoms of overfitting suggest that the regression model
was overspecified.
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Fig. 1 Regression model of Hafemeister and Satija [3] compared to the offset model. Each dot corresponds
to a model fit to the counts of a single gene in the 33k PBMC dataset (10x Genomics, n = 33,148 cells).
Following Hafemeister and Satija [3], we included only the 16,809 genes that were detected in at least five
cells. Color denotes the local point density from low (blue) to high (yellow). Expression mean was computed
as 1

n

∑
c Xcg . a Intercept estimates β̂0g in the original regression model. Dashed line: Analytic solution for β̂0g

in the offset model we propose. b Slope estimates β̂1g . Dashed line: β1g = ln(10) ≈ 2.3. c Overdispersion
estimates θ̂g . d Relationship between slope and intercept estimates (ρ = −0.91). e Intercept estimates in the
offset model, where the slope coefficient is fixed to 1. Dashed line shows the analytic solution, which is a
linear function of gene mean. f Overdispersion estimates θ̂g on simulated data with true θ = 10 (dashed line)
for all genes. g Overdispersion estimates θ̂g on the same simulated data as in f, but now with 100 instead of
10 iterations in the theta.ml() optimizer (R, MASS package). Cases for which the optimization diverged
to infinity or resulted in spuriously large estimates (θ̂g > 106) are shown at θ̂g = ∞ with some jitter. Dashed
line: true value θ = 10. h Variance of Pearson residuals in the offset model. The residuals were computed
analytically, assuming θ = 100 for all genes. Following Hafemeister and Satija [3], we clipped the residuals to
a maximum value of

√
n. Dashed line indicates unit variance. Red dots show the genes identified in the

original paper as most variable

Indeed, the theory calls for a less flexible model.As explained above, a common
modeling assumption (Eq. 2) is that μcg = pgnc, or equivalently

ln(μcg) = ln(pg) + ln(nc) = β0g + ln(nc). (7)

We see that under this assumption, the slope β1g does not need to be fit at all and should
be fixed to 1, if ln(nc) is used as predictor. Not only does this suggest an alternative, sim-
pler parametrization of the model, but it also explains why Hafemeister and Satija [3]
found that β̂1g ≈ 2.3: they used log10(nc) = ln(nc)/ ln(10) instead of ln(nc) as predictor,
and so obtained ln(10) ≈ 2.3 as the average slope.
Under the assumption of Eq. 7, a Poisson or NB regression model should be specified

using ln(nc) as predictor with a fixed slope of 1, a so-called offset (Eqs. 5 and 7). This
way, the resulting model has only one free parameter and is not overspecified. Moreover,
the Poisson offset model is equivalent to Eqs. 1 and 2 and so, as explained above, has an
analytic solution

β̂0g = ln
(∑

c Xcg/
∑

c nc
) = ln

(
1
N

∑
c Xcg

)

− ln
(
1
N

∑
c nc

)

, (8)

which forms a straight line when plotted against the log-transformed average gene expres-
sion 1

n
∑

c Xcg (Fig. 1e). This provides an explanation for the linear trend in β̂0g in the
original two-parameter model (Fig. 1a).
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In practice, our one-parameter offset model and the original two-parametermodel after
smoothing arrive at qualitatively similar results (Fig. 1h). However, we argue that the
one-parameter model is more appealing from a theoretical perspective, has an analytic
solution, and does not require post hoc averaging of the coefficients across genes.

The offset regression model is equivalent to the rank-one GLM-PCA

The offset regression model turns out to be a special case of GLM-PCA [4]. There, the
UMI counts are modeled as

Xcg ∼ Poisson(μcg) or NB(μcg , θg), (9)

μcg = nc exp

⎛

⎝
k∑

l=0
UclVlg

⎞

⎠ = nc exp

⎛

⎝V0g +
k∑

l=1
UclVlg

⎞

⎠ , (10)

assuming k + 1 latent factors, with U and V playing the role of principal components
and corresponding eigenvectors in standard PCA. Importantly, the first latent factor is
constrained to Uc0 = 1 for all cells c, such that V0g can be interpreted as gene-specific
intercepts. If the data are modeled without any further latent factors, Eq. 10 reduces to

ln(μcg) = V0g + ln(nc), (11)

which is identical to Eq. 7 with V0g = β0g . This shows that the proposed one-parameter
offset regression model is exactly equivalent to the intercept-only rank-one GLM-PCA.

