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Abstract

DNA methylation is one of the most commonly studied epigenetic marks, due to its
role in disease and development. Illumina methylation arrays have been extensively
used to measure methylation across the human genome. Methylation array analysis
has primarily focused on preprocessing, normalization, and identification of
differentially methylated CpGs and regions. GOmeth and GOregion are new methods
for performing unbiased gene set testing following differential methylation analysis.
Benchmarking analyses demonstrate GOmeth outperforms other approaches, and
GOregion is the first method for gene set testing of differentially methylated regions.
Both methods are publicly available in the missMethyl Bioconductor R package.
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Background
DNA methylation is essential to human development, with roughly 3–6% of all

cytosines methylated in normal human DNA [1]. Epigenetic marks can be modified by

environmental exposures, and methylation changes are known to accumulate with age.

Aberrant methylation patterning is associated with many diseases, which has led to

several large studies profiling DNA methylation, such as The Cancer Genome Atlas,

Encyclopedia of DNA Elements, and numerous epigenome-wide association studies.

Both array- and sequencing-based technologies are available for profiling DNA

methylation at a genome-wide scale. However, even though the cost of sequencing has

dramatically decreased, the ease and cost-effectiveness of the Illumina human methyla-

tion arrays have ensured that the array platforms remain a popular choice. To date, a

major focus when analyzing DNA methylation data has been the identification of

significantly differentially methylated CpG sites between groups of samples in a

designed experiment. There are many well-established analysis methods that perform

normalization and statistical testing for this purpose, including publicly available soft-

ware packages, such as limma [2], minfi [3], missMethyl [4], methylumi [5], wateR-

melon [6], ChAMP [7], RnBeads [8, 9], Harman [10], and ENmix [11]. It is well

established that methylation of CpG sites is spatially correlated along the genome [12]

and that long tracks of differential methylation are often more biologically meaningful
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than differences at individual CpG sites [13]. This has led to region-based analyses, with

Bioconductor R packages such as Probe lasso [14], bumphunter [15], DMRcate [16],

mCSEA [17], and DMRforPairs [18] developed specifically for this purpose.

Once differential methylation analysis between groups of samples has been per-

formed, there may be a long list of significant CpG sites or regions for the researcher

to interpret. A popular approach to gain a more systems-level understanding of the

changes in methylation is to examine which gene pathways may be enriched for differ-

ential methylation in the experiment. This approach was popularized in the analysis of

gene expression microarrays and RNA-sequencing (RNA-Seq) data, with one of the

first methods, GSEA, published in 2005 [19]. Since then, a number of gene set testing

methods have been developed (e.g., Yaari et al. [20], Wu et al. [21], and Wu and Smyth

et al. [22]), all of which are specific to gene expression data, with the GOSeq method

[23] developed specifically to account for gene length bias in RNA-seq data.

Methylation, however, is a DNA mark that can occur anywhere on the genome and is

not as directly related to genes as expression data. Therefore, a methylation-specific

issue in performing gene set testing is how to assign differentially methylated features

to genes. Thus far, there are very few gene set testing methods designed specifically for

DNA methylation data, and often ad hoc approaches are taken. Only two other

methods, ebGSEA [24], and methylGSA [25], have been proposed for gene set enrich-

ment analysis (GSEA) of methylation array data. MethylGSA is an R Bioconductor

package that contains several different gene set testing approaches: mRRA, which ad-

justs multiple p values for each gene by Robust Rank Aggregation followed by either

over-representation analysis (ORA) or functional class scoring in combination with

GSEA, and mGLM, which is an extension of GOglm, implementing a logistic regression

to adjust for the number of probes in the enrichment analysis [26]. The ebGSEA

method uses a global test to rank genes, instead of CpGs, based on their total level of

differential methylation; enrichment of gene sets is then calculated from the ranked

gene list using either a Wilcoxon Test (WT) or Known Population Median Test

(KPMT) [24]. Both ebGSEA and the methylGSA methods use individual CpG probe-

based differential methylation features, and we are presently not aware of any methods

for performing gene set testing for differentially methylated regions.

Here we present GOmeth and GOregion to perform gene set analysis in the context

of DNA methylation array data for differential methylation of CpG sites and regions,

respectively. The key aspect of our methods is the ability to take into account biases in-

herent in the data, which relate to how differentially methylated probes are annotated

to differentially methylated genes, that can then be assigned to a gene set. Specifically,

measured CpG sites are not distributed evenly across the genome, and we and others

show that genes that have more CpG sites measured across them are more likely to be

detected as differentially methylated compared to genes that have fewer measured CpG

sites. Our original implementation of GOmeth addressed this bias [4]. In addition, ap-

proximately 10% of gene-annotated CpGs are assigned to more than one gene, violating

assumptions of independently measured genes. Our new and improved implementation

of GOmeth considers both of these biases in our approach for detecting enriched path-

ways. Further to this probe-wise analysis, we developed the GOregion method, which

takes these biases into account when performing gene set testing following a region-

based analysis. Finally, we have implemented new functionality allowing users to
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restrict gene set testing to only the probes annotated to specific genomic features, such

as probes in promoters of genes.