Overdispersion estimates in scTransform are biased

After discussing the overparametrization of the systematic component of the
scTransformmodel, we now turn to the NB noise model employed by Hafemeister and
Satija [3]. The θ̂g estimates in the original paper are monotonically increasing with the
average gene expression, both before and after kernel smoothing (Fig. 1c). This suggests
that there is a biologically meaningful relationship between the expression strength and
the overdispersion parameter θg . However, this conclusion is in fact unsupported by the
data.
To demonstrate this, we simulated a dataset with NB-distributed counts X̃cg ∼

NB(μcg , θ = 10) with μcg given by Eq. 3 using Xcg of the PBMC dataset. Applying the
original estimation procedure to this simulated dataset showed the same positive corre-
lation of θ̂g with the average expression as in real data (Fig. 1f ), strongly suggesting that
it does not represent an underlying technical or biological cause, but only the estimation
bias. Low-expressed genes had a larger bias and only for genes with the highest average
expression was the true θ = 10 estimated correctly.
Moreover, the θ̂g estimates strongly depended on the exact details of the estima-

tion procedure. Using the theta.ml() R function with its default 10 iterations, as
Hafemeister and Satija [3] did, led to multiple convergence warnings for the simulated
data in Fig. 1f. Increasing this maximum number of iterations to 100 eliminated most
convergence warnings, but caused 49.9% of the estimates to diverge to infinity or above
1010 (Fig. 1g). These instabilities are likely due to shallow maxima in the NB likelihood
w.r.t. θ [20].
The above arguments show that the overdispersion parameter estimates in Hafemeister

and Satija [3] for genes with low expression were strongly biased. In practice, however, the
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predicted variance μ+μ2/θ is only weakly affected by the exact value of θ for low expres-
sion means μ, and so the bias reported here does not substantially affect the Pearson
residuals (see below). Also, many of the weakly expressed genes may be filtered out dur-
ing preprocessing in actual applications. We note that large errors in NB overdispersion
parameter estimates have been extensively described in other fields, with simulation stud-
ies showing that estimation bias occurs especially for low NB means, small sample sizes,
and large true values of θ [21–23], i.e., for samples that are close to the Poisson distribu-
tion. Note also that post hoc smoothing [3] can reduce the variance of the θ̂g estimates,
but does not reduce the bias.

Negative control datasets suggest low overdispersion

To avoid noisy and biased estimates, we suggest to use one common θ value shared
between all genes. Of course, any given dataset would be better fit using gene-specific val-
ues θg . However, our goal is not the best possible fit: We want the model to account only
for technical variability, but not biological variability, e.g., between cell types; this kind of
variability should manifest itself as high residual variance.
Rather than estimating the θ value from a biologically heterogeneous dataset such as

PBMC, we think it is more appropriate to estimate the technical overdispersion using
negative control datasets, collected without any biological variability [12]. We analyzed
several such datasets spanning different droplet- and plate-based sequencing protocols
(10x Genomics, inDrop, MicrowellSeq) and compared the θ̂g estimates to the estimates
obtained using simulated NB data with various known values of θ ∈ {10, 100, 1000,∞}.
For the simulations, we used the empirically observed sample sizes and sequencing
depths. We found that across different protocols, negative control data were consistent
with overdispersion θ ≈ 100 or larger (Additional file 1: Figure S1). The plateau at θ ≈ 10
in the PBMC data visible in Fig. 1c could reflect biological and not technical variability.
At the same time, negative control data did not exactly conform to the Poisson model
(θ = ∞), but likely overdispersion parameter values (θ ≈ 100) were large enough to make
the Poisson model acceptable in practice [10, 24, 25]. A parallel work reached the same
conclusion [26].

Analytic Pearson residuals select biologically relevant genes

Both Hafemeister and Satija [3] and Townes et al. [4] suggested to use Pearson/deviance
residuals based on models that only account for technical variability, in order to iden-
tify biologically variable genes. Indeed, genes showing biological variability should have
higher variance than predicted by such a model. As explained above, Pearson residuals
in the model given by Eqs. 1 and 2 (or, equivalently, offset regression model or rank-one
GLM-PCA) can be conveniently written in closed form:

Zcg = Xcg − μ̂cg
√

μ̂cg + μ̂2
cg/θ

, μ̂cg =
∑

j Xcj · ∑
i Xig

∑
i,j Xij

, θ = 100. (12)

For most genes in the PBMC data, the variance of the Pearson residuals was close to
1, indicating that this model predicted the variance of the data correctly and suggesting
that most genes did not show biological variability (Fig. 1h). Using θ = 100 led to several
high-expression genes selected as biologically variable that would not be selected with a
lower θ (e.g., Malat1), but overall, using θ = 10, θ = 100, or even the Poisson model
with θ = ∞ led to only minor differences (Additional file 1: Figure S2a–c). Using analytic
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Pearson residuals for HVG selection yielded a very similar result compared to using Pear-
son residuals from the smoothed regression presented in Hafemeister and Satija [3], with
almost the same set of genes identified as biologically variable (Fig. 1h, Additional file 1:
Figure S2e). This suggests that our model is sufficient to identify biologically relevant
genes.
It is instructive to compare the variance of Pearson residuals to the variance that

one gets after explicit sequencing depth normalization followed by a variance-stabilizing
transformation. For Poisson data, the square root transformation

√
x is approximately

variance-stabilizing, and several modifications exist in the literature [27], such as the
Anscombe transformation 2

√
x + 3/8 [28] and the Freeman-Tukey transformation

√
x +√

x + 1 [29]. Normalizing UMI counts Xcg by sequencing depths nc (and multiplying
the result by the median sequencing depth 〈nc〉 across all cells; “median normalization”)
followed by one of the square-root transformations has been advocated for UMI data
processing [30, 31].
Comparing the gene variances after the square-root transformation (Fig. 2a) with those

of Pearson residuals (Fig. 2b) in the PBMC dataset showed that the square-root transfor-
mation is not sufficient for variance stabilization. Particularly affected are low-expression
genes that have variance close to zero after the square-root transform [32]. For example,
platelet markers genes such as Tubb1 have low average expression (because platelets are
a rare population in the PBMC dataset) and do not show high variance after any kind
of square-root transform (another example was given by the B-cell marker Cd79a). At
the same time, Pearson residuals correctly indicate that these genes have high variance
and are biologically meaningful (Fig. 2c). For the genes with higher average expression,
some differentially expressed genes like the monocyte marker Lyz or the abovementioned
Malat1 showed high variance in both approaches. However, the selection based on the
square-root transform also included high-expression genes like Fos, which showed noisy
and biologically unspecific expression patterns (Fig. 2c). Similar patterns were observed
in the full-retina dataset [33] (Additional file 1: Figure S3).

Fig. 2 Selection of variable genes. In the first two panels, each dot shows the variance of a single gene in the
PBMC dataset after applying a normalization method. The dotted horizontal line shows a threshold adjusted
to select 100 most variable genes. Red dots mark 100 genes that are selected by the other method, i.e., that
are above the threshold in the other panel. Stars indicate genes shown in the last panel. a Gene variance after
sequencing depth normalization, median-scaling, and the square-root transformation. b Variance of Pearson
residuals (assuming θ = 100). c t-SNE of the entire PBMC dataset (see Additional file 1: Figure S4), colored by
expression of four example genes (after sequencing depth normalization and square-root transform). Platelet
marker Tubb1 with low average expression is only selected by Pearson residuals. Arrows indicate the platelet
cluster. Fos is only selected by the square root-based method, and does not show a clear type-specific
expression pattern.Malat1 (expressed everywhere apart from platelets) and monocyte marker Lyz with
higher average expression are selected by both methods
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The gene with the highest average expression in the PBMC dataset, Malat1, showed
clear signs of biologically meaningful variability, e.g., it is not expressed in platelets
(Fig. 2c). While this gene is selected as biologically variable based on Pearson residuals
with θ ≈ 100 as we propose (Fig. 2b), it was not selected by Hafemeister and Satija [3] who
effectively used θ ≈ 10 (Fig. 1c, h, Additional file 1: Figure S2). This again suggests that
θ ≈ 100 is more appropriate than θ ≈ 10 to model technical variability of UMI counts.
Pearson residuals may even be “too sensitive” in that genes that are only expressed in a

handful of cells may get very large residual variance. Hafemeister and Satija [3] suggested
clipping residuals to [−√

n,
√
n]. We found that this step avoids large residual variance

in very weakly expressed genes (Additional file 1: Figure S2d, see “Methods” for more
details). The variance of unclipped Pearson residuals under the Poisson model (θ = ∞)
was very similar to the Fano factor of counts aftermedian normalization (Additional file 1:
Figure S2f) and less useful for HVG selection compared to the clipped residuals.
Lastly, gene selection by the widely-used log(1 + x)-transform as well as by the vari-

ance of deviance residuals as suggested by Townes et al. [4] led to very similar results as
described above for the square-root transform: many biologically meaningful genes were
not selected, as all three methods overly favored high-expression genes (Additional file 1:
Figure S2g–i). In conclusion, neither of these transformations is sufficiently variance-
stabilizing. In practice, many existing HVG selection methods take the mean-variance
relationship into account when performing the selection (e.g., seurat and seurat_v3

methods [34, 35] as implemented in Scanpy [5]). We benchmarked their performance in
the next section.

Analytic Pearson residuals separate cell types better than other methods

Next, we studied the effect of different normalization approaches on PCA representa-
tions and t-SNE embeddings. The first approach is median normalization, followed by
the square-root transform [30, 31]. We used 50 principal components of the resulting
data matrix to construct a t-SNE embedding. The second approach is computing Pearson
residuals according to Eq. 12 with θ = 100, followed by PCA reduction to 50 compo-
nents. The third approach is computing 50 components of negative binomial GLM-PCA
with θ = 100 [4]. We used the same initialization to construct all t-SNE embeddings to
ease the visual comparison [36].
We applied these methods to the full PBMC dataset (Additional file 1: Figure S4),

three retinal datasets [33, 37, 38] (Fig. 3), and a large organogenesis dataset with n = 2
million cells [39] (Fig. 4). For smaller datasets, the resulting embeddings were mostly sim-
ilar, suggesting comparable performance between methods. Hafemeister and Satija [3]
argued that using Pearson residuals reduces the amount of variance in the embedding
explained by the sequencing depth variation, compared to sequencing depth normaliza-
tion and log-transformation. We argue that this effect was mostly due to the large factor
that the authors used for re-scaling the counts after normalization (Additional file 1:
Figure S5): large scale factors and/or small pseudocounts (ε in log(x + ε)) are known to
introduce spurious variation into the distribution of normalized counts [4, 41]. For the
PBMC dataset, all three t-SNE embeddings showed similar amount of sequencing depth
variation across the embedding space (Additional file 1: Figure S4g–i). Performing the
embeddings on 1,000 genes with the largest Pearson residual variance did not noticeably
affect the embedding quality (Additional file 1: Figure S4d–f).
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Fig. 3 t-SNE embeddings of three retinal datasets. Panels in each column are based on a different data
transformation method with PCA or GLM-PCA reduction to 50 dimensions (see “Methods”), and each row
shows a different retinal dataset. We did not perform any gene selection here. Colors correspond to cell type
labels provided by the original papers. a–c Full-retina dataset (DropSeq) [33], containing all retinal cell types
(including glia and vascular cells). 24,769 cells. d–f Bipolar cell dataset (DropSeq) [37]. 13,987 cells. g–i Retinal
ganglion cell dataset (10X v2) [38]. 15,750 cells