In this paper, we have evaluated the performance of our methods on real and simu-

lated data, as well as comparing to other available methods across a variety of datasets.

We found that our methods were the best statistical and computational performers

across a variety of comparisons and gene set testing collections. Our methods are pub-

licly available in the Bioconductor R package, missMethyl. All of the analysis performed

in this paper can be found at the following website: http://oshlacklab.com/methyl-

geneset-testing/. The GitHub repository associated with the analysis website is at:

https://github.com/Oshlack/methyl-geneset-testing.

Results
Composition biases of 450K and EPIC arrays

Consider the scenario where we have performed differential methylation analysis on

individual CpG sites. In order to perform gene set enrichment analysis based on the

results from a probe-wise differential methylation analysis, we need to annotate each

probe on the array to a gene. One approach for gene set testing is to simply call a gene

differentially methylated if at least one CpG site associated with that gene is signifi-

cantly differentially methylated, and this has been used in many previous analyses (e.g.,

Zhang et al. [27], Phipson and Oshlack [28]). The problem with this approach is that

the numbers of CpG sites measured across each gene varies significantly across the

genome (Fig. 1A, Additional file 1: Fig. S1A). For the 450K array, the minimum number

of CpGs measured per gene is 1 and the maximum is 1299 with a median of 15, based

on the IlluminaHumanMethylation450kanno.ilmn12.hg19 annotation package. For the

EPIC array, the numbers of CpGs measured across genes ranges from 1 to 1485 (me-

dian = 20, IlluminaHumanMethylationEPICanno.ilm10b4.hg19 annotation package).

Genes that have larger numbers of CpGs measured are more likely to be called differ-

entially methylated when comparing B cells vs natural killer cells (Fig. 1B), and this

holds true for the majority of data sets. This bias towards genes with more measured

CpG sites can in turn influence the probability of a gene set being called significantly

enriched, as some gene sets contain genes with more than the average number of

CpGs, and some have genes with fewer measured CpGs (Fig. 1C). In this paper, we

refer to this particular source of bias as “probe-number bias”.

Approximately 70% of the probes on the EPIC array are annotated to at least one

gene (74% for 450K array). However, another annotation issue, which is more subtle, is

that a single CpG may be annotated to more than one gene as the gene regions overlap

on the genome. While the majority of CpGs with gene annotations are associated with

only one gene (329,365/359,832 = 92% for 450K, 554,221/607,820 = 91% for EPIC ar-

rays), there are still a large number of CpGs annotated to 2 or more genes (Fig. 1D,

Additional file 1: Fig. S1B). This can cause issues as the measurements of differentially

methylated genes are not independent. If we use every gene associated with a single

CpG, we risk counting a single significant CpG site multiple times when including the

genes as enriched in a gene set of interest. If these genes were evenly distributed across

the GO categories, this may not be an issue. However, genes that are close in genomic

proximity can be functionally related and be present in a single GO category. An
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extreme example of this is cg17108383 which is annotated to 22 genes, all belong-

ing to the protocadherin gamma gene cluster (Additional file 1: Fig. S2). All 22 of

these genes are present in the GO category “GO:0007156: homophilic cell adhesion

via plasma membrane adhesion molecules”, which contains a total of 129 genes. If

each of these significant genes are included when performing a hypergeometric test

for enrichment of the GO category, then for this single significant CpG site, the

overlap between the differentially methylated genes and the genes in the gene set

is increased by 22, and this GO category will appear significantly enriched. Unfor-

tunately, this is not an isolated occurrence. For the EPIC array, gene ontology

(GO) enrichment analysis on the 53,599 CpGs that are annotated to at least 2

genes results in 114 significantly enriched GO categories (Holm’s adjusted p value

cut-off < 0.05) (Additional file 2: Table S1). Restricting to CpGs that are annotated

to at least 3 genes results in significant enrichment of 56 GO categories (Holm’s

adjusted p value cut-off < 0.05), which are mostly related to processes involved in

transcriptional regulation (Additional file 2: Table S2).

We refer to this newly identified source of bias as “multi-gene bias”. In order to re-

duce false positives, it is important to take this multi-gene bias into account when cal-

culating the intersection between differentially methylated genes and the genes in each

Fig. 1 Array design bias for the Illumina HumanMethylation EPIC BeadChip. A Frequency plot of the numbers
of CpGs measuring methylation across each gene for the EPIC array (probe number bias). The most extreme
value is 1485 CpGs measuring methylation across a single gene. The median is 20 and the first mode is 4. B
Plot demonstrating probe-number bias for B cells vs. NK cells from sorted blood cell type EPIC array data. Genes
with more measured CpGs are more likely to be differentially methylated. C Histogram of the median numbers
of CpGs per gene for each GO category for the 450K and EPIC arrays. The distributions differ between the
arrays; however, both show a varying number of CpGs per gene per GO category. GO categories with more
CpGs per gene, on average, have greater power to be significantly enriched. D Split bar chart showing the
numbers of genes annotated to each CpG (multi-gene bias). While the majority of CpGs are annotated to only
one gene, there is still a large number annotated to 2 or more genes
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gene set. One approach for dealing with multi-gene bias is to simply randomly select

one gene to be represented by the CpG, but this approach risks losing valuable infor-

mation by ignoring the remaining associated genes. We include this multi-gene bias in

our statistical framework for gene set testing using a weighting strategy (Fig. 2) and

ensure significant CpGs are only counted once, at most.