However, on closer inspection, embeddings based on Pearson residuals consistently
outperformed the other two. For example, while the Pearson residual embeddings clearly
separated fine cell types in the full-retina dataset [33], the square-root embedding mixed
some of them (we observed the same when using the log-transform). For the same
dataset, GLM-PCA embedding did not fully separate some of the biologically distinct
cell types. Furthermore, GLM-PCA embeddings often featured Gaussian-shaped blobs
with no internal structure (Fig. 3), suggesting that some fine manifold structure was lost,
possibly due to convergence difficulties.
Embedding the organogenesis dataset [39] using Pearson residuals uncovered a strong

and surprising batch artifact: hitherto unnoticed, several genes were highly expressed
exclusively in small subsets of cells, with each subset coming from a single embryo.
These subsets appeared as isolated islands in the t-SNE embedding (Fig. 4), allowing
us to uncover and remove this batch effect (Additional file 1: Figure S6), leading to the
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Fig. 4 t-SNE embeddings of the organogenesis dataset. All panels show t-SNE embeddings of the
organogenesis dataset [39] (2,058,652 cells), colored by the 38 main clusters identified by the original
authors. All panels use 2,000 genes with the largest Pearson residual variance. Each panel shows a total of
2,026,641 cells, excluding 32,011 putative doublets identified in the original paper. All t-SNE embeddings
were done with exaggeration 4 [36, 40]. a Depth normalization, median scaling, log-transformation and PCA
with 50 principal components. b Same as in a, but with an additional standardization step that scales the
normalized and log-transformed expression of each gene to mean zero and unit variance, as in the original
paper [39]. c GLM-PCA with 50 dimensions (NB model with shared overdispersion as a free parameter,
estimated to be θ̂ = 0.56). d Analytic Pearson residuals with θ = 100 and PCA with 50 principal components.
The scattered small islands do not belong to single clusters but instead are spuriously enriched in single
embryos. e Same as in d, but after removing batch effect genes (“Methods”). Text labels correspond to the
developmental trajectories identified in the original paper [39] (uppercase: multi-cluster trajectories,
lowercase: single-cluster trajectories)

final, biologically interpretable embedding (Fig. 4). In contrast, embeddings based on log-
transform or GLM-PCA did not show this batch artifact at all. GLM-PCA took days to
converge (Table 1) and could recover only the coarse structure of the data. Interestingly,
the final embedding based on Pearson residuals was broadly similar to the embedding
obtained after log-transform and standardization of each gene, as expected given that
Pearson residuals stabilize the variance by construction (Fig. 4). Together, these quali-
tative observations suggest that analytic Pearson residuals can represent small, distinct
subpopulations in large datasets better than other methods.

Table 1 Runtimes for different normalization pipelines

Sqrt(CPMedian), PCA Pearson residuals, PCA GLM-PCA

33k PBMC 31 s 35 s 15 h

33k PBMC, 1000 HVGs 3 s 4 s 4 h

2M organogenesis, 2000 HVGs 166 s 224 s 52 h

The datasets are the full 33k PBMC dataset, the PBMC dataset after selecting 1,000 HVGs, and the organogenesis dataset [39] after
selecting 2,000 HVGs. Genes with largest Pearson residual variances were selected, which took 9 s (PBMC) and 15 min
(organogenesis), respectively. See “Methods” for details. All runtimes measured on a machine with 256 Gb RAM and 30 CPU
threads at 2.1 GHz
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To quantify the performance of dimensionality reduction methods, we performed a
systematic benchmark using the Zhengmix8eq dataset with known ground truth labels
[42] (Fig. 5). This dataset consists of PBMC cells FACS-sorted into eight different cell
types with eight types occurring in roughly equal proportions. To make the setup more
challenging, we added 10 pseudo-genes expressed only in a group of 50 cells, effec-
tively creating a ninth, rare, cell type (see “Methods”). We used six methods to select
2000 HVGs (and additionally omitted HVG selection) and ten methods for data trans-
formation and dimensionality reduction to 50 dimensions. We assessed the resulting
(6 + 1) · 10 = 70 pipelines using kNN classification of cell types. We used the macro F1
score (harmonic mean between precision and recall, averaged across classes) because this
metric fairly averages classifier performance across classes of unequal size. Together, the
F1 score of the kNN classifier quantifies how well each pipeline separated cell types in the
50-dimensional representation (Fig. 5c). We did not include approaches that use depth
normalization with inferred size factors [44] in this comparison.
The pipeline that used analytic Pearson residuals for both gene selection and data

transformation outperformed all other pipelines with respect to cell type classification
performance. In contrast, popular methods for HVG selection (e.g., seurat_v3 as
implemented in Scanpy [5, 35]) combined with log or square-root transformations after
depth normalization performed worse and in particular were often unable to separate
the rare cell type (Fig. 5a,b; see Additional file 1: Figure S7 for additional embeddings).
The performance of GLM-PCA was also poor, likely due to convergence issues (with
15-dimensional, and not 50-dimensional, output spaces, GLM-PCA performed on par
with Pearson residuals; data not shown), in agreement with what we reported above for

Fig. 5 Benchmarking the effect of normalization on cell type separation in reduced dimensionality. We used
the Zhengmix8eq dataset with eight ground truth FACS-sorted cell types [42, 43] (3,994 cells) and added
ten pseudo-genes expressed in a random group of 50 cells from one type. All HVG selection methods were
set up to select 2,000 genes, and all normalization and dimensionality reduction methods reduced the data
to 50 dimensions. For details see “Methods”. a t-SNE embedding after the seurat_v3 HVG selection as
implemented in Scanpy, followed by depth normalization, median scaling, square-root transform, and PCA.
Colors denote ground truth cell types, the artificially added type is shown in red. b t-SNE embedding after
HVG selection by Pearson residuals (θ = 100), followed by transformation to Pearson residuals (θ = 100), and
PCA. Black arrow points at the artificially added type. cMacro F1 score (harmonic mean between precision
and recall, averaged across classes to counteract class imbalance) for kNN classification (k = 15) of nine
ground truth cell types for each of the 70 combinations of HVG selection and data transformation approaches
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the retinal datasets. Finally, deviance residuals [4] were clearly outperformed by Pearson
residuals both as gene selection criterion and as data transformation. This is due to the
reduced sensitivity of deviance residuals to low- or medium-expression genes (Additional
file 1: Figure S2i). Note that in terms of the overall classification accuracy no pipeline out-
performed Pearson residuals but many pipelines performed similarly well; this is because
overall accuracy is not sensitive to the rare cell type, unlike the macro F1 score.
For this dataset, not using gene selection at all performed similarly well to HVG selec-

tion using Pearson residuals (Fig. 5c), but in general HVG selection is a recommended
step in scRNA-seq data analysis [1, 2] and here Pearson residuals performed the best.
Also, log-transformed counts that were standardized performed similarly well to Pearson
residuals (Fig. 5c), in agreement with the above observations on the organogenesis dataset
(Fig. 4b). Nevertheless, the same organogenesis example showed that Pearson residuals
can be more sensitive (Fig. 4b, d).

Analytic Pearson residuals are fast to compute

The studied normalization pipelines differ in both space and time complexity. UMI
count data are typically very sparse (e.g., in the PBMC dataset, 95% of entries are zero)
and can be efficiently stored as a sparse matrix object. Sequencing depth normalization
and square-root or log-transformation do not affect the zeros, preserving the sparsity
of the matrix, and PCA can be run directly on a sparse matrix. In contrast, Pearson
residuals form a dense matrix without any zeros and so can take a large amount of
memory to store (4.5 Gb for the PBMC dataset). For large datasets this can become
prohibitive (but note that a smart implementation may be able to avoid storing a dense
matrix in memory [45]). In contrast, GLM-PCA can be run directly on a sparse matrix
but takes a long time to converge (Table 1), becoming prohibitively slow for bigger
datasets.
Computational complexity can be greatly reduced if gene selection is performed in

advance. After selecting 1000 genes, Pearson residuals do not require a lot of memory
(0.3 Gb for the PBMC dataset) and so can be conveniently used. Note that the Pearson
residual variance can be computed per gene, without storing the entire residual matrix
in memory. GLM-PCA, however, remained slow even after gene selection (4 h vs. 4 s
for Pearson residuals for the PBMC dataset; 2 days vs. 4 minutes for the organogenesis
dataset; Table 1).

Discussion
We reviewed and contrasted different methods for normalization of UMI count data.
We showed that without post hoc smoothing, the negative binomial regression model of
Hafemeister and Satija [3] exhibits high variance in its parameter estimates because it
is overspecified, which is why it had to be smoothed in the first place. We argued that
instead of smoothing an overspecified model, one should resort to a more parsimonious
and theoretically motivated model specification involving an offset term. This made the
model equivalent to the rank-one GLM-PCA of Townes et al. [4] and yielded a simple ana-
lytic solution, closely related to correspondence analysis [17]. Further, we showed that the
estimates of per-gene overdispersion parameter θg in the original paper exhibit substan-
tial and systematic bias. We used negative control datasets from different experimental
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protocols to show that UMI counts have low overdispersion and technical variation is well
described by θ ≈ 100 shared across genes.
We found that the approach developed by Hafemeister and Satija [3] and implemented