GOmeth performs gene set testing on differentially methylated CpG sites

Our method for gene set testing performs enrichment analysis of gene sets while

correcting for both probe-number and multi-gene bias in methylation array data. The

detailed statistical approach is outlined in the “Methods” section. This method was in-

spired by GOSeq [23]. The GOSeq method was designed to account for the fact that

longer genes have more sequencing read counts compared to shorter genes, and hence

have more power to be statistically significantly differentially expressed. Similarly, we

see that genes with a larger number of measured CpGs have a higher probability of dif-

ferential methylation (Fig. 1B). To account for this bias, GOmeth empirically estimates

the probability of differential methylation of a gene as a function of the number of

CpGs. In generating the trend, we adjust the number of CpGs in a gene to account for

those that are assigned to multiple genes by using a fractional count. As the probability

of differential methylation is calculated empirically from the data, this trend may look

different between datasets, but generally, we always observe a strong positive trend.

From the empirical trend, the odds of differential methylation for each gene set or gene

ontology category is calculated based on the average probabilities of genes in the set.

The intersection of the number of differentially methylated genes in the gene set of size

g also needs to be defined. Rather than just assigning all genes with a differentially

methylated CpG equally, we also take into account the CpGs annotated to multiple

genes in this step. Specifically, we assign a weight, wij, to each CpG that is the recipro-

cal of the number of genes annotated to the CpG (Fig. 2). We then sum all the CpG

weights assigned to a gene and add one to the overlap if the weights are greater than

one and sum(wij) otherwise. If all CpGs were annotated to exactly one gene, then the

weight, wij, would be one for every CpG, and the overlap would be the number of genes

Fig. 2 Overview of how probe number and multi-gene bias is taken into account in GOmeth. CpGs are not
evenly spaced throughout the genome. Gene 1 has methylation measured at three CpGs, and gene 2 has
methylation measured at eight CpGs. The CpG shaded in blue is an example of a shared genomic location
between genes 1 and 2, with one CpG measuring the methylation status for two genes, and is thus not
independently measured. By calculating a weight for each CpG inversely proportional to how many genes
that CpG is annotated to, we can calculate the equivalent numbers of CpGs measured across each gene
and ensure the enrichment statistic for Wallenius’ noncentral hypergeometric test is not artificially inflated
due to multi-gene annotated CpGs
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with a significant CpG. However, if a significantly differentially methylated CpG is an-

notated to 2 genes, the CpG is assigned a weight of 0.5 to each gene. If no other signifi-

cant CpGs are annotated to that particular gene, then the gene will contribute a

“count” of 0.5 to the intersection statistic for the Wallenius’ noncentral hypergeometric

test. Thus, if both genes are present in the same gene ontology category, they will con-

tribute a total count of at most one to the intersection statistic. For genes with multiple

significant CpGs that may include several multi-gene associated CpGs, the maximum

total count a gene can contribute to the intersection statistic is 1.

Next, a test based on Wallenius’ noncentral hypergeometric distribution is performed

for each gene set or gene ontology category, incorporating the odds that a gene set is

more or less likely to be enriched based on the probe-number bias of the experiment

with the intersection statistic defined above [4].

We have implemented our approach to gene set testing with two different functions

in the missMethyl Bioconductor R package, “gometh,” and “gsameth.” The difference

between the two functions is minimal, with gometh specifically testing for enrichment

of gene ontology (GO) categories from the GO.db annotation package, or KEGG path-

ways from the KEGG.db annotation package. The gsameth function is a more general

version of gometh, where the user can supply any list of gene sets to be tested. In

addition, the gometh and gsameth functions allow the set of significantly differentially

methylated CpGs to be restricted to genomic regions of interest such as promoters or

gene bodies, as these may interrogate different biological pathways.

Improved type I error rate control with GOmeth

We first tested the performance of GOmeth by randomly sampling sets of CpG probes

from the EPIC and 450K array annotation that we designated as differentially methyl-

ated and running gene ontology analyses. Under these null scenarios, we would not ex-

pect to see significant enrichment of any GO categories. We randomly selected 100

sets each of 50, 100, 500, 1000, 5000, and 10,000 CpGs as “significantly” differentially

methylated based on the 450K and EPIC annotation. We tested for enrichment of gene

ontology sets for each simulation and calculated the number of GO categories that

were significant at a p value threshold of 0.05. For a test to correctly control the type I

error rate, we expect 5% or fewer GO categories to have significant p values for random

data. We compared the three testing options available in GOmeth: the hypergeometric

test with no bias corrections (“HGT”), Wallenius’ noncentral hypergeometric test tak-

ing into account probe-number bias only (“HGT-mod”) and GOmeth, which takes into

account both probe-number and multi-gene bias (Fig. 3A & B, Additional file 1: Fig.

S3A & B). Under these simulation conditions, we were unable to compare to the

methylGSA methods and ebGSEA since these tests require M values or β values as in-

put rather than just the list of significant probes.

Figure 3A summarizes the type I error rates for our methods across the varying sets

of randomly selected CpGs sampled from the EPIC array. As the numbers of differen-

tially methylated CpGs increased, we noted that the hypergeometric test reported too

many significant GO categories, particularly for more than 500 CpGs. Clearly, taking

into account the probe-number bias makes the biggest correction to false discoveries,

with HGT-mod and GOmeth maintaining the correct type I error rate. Correcting for
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multi-gene bias (GOmeth) further reduced the numbers of significantly enriched GO

categories. We did notice that not accounting for the multi-gene bias led to an increase

in false discoveries as the numbers of significant CpGs increased. A similar trend was

observed for simulations based on the 450K array (Additional file 1: Fig. S3A).

Of the significant GO categories reported by each method, we found that the hyper-

geometric test was more biased towards GO categories with more CpGs measured per

gene on average (Fig. 3B, Additional file 1: Fig. S3B). HGT-mod and GOmeth reported

significant categories that had a wide range of CpGs per gene on average. Based on the

results of these simulations, we selected GOmeth taking into account both probe-

number and multi-gene bias as the best option to use for further analysis, even though

it is quite a conservative test in this particular simulation scenario.

The prior simulations are limited in that they only generate a random set of CpGs to

test for over-representation of gene sets. However, previously published methods, ebG-

SEA and the methylGSA methods, require differential methylation measurements (M

values or β values) as input. In order to compare the type I error rate control of

Fig. 3 Evaluation of false discovery rate control for EPIC array data. A Type I error rates across 100
simulations for varying numbers of randomly sampled CpGs. B Median average numbers of CpGs per gene
for GO categories with an unadjusted p value < 0.05. The hypergeometric test is biased towards GO
categories with more CpGs per gene on average. GOmeth = adjust for probe-number and multi-gene bias;
HGT = hypergeometric test; HGT-mod = adjust for probe-number bias only. C Multidimensional scaling plot
of normal samples from TCGA KIRC data, colored by sex. D False discovery rate control of seven gene set
testing methods using normal samples from TCGA KIRC data. Two groups were generated by randomly
sampling n samples per group, followed by differential methylation analysis and subsequent gene set
testing. This was repeated 100 times at each sample size. The proportion of gene sets with unadjusted p
value < 0.05 across the 100 null simulations is shown for each method, at each sample size. Methods with
good false discovery rate control should have relatively tight distributions around the red dashed line at
0.05. ebGSEA (KPMT) = ebGSEA using Known Population Median Test; ebGSEA (WT) = ebGSEA using
Wilcoxon Test; GOmeth (1000) = GOmeth using top 1000 ranked probes; GOmeth (5000) = GOmeth using
top 5000 ranked probes; mGLM = methylglm; mRRA (GSEA) = methylRRA using gene set enrichment
analysis; mRRA (ORA) = methylRRA using over-representation analysis
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GOmeth with ebGSEA and methylGSA, we analyzed the normal samples from the

TCGA 450K array kidney renal cell carcinoma (KIRC) dataset (Fig. 3C), as well as

the normal samples from the TCGA 450K breast invasive carcinoma (BRCA) data-

set (Additional file 1: Fig. S3C). For both datasets, we took a resampling approach

whereby we randomly assigned samples to one of two “groups” and varied the

sample size per group (n = 5, 10, 20, 40, 80). We then performed differential

methylation analysis between the two artificial groups, followed by gene set testing

using the available methods: mGLM, mRRA (ORA), mRRA (GSEA), ebGSEA (WT),

ebGSEA (KPMT), GOmeth with top 1000 CpGs, and GOmeth with top 5000

CpGs. While the ebGSEA methods are available in the ChAMP R Bioconductor

package, we used a more flexible implementation available in the ebGSEA R pack-

age on GitHub. We defined the input for GOmeth as either the top 1000 or top

5000 most highly ranked differentially methylated CpGs even though the probes

did not reach statistical significance. This allowed us to calculate the proportions

of gene sets that were significantly enriched for each of the methods, where “sig-

nificant” is defined as a p value less than 0.05. We repeated these steps 100 times

at each sample size. In this scenario, where there are no true biological pathways

differentially methylated, we expect 5% or fewer gene sets to be significantly

enriched. We used the 8567 gene sets from the Broad’s Molecular Signatures Data-

base (MSigDB) available in the ChAMP package to evaluate the false discovery rate.

In addition, to ensure that the methods in the methylGSA package produced rea-

sonable output, we limited the size of the gene sets to those with at least 5 and at

most 5000 genes in the set. If these additional constraints are not included, the

methylGSA methods mGLM and mRRA (ORA) produced results that were heavily

biased towards reporting very small gene sets as highly significant. Furthermore,

mRRA (ORA) was also biased towards ranking large gene sets very highly, if they

were not filtered out (Additional file 1: Fig. S3E).