in the R package scTransform in practice yields Pearson residuals that are often similar
to our analytic Pearson residuals with fixed overdispersion parameter (Additional file 1:
Figure S2e). We argue that our model with its analytic solution is attractive for reasons
of parsimony, theoretical simplicity, and computational speed. Moreover, it provides an
explanation for the linear trends in the smoothed estimates in the original paper. We have
integrated Pearson residuals into upcoming Scanpy 1.9 [5].
Following our manuscript, scTransform was updated to scTransform v2 and

now uses the offset model formulation [46]. At the same time, the authors argue that the
dependence of the overdispersion parameter θg on the gene expression strength is not
entirely explained by the estimation bias. To reduce the bias, scTransform v2 uses
glmGamPoi [47] to estimate the offsets β0g and the overdispersion parameters θg (which
are then smoothed). The authors also refer to the bulk RNA-seq literature, where it has
been observed that the overdispersion parameter grows monotonically with gene expres-
sion [6, 48, 49]. Given the difficulties with estimating overdispersion for low expression
means (see above), we believe that this question requires further investigation. However,
as argued above, whether θ is assumed to be constant or is allowed to vary between genes,
has very little effect on the resulting Pearson residuals.
A parallel publication [50] suggested a Bayesian procedure named Sanity for estimat-

ing expression strength underlying the observed UMI counts, based on Poisson likelihood
and Bayesian shrinkage. Importantly, Pearson residuals are not aiming at estimating
the underlying expression strength; rather, they quantify how strongly each observed
UMI count deviates from the null model of constant expression across cells. These two
approaches can have opposite effects on markers genes of rare cell types: the Bayesian
procedure shrinks their expression towards zero whereas our approach yields large Pear-
son residuals. We argued here that this emphasis on rare cell types is useful for many
downstream tasks, but if the interest lies in true expression, approaches like Sanity

may be more appropriate. Future work should perform comprehensive benchmarks on a
variety of tasks [51].
On the practical side, we showed that Pearson residuals outperform other methods

for selecting biologically variable genes. They are also better than other preprocessing
methods for downstream analysis: in a systematic benchmarking effort, we demon-
strated that Pearson residuals provide a good basis for general-purpose dimensionality
reduction and for constructing 2D embeddings of single-cell UMI data. In particular,
they are well suited for identifying rare cell types and their genetic markers. Apply-
ing gene selection prior to dimensionality reduction reduces the computational cost of
using Pearson residuals down to negligible. We conclude that analytic Pearson resid-
uals provide a theory-based, fast, and convenient method for normalization of UMI
datasets.

Methods
Mathematical details

Analytic solution

The log-likelihood for the model defined in Eqs. 1 and 2
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Xcg ∼ Poisson(ncpg) (13)

can be, up to a constant, written as

L =
∑

cg

[
Xcg ln(ncpg) − ncpg

]
, (14)

where we used the Poisson density p(x) = exe−μ/x!. Taking partial derivatives with
respect to nc and pg and setting them to zero, one obtains

n̂c =
∑

g Xcg
∑

g p̂g
, p̂g =

∑
c Xcg

∑
c n̂c

. (15)

This is a family of solutions. Setting
∑

g p̂g = 1, we obtain Eq. 3 and the formulas for n̂c
and p̂g given in the “Analytic Pearson residuals” section.
This derivation does not generalize to the negative binomial model with density

p(x) = �(x + θ)

x! �(θ)

(
θ

θ + μ

)θ (
μ

θ + μ

)x
, (16)

where the log-likelihood (for fixed θ ), up to a constant, is

L =
∑

cg

[
Xcg ln(ncpg) − (Xcg + θ) ln(ncpg + θ)

]
. (17)

This does not have an analytic maximum likelihood solution. However, for large θ values
Eq. 3 can be taken as an approximate solution.

Deviance residuals

Deviance is defined as the doubled difference between the log-likelihood of the saturated
model and the log-likelihood of the actual model. The saturated model, in our case, is a
full rank model with μ̂∗

cg = Xcg . For the Poisson model, the deviance can therefore be
obtained from Eq. 14 and is equal to

D = 2
∑

cg

[

Xcg ln
Xcg

μ̂cg
− (

Xcg − μ̂cg
)
]

, (18)

where the terms with μ̂cg = Xcg are taken to be zero.
Deviance residuals are defined as square roots of the respective deviance terms, such

that the sum of squared deviance residuals is equal to the deviance (note that for the
Gaussian case this already holds true for the raw residuals, because the saturated model
has zero log-likelihood, and the deviance is simply the squared error). It follows that for
the Poisson model deviance residuals [4] are given by

Zcg = sign
(
Xcg − μ̂cg

)
√

2
[

Xcg ln
Xcg

μ̂cg
− (

Xcg − μ̂cg
)
]

(19)

Similarly, for the negative binomial model with fixed θ , the deviance residuals follow from
Eq. 17 and are given by

Zcg = sign
(
Xcg − μ̂cg

)
√

2
[

Xcg ln
Xcg

μ̂cg
− (

Xcg + θ
)
ln

Xcg + θ

μ̂cg + θ

]

(20)

It is easy to verify that this formula reduces to the Poisson case when θ → ∞. When
computing deviance residuals, we estimated μ̂cg using Eq. 3.
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Clipping Pearson residuals

Clipping Pearson residuals to±√
n as suggested by Hafemeister and Satija [3] is needed to

avoid large residual variance in rarely expressed genes (Additional file 1: Figure S2d). The
intuition behind this heuristic is as follows. Consider a UMI dataset with n cells containing
a biologically distinct rare population P of sizem � n. Let this population have a marker
gene with expression following Poisson(λ) for the cells from P, and zero expression for
all n − m remaining cells. For simplicity we assume the Poisson model here, and further
assume that all cells have the same sequencing depth.
The expected average expression of this gene is λm/n and so the expected Pear-

son residual value for this gene for the cells from P is (λ − λm/n)/
√

λm/n = (n −
m)

√
λ/(nm) ≈ √

λn/m.
With the clipping threshold

√
n, clipping will happen whenever λ > m, i.e., when the

population P is either very small or has very large UMI counts. For example, a population
of 10 cells having a marker gene with the within-population mean expression of 20 UMIs,
will result in clipped residuals, as if the within-population mean expression were ∼ 10
UMIs. This may have a large effect on the leading principal components (even PC1) if the
data contain a very small number of cells with strong marker gene expression.

Pearson residuals of biologically variable genes

It is instructive to observe the effect Pearson residuals have on genes that have the
same variance of log-expression but different expression means. Consider a gene that
has expression μ in half of the cells and is upregulated by a factor of two in the other
half of the cells. Then its expression mean is 1.5μ, and the Pearson residuals are close to
±0.5μ/

√
1.5μ ≈ 0.4√μ, i.e. the variance of Pearson residuals grows linearly with μ. This

makes sense because for higher-expressed genes there is more statistical certainty about
over-Poisson variability, but at the same time highlights that Pearson residuals do not aim
to estimate the underlying (log-)expression, unlike, e.g., Sanity [50].

Experimental details

Analyzed datasets and preprocessing

Used datasets are listed in Table 2. For the organogenesis dataset and the FACS-sorted
PBMC dataset, we applied no further filtering. In all remaining datasets, we excluded
genes that were expressed in fewer than 5 cells, following Hafemeister and Satija [3].
The data were downloaded following links in original publications in form of UMI count
tables. Direct links to all data sources are given in our Github repository https://github.
com/berenslab/umi-normalization.

HVG selection

For gene selection using sqrt(CPMedian), Pearson residuals, and deviance residuals,
we applied the respective data transformation and used the variance after transformation
as selection criterion. For Seurat and Seurat_v3 methods, we used the respective
Scanpy implementations. In brief, these two methods regress out the mean-variance
relationship, and return an estimate of the “excess” variance for each gene [34, 35].
For scTransform, we used the corresponding R package [3]. The Fano factor was
computed after normalizing by sequencing depth and scaling by median sequencing
depth.

https://github.com/berenslab/umi-normalization
https://github.com/berenslab/umi-normalization
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Table 2 Overview of UMI datasets used for analysis

reference accession no. protocol cells genes species description

33k PBMC * 10X v1 33,148 16,809 Human Peripheral blood
mononuclear cells

[43] SRP073767** 10X v1 3,994 15,715 Human FACS-sorted PBMC cells

[52] E-MTAB-5480 10X v2 2,000 13,025 Human Droplets of bulk RNA
solution

[53] GSM1599501 inDrop 953 25,025 Human Droplets of bulk RNA
solution

[54] GSM2906413 MicrowellSeq 9,994 15,069 Mouse Non-differentiating stem
cells

[33] GSE63472 DropSeq 24,769 17,973 Mouse Retinal cells

[37] GSE81904 DropSeq 13,987 16,520 Mouse Retinal bipolar cells

[38] GSE133382 10X v2 15,750 17,685 Mouse Retinal ganglion cells

[39] GSE119945 sci-RNA-seq3 2,058,652 26,183 Mouse Organogenesis of mouse
embryo cells

In the 10X control dataset [52], we used only sample 1. In the MicrowellSeq control dataset [54], we used the E14 dataset. In the
three retinal datasets [33, 37, 38], we only used cells from the largest batch. The FACS-sorted PBMC dataset was assembled by
authors of a recent paper [42], based on a benchmarking dataset published earlier [43]. Numbers of genes and cells are after batch
selection (where applicable) and initial gene filtering (see “Methods”). Scripts performing these operations and detailed download
instructions for all materials are published in our Github repository at http://www.github.com/berenslab/umi-normalization. The
accession numbers refer to archived datasets at the Gene Expression Omnibus (NCBI), the Sequence Read Archive (NCBI), or
ArrayExpress (EMBL-EBI). *Data directly obtained from 10X Genomics at https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/pbmc33k. **The accession number links to the base dataset that the original authors used to construct
the ground truth dataset for their paper [42]. To obtain the dataset used here, use the Bioconductor 3.1.3 R package
DuoClustering2018 or visit the authors’ website (http://imlspenticton.uzh.ch/robinson_lab/DuoClustering2018/)