In total, we compared seven different variants of the gene set tests: GOmeth with

top 1000 CpGs, GOmeth with top 5000 CpGs, the three testing frameworks in

methylGSA and the two tests in ebGSEA. In general, varying the sample size did

not make a difference to the results, with consistent patterns observed for all

sample sizes, across the two datasets (Fig. 3D, Additional file 1: Fig. S3D). The

worst performing test was mRRA (ORA), which had a median proportion of

significantly enriched gene sets of at least 0.6 (or a median of 5388 enriched gene

sets, across the 5 sample sizes). mRRA (GSEA) also performed poorly, with a me-

dian proportion of significantly enriched gene sets of at least 0.25 (or a median of

2117 enriched gene sets, across the 5 sample sizes). However, mGLM correctly

controlled the false discovery rate at 0.05. The two variants of ebGSEA had slightly

greater than 0.05 median proportion of false discoveries although their results were

more variable across the 100 simulations at each sample size, with some simula-

tions showing large numbers of false positives. GOmeth, using both top 1000 and

5000 CpGs, showed highly consistent performance, with median proportions of

false discoveries < 0.05 (with a median of 180 and 278.5 enriched gene sets, re-

spectively, across the 5 sample sizes), suggesting that GOmeth correctly controls

for false discoveries. The performance of the seven methods was highly consistent

across both the KIRC and BRCA datasets.
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Application to blood cell type EPIC data

Following our simulation studies, we wanted to test the performance of GOmeth, ebG-

SEA, and the methylGSA methods on real data that contained differential methylation.

We used a publicly available dataset of flow sorted blood cell types profiled on Illumina

Infinium HumanMethylationEPIC arrays (GSE110554) [29]. Cell types are easily distin-

guished based on methylation patterns (Fig. 4A). We chose to perform our differential

analysis and gene set testing on three independent pair-wise comparisons of cell types

with varying numbers of differentially methylated probes: (1) CD4 vs CD8 T cells, (2)

monocytes vs neutrophils, and (3) B cells vs natural killer (NK) cells (Fig. 4B). Differen-

tial methylation was performed using TREAT [30], and CpGs were defined as signifi-

cantly differentially methylated if they had false discovery rates < 0.05 and Δβ cut-off of

~ 10% (corresponding to ΔM ~ 0.5). Following the differential methylation analysis, we

tested enrichment of GO sets and KEGG pathways using hypergeometric tests,

GOmeth, the three methylGSA methods, and the two ebGSEA tests. Again, we limited

the gene sets to those with a minimum of 5 and a maximum of 5000 genes for

methylGSA. For input to GOmeth, we used either the statistically significant CpGs at

FDR < 0.05 (CD4 vs CD8 T cells) or the top 5000 most highly ranked CpGs for com-

parisons with more than 5000 significant CpGs (B cells vs NK cells and monocytes vs

neutrophils).

To evaluate the significant gene sets in a systematic way we took two approaches.

First, we identified all immune categories in the GO database, as these are expected to

be highly enriched when comparing different blood cell types. We therefore defined

“true positive” GO categories as all the child terms under the parent GO category “im-

mune system response” (GO:002376) from AMIGO 2 (http://amigo.geneontology.org/

amigo/term/GO:0002376). We then counted how many of these immune sets were

present in the top ranked gene sets for each method. We similarly defined true posi-

tives for the KEGG pathways by identifying all pathways belonging to the following cat-

egories: immune system, immune disease, signal transduction, signaling molecules, and

interaction (https://www.genome.jp/kegg/pathway.html). The second approach we took

to evaluate the different methods was by analyzing a publicly available RNA-Seq dataset

comparing the same sorted blood cell types (GSE107011; SRP125125) [31, 32]. We per-

formed differential expression analysis and gene set testing on the expression data and

defined the top 100 significantly enriched gene sets from the RNA-Seq analysis as the

“truth” (Additional file 1: Fig. S4A-D).

For GO categories, GOmeth consistently performed the best with the highest

numbers of top ranked categories overlapping with truth sets across the three com-

parisons (Fig. 4C–D, Additional file 1: Fig. S5-6). For KEGG pathways, the differ-

ences between the methods were not as clear, with mGLM, ebGSEA, and GOmeth

generally performing well. The mRRA (GSEA) and mRRA (ORA) methods had

highly variable performance (Additional file 1: Fig. S7). For the monocyte vs

neutrophil comparison, the ebGSEA methods had more power to detect significant

gene sets (Additional file 1: Fig. S7E).

Next, we examined the top 10 ranked terms for each of the seven gene set testing

methods (Fig. 4D, Additional file 1: Fig. S5-7). For the B cells vs NK cells, we noted that

the hypergeometric test, and to a lesser extent, the two ebGSEA methods, tended to