Data transformation and dimensionality reduction

We used the following abbreviations to denote data transformations: sqrt(CPMedian)
— normalization by sequencing depth, followed by scaling by the median depth across
all cells (“counts per median”), followed by the square-root transform; log(CPMedian
+ 1) — normalization by sequencing depth, followed by scaling by the median
depth across all cells, followed by log(x + 1) transform; log(CPMedian + 1) +

standardization—same as log(CPMedian + 1), but followed by centering each
gene at mean zero and scaling it to unit variance; log(CPM + 1) — normalization by
sequencing depth, followed by scaling by one million (“counts per million”), followed by
log(x + 1) transform. Pearson residuals were computed with Eq. 12 and then clipped to
±√

n. Deviance residuals were computed with Eq. 20.
All of these methods were typically followed by dimensionality reduction by PCA to 50

dimensions using the Scanpy implementation [5], unless otherwise stated.
Further, we used three variants of GLM-PCA to transform raw counts and reduce

dimensionality down to 50 in a joint step: Poisson GLM-PCA, negative binomial GLM-
PCA with estimation of single overdispersion parameter θ shared across genes, and
negative binomial GLM-PCA with fixed shared θ . In Townes et al. [4], the authors only
used the former two methods. Whenever possible, we used the glmpca-py implemen-
tation with default settings. When we reduced the PBMC dataset to 1 000 genes for
Additional file 1: Figure S4f, GLM-PCA did not converge with default penalty 1, so we
increased it to 5, following the tuning procedure used in the authors’ R implementa-
tion. Similarly, negative binomial GLM-PCA with estimation of θ did not converge on
the benchmark dataset (Fig. 5) when we used gene selection by either Deviance residu-
als (θ = 100) or Pearson residuals (θ = 10). For these two cases, we had to increase the
penalty to 10. On the organogenesis dataset, the Python implementation did not converge
within reasonable time, so for this dataset, we resorted to the R implementation. It uses

http://www.github.com/berenslab/umi-normalization
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k
http://imlspenticton.uzh.ch/robinson_lab/DuoClustering2018/
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a different optimization method and employs stochastic minibatches. All reported GLM-
PCA results for this dataset are for batchsize 10,000, as batchsizes 100 and 1,000 (default)
resulted in considerably longer runtimes. Because the R implementation does not support
NB GLM-PCA with fixed theta, for this dataset, we used GLM-PCA with jointly fit θ̂ .
Unless otherwise stated, all residuals and GLM-PCA with fixed θ used θ = 100.

Whenever gene selection was performed prior to a data transformation that required
sequencing depths, we computed those depths using the sum over selected genes only.

Benchmarking cell type separation with kNN classification

We used the Zhengmix8eq dataset with known ground truth labels obtained by FACS-
sorting of eight PBMC cell types [42, 43]. There were 400–600 cells in each cell type.
We created a ninth, artificial population from 50 randomly selected B-cells (marked blue
in Fig. 5a–b). To mimic a separate cell type, we added 10 pseudo marker that had zero
expression everywhere apart from those 50 cells. For those 50 cells, UMI values were
simulated as Poisson(nip), where ni is the sequencing depth of the ith selected cell (range:
452–9,697), and expression fraction p was set to 0.001.
We then applied the 70 normalization pipelines shown in Fig. 5c to this dataset. Each

pipeline either used one of the six methods to select 2000 HVGs or proceeded without
HVG selection, followed by one of the ten methods for data transformation and dimen-
sionality reduction to 50 dimensions. To assess cell type separation in this output space,
we used a kNN classifier with a leave-one-out cross-validation procedure: For each cell,
we trained a kNN classifier on the remaining n − 1 cells. This resulted in a class predic-
tion for each cell based on the majority vote of its k = 15 neighboring cells. We quantified
the performance of this prediction by computing the macro F1 score (harmonic mean
between precision and recall, averaged across classes to counteract class imbalance). We
used the sklearn implementations for kNN classification and the F1 score [55].

Measuring runtimes

All runtimes given in Table 1 are wall times from running the code in a Docker con-
tainer with an Ubuntu 18 system on a machine with 256 GB RAM and 2 × 24 CPUs at
2.1 Ghz (Xeon Silver 4116 Dodecacore). The Docker container was restricted to use at
most 30 CPU threads. To reduce overhead, we did not use Scanpy for timing exper-
iments, and instead used numpy for basic computations and sklearn for PCA with
default settings. Note that we used different implementations of GLM-PCA for the PBMC
and organogenesis dataset (see above for details).

t-SNE embeddings

All t-SNE embeddings were made following recommendations from a recent paper [36]
using the FIt-SNE implementation [56]. We used the PCA (or, when applicable, GLM-
PCA) representation of the data as input. We used default FIt-SNE parameters, including
automatically chosen learning rate. For initialization, we used the first two principal com-
ponents of the data, scaled such that PC1 had standard deviation 0.0001 (as is default in
FIt-SNE). The initialization was shared among all embeddings shown in the same figure,
i.e., PCs of one data representation were used to initialize all other embeddings as well.
For all datasets apart from the organogenesis one, we used perplexity combination of 30
and n/100, where n is the sample size [36]. For the organogenesis dataset embeddings, we
used perplexity 30 and exaggeration 4 [40].
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