have very large, non-specific GO categories most highly ranked, with “protein binding,”
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Fig. 4 Comparison of gene set testing performance on Gene Ontology (GO) categories. A Multidimensional
scaling plot of EPIC array sorted blood cell data. B Numbers of differentially methylated CpGs with an adjusted
p value < 0.05, for each cell type comparison: CD4 T cells vs. CD8 T cells, monocytes vs. neutrophils and B cells
vs. NK cells. The blue bar is the number of significant CpGs that are less methylated in the first cell type relative
to the second, and the red bar is the number that are more methylated; e.g., ~5000 CpGs are less methylated
and ~3000 are more methylated in CD4 T cells, compared to CD8 T cells. C Cumulative number of GO terms, as
ranked by various methods, that are present in each truth set for the B cells vs. NK comparison. ISP Terms =
immune-system process child terms truth set; RNAseq Terms = top 100 terms from RNAseq analysis of the
same cell types. D Bubble plots of the top 10 GO terms as ranked by various gene set testing methods. The
size of the bubble indicates the relative number of genes in the set. The color of the bubble indicates whether
the term is present in either RNAseq (purple) or ISP (green) truth sets, both (red) or neither (blue). ebGSEA
(KPMT) = ebGSEA using Known Population Median Test; ebGSEA (WT) = ebGSEA using Wilcoxon Test; GOmeth
= GOmeth using either FDR < 0.05 (for contrasts with <5000 significant CpGs) or top 5000 most significant
probes; HGT = hypergeometric test; mGLM = methylglm; mRRA (GSEA) = methylRRA using gene set
enrichment analysis; mRRA (ORA) = methylRRA using over-representation analysis
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“cytoplasm”, and “molecular function” in the top 10 (Fig. 4D). The top 10 enriched GO

categories for GOmeth were more biologically relevant, with immune specific gene set

tests highly enriched (for example “leukocyte activation” and “lymphocyte activation”).

All of the top 10 terms for GOmeth were included in at least one “truth” set. For the

methylGSA methods, mGLM appeared to have more immune specific categories in the

top 10 (e.g., “adaptive immune response” and “regulation of leukocyte cell–cell adhe-

sion”) compared to mRRA (GSEA) and mRRA (ORA). The results for mRRA (ORA)

and mRRA (GSEA) were more difficult to interpret with none of the top 10 mRRA

(ORA) results included in either truth set. A similar pattern was observed for the CD4

vs CD8 T cells and monocyte vs neutrophil comparisons, with GOmeth consistently

ranking more immune specific terms in the top 10 (Additional file 1: Fig. S5B and 6B).

Application to B cell development 450K data

We applied the seven different gene set testing methods to a developing pre-B cell

dataset which measured methylation using the 450K array and had matched gene ex-

pression captured using Affymetrix arrays. Four populations of B cell developmental

stages were isolated from human fetal bone marrow, from 8 individuals. We focused on

the comparison between Stage 1 (multipotent progenitor cells) and Stage 2 (pre-B cell

I) and analyzed the methylation data taking a similar approach as described above

(Additional file 1: Fig. S8A, B). For the gene expression dataset, background correction

and normalization were performed using the RMA algorithm [33, 34], low intensity

probes were filtered out, and differential expression analysis was performed with limma

(Additional file 1: Fig. S4E-G). We created the gene expression truth sets by selecting

the top 100 gene sets for GO and KEGG pathways identified using the “goanna” and

“kegga” functions in limma. We also used the immune related sets from GO and

KEGG as previously described, as alternative truth sets.

For GO categories, GOmeth was the top performer, with ebGSEA (KPMT) perform-

ing consistently well across both truth sets (Additional file 1: Fig. S8C, D). The

methylGSA methods did not perform as well on this dataset, with mGLM the best of

the three. For KEGG pathways, all methods performed similarly (Additional file 1: Fig.

S9A); however, the gene sets were not very highly statistically significant (Additional file

1: Fig. S9B). For the top 10 ranked GO categories, GOmeth was the only method that

had all 10 present in either truth set (Additional file 1: Fig. S8D). For KEGG pathways,

8/10 pathways for GOmeth were present in either truth set and the top ranked pathway

for GOmeth was “hematopoietic cell lineage” (Additional file 1: Fig. S9B).

We generally found, across all dataset comparisons and gene set ensembles, that

the hypergeometric test, mRRA (ORA), and mRRA (GSEA) tended to rank large,

non-specific categories very highly, with GOmeth ranking more biologically

relevant gene sets in the top 10. For the two ebGSEA methods, ebGSEA (KPMT)

appeared to perform better than ebGSEA (WT); however, for dataset comparisons

with a large number of significant probes, the ebGSEA methods tended to rank

large, non-specific categories more highly. For comparisons with fewer significant

probes, ebGSEA (KPMT) showed a good performance with more power to detect

significant enrichment of gene sets. The mGLM method was the best performer of

the three methods available from methylGSA.
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Comparing compute time between gene set testing methods

While the mGLM and ebGSEA methods generally perform well, computationally, they

are the slowest methods to run on a single core (~48 min for mGLM, ~50 min for

ebGSEA) (Table 1). The run time of ebGSEA and mGLM can be significantly reduced

by parallelising the computations. Using 10 cores to complete the analysis of 8567

MSigDB gene sets, ebGSEA took approximately 36 min, and mGLM took 16 min. We

also show the run-time results for 10 and 20 cores in Table 1. By comparison, GOmeth

is ~90 times faster than mGLM and ebGSEA on a single core. mRRA (ORA) is the fast-

est to run but generally does not perform as well as other methods.

Gene set testing following a region-based analysis

CpGs are not evenly spaced across the genome and often appear in clusters, e.g., CpG

islands [35], and several studies have demonstrated that CpGs in close proximity have

correlated methylation levels [12]. Thus, rather than testing individual CpGs, identify-

ing correlated methylation patterns between several spatially adjacent CpGs has been

shown to yield more functionally relevant results [13].

Several tools have been published for identifying differentially methylated regions

(DMRs) from methylation array data: Probe lasso [14], bumphunter [15], DMRcate [16],

mCSEA [17], and DMRforPairs [18]. Depending on the input data, region finding tools

can identify several hundred or even thousands of DMRs. They all generally output the

location of the region including the chromosome, region start, and region end

positions, along with some additional metrics and statistical significance. Some tools

attempt to annotate the regions with genes but others do not. Thus, when faced with a

long list of DMRs, it is unclear how to interpret the biological significance of the re-

sults, and there are no gene set testing tools available for DMRs.

To address this, we have developed GOregion, an extension of GOmeth, that enables

gene set testing of DMRs. The “goregion” function tests GO terms and KEGG path-

ways, while “gsaregion” is a generalized function that accepts any list of gene sets as in-

put. We reasoned that because region detection is inherently dependent on CpG probe

density, DMRs are more likely to be identified in genes with more CpG probes. This

trend is observed in the blood cell type and B cell development data (Fig. 5A,

Additional file 1: Fig. S10A, 11A, 14A). To take this bias into account, GOregion uti-

lises the GOmeth testing framework. GOregion accepts a ranged object of DMRs that

have been identified by the user’s choice of region-finding software. These regions are

Table 1 Average run-time across all contrasts. Gene sets used are Broad MSigDB gene sets from
the ChAMP package. All methods were run on a Blade Server: 24 CPUs - Intel(R) Xeon(R) Gold 6126
CPU @ 2.60GHz

Method Time (minutes)

1 core 10 cores 20 cores

mRRA (ORA) 0.13 - -

GOmeth 0.54 - -

mRRA (GSEA) 3.04 - -

mGLM 47.95 16.12 9.86

ebGSEA 50.12 36.07 33.79

Maksimovic et al. Genome Biology          (2021) 22:173 Page 12 of 26



Fig. 5 Evaluation of the performance of GOregion on sorted blood cell data. A Bias plot showing that genes
with more measured CpGs is more likely to have a differentially methylated region (DMR). This plot is produced
from EPIC array sorted blood cell type data, comparing B cells to NK cells. B Numbers of DMRs identified by
DMRcate, for each cell type comparison: CD4 T cells vs. CD8 T cells, monocytes vs. neutrophils and B cells vs. NK
cells. The blue bar is the number of DMRs before filtering, the pink bar is the number of DMRs after filtering out
DMRs with < 3 underlying CpGs and an absolute mean |Δβ| < 0.1. C Cumulative number of GO terms, as
ranked by GOregion and a simple hypergeometric test (HGT), that are present in each truth set for the B cells
vs. NK comparison. ISP Terms = immune-system process child terms truth set; RNAseq Terms = top 100 terms
from RNAseq analysis of the same cell types. D Bubble plots of the top 10 GO terms as ranked by GOregion
and a simple HGT for the B cells vs. NK comparison. The size of the bubble indicates the relative number of
genes in the set. The color of the bubble indicates whether the term is present in either RNAseq (purple) or ISP
(green) truth sets, both (red) or neither (blue). E Upset plot showing the characteristics of the CpGs selected as
“significant” for the B cell vs. NK comparison by a probe-wise differential methylation analysis using a
significance cut off (FDR < 0.05), the top 5000 CpGs as ranked by the probe-wise analysis (Top 5000) or the
CpGs underlying the filtered DMRcate regions (DMRcate). The probe-wise analysis with FDR < 0.05 identified
over 60,000 CpGs as “significant” and had the most unique CpGs. However, despite identifying fewer
“significant” CpGs (~25,000), almost half of the CpGs identified by DMRcate are unique (~12,000). F Proportion
of “significant” CpGs that are annotated to genes as identified by the three different strategies. G Upset plot
showing the characteristics of the genes that “significant” CpGs are annotated to, as identified by the three
different strategies, for the B cell vs. NK comparison. CpGs identified by the probe-wise analysis with FDR < 0.05
map to over 12,000 genes. Although the CpGs identified by DMRcate map to far fewer genes (~2900), a
number of them are unique to this approach
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then overlapped with the locations of the CpGs on the Illumina array to identify a set

of CpGs underlying the DMRs. These CpG probes are then passed to GOmeth, and

GOmeth’s existing algorithm is used to test for enrichment of gene sets.

GOregion applied to sorted blood cell type EPIC data

Using the sorted blood cell EPIC data, we identified DMRs for the same three cell type

comparisons using the DMRcate package: (1) CD4 vs CD8 T cells, (2) monocytes vs

neutrophils, and (3) B cells vs NK cells. Using default parameters, DMRcate identified

6404, 7176, and 23,210 differentially methylated regions, respectively. We further fil-

tered the DMRs by only including regions containing 3 or more CpGs with an absolute

mean β value difference greater than 0.1. This left 789, 1633, and 4723 DMRs, respect-

ively, for downstream analysis (Fig. 5B). We then performed gene set testing of GO cat-

egories using GOregion and compared it to a simple approach of overlapping DMRs

with known genes and then testing using a HGT.

As previously described, we evaluated the results by counting the numbers of highly

ranked immune-related GO terms, and the numbers of highly ranked GO categories

identified in the RNA-Seq data analysis of the same cell types. GOregion consistently

ranked immune-related and RNA-Seq truth terms more highly than the simple HGT-

based strategy (Fig. 5C, Additional file 1: Fig. S10B, 11B). Examining the top 10 most

highly ranked GO categories showed that GOregion categories are more specific to im-

mune processes than those identified using the HGT approach (Fig. 5D, Additional file

1: Fig. S10C, 11C). Across all comparisons, GOregion always ranked more truth sets in

the top 10 than HGT. For example, the top 10 gene sets ranked by GOregion for the B

cells vs NK comparison were highly specific to immune system processes, e.g., “T cell

activation,” whereas for HGT the sets were very broad and contained thousands of

genes, e.g., “protein binding” (Fig. 5D).

We wanted to explore the differences between a region analysis and a probe-wise

analysis and how this would affect gene set testing results. GOmeth is highly dependent

on the set of significant CpGs provided as input, so we postulated that selecting CpGs

using a region-level analysis could be more biologically relevant, in certain circum-

stances. We compared the numbers of differentially methylated probes and genes that

are selected based on a region analysis with DMRCate, a probe-wise analysis using an

FDR cut-off < 0.05, and a probe-wise analysis selecting the top 5000 differentially meth-

ylated CpGs. For the B cell vs NK cells comparison, a probe-wise analysis with FDR <

0.05 selects over 60,000 differentially methylated CpGs. More than 50,000 of these

CpGs are unique to this approach and not identified with the region approach, whereas

DMRCate identifies ~24,000 CpGs in DMRs (Fig. 5E). We noted that although

DMRCate always captured fewer significant CpGs (Fig. 5E, Additional file 1: Fig. S10D,

11D), a higher proportion of the total significant CpGs was annotated to genes com-

pared with either of the probe-wise approaches (Fig. 5F, Additional file 1: Fig. S10E,

11E). This results in sets of genes uniquely captured using a region-based analysis (Fig.

5G, Additional file 1: Fig. S10F, 11F).

Comparing GOregion to the two probe-wise approaches using our previously defined

truth sets showed that all of the approaches performed similarly well across all the

contrasts, except for B cells vs NK cells (Additional file 1: Fig. S12A, B). For that
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comparison, GOregion and the GOmeth probe-wise analysis using the top 5000 CpGs

both performed markedly better than GOmeth with significant CpGs selected using

FDR < 0.05 (Additional file 1: Fig. S12A). This is likely due to these significant CpGs

being annotated to > 12,000 genes, resulting in a highly non-specific set of genes as in-

put to GOmeth, whereas DMRCate regions are annotated to just under 3000 genes

(Fig. 5G). Examining the terms that were highly ranked by the various approaches,

across the different contrasts, revealed that they all tended to be immune specific

(Additional file 1: Fig. S12C-E). The exception is the B cells vs NK comparison pro-

duced by GOmeth based on CpGs selected at FDR < 0.05, where the most highly

ranked terms were very broad categories such as “cell communication,” “signaling”, and

“plasma membrane part” (Additional file 1: Fig. S12C). Hence, for comparisons which

result in very large numbers of significantly differentially methylated CpGs, limiting the

set of CpGs used as input for gene set testing, such as performing a region analysis, is

important for producing meaningful results.

Region-finding software is itself dependent on numerous parameters and appropriate

downstream filtering of results can also be important in identifying the most biologic-

ally informative set of DMRs. Using the blood cell type dataset, we demonstrate that

different DMR filters affect the downstream GOregion gene set testing results in differ-

ent ways, depending on the comparison (Additional file 1: Fig. S13). For our dataset,

the most important filter to include is a mean Δβ difference cut-off, i.e., the size of the

methylation difference. For this particular dataset, we find that a Δβ difference cut-off

of 0.1 performs best across all comparisons. For the B cells vs NK cells comparison, we

noticed that not filtering with a Δβcut-off produced very poor results. In contrast, for

the monocyte vs neutrophils comparison, a Δβ cut-off of 0.2 was too stringent and re-

sulted in fewer gene sets overlapping with the truth sets (Additional file 1: Fig. S13A, B).

GOregion applied to B cell development 450K data

Using DMRcate, we identified 2151 DMRs when comparing Stage 1 vs Stage 2 B cells

and observed a strong probe-number bias trend (Additional file 1: Fig. S14A). Once

again, we compared the top ranked GO terms for GOregion and HGT with our two

truth sets: (1) the top 100 ranked gene sets from comparing Stage 1 vs Stage 2 B cells

in the Affymetrix gene expression data and (2) the immune related terms. GOregion

outperformed HGT, with a greater overlap of the top ranked gene sets with both truth

sets (Additional file 1: Fig. S14B). Examining the top 10 GO terms showed that

GOregion had 7/10 terms present in either truth set, with only 3/10 gene sets overlap-

ping either truth set for HGT. Two of the top 10 GO terms identified by GOregion,

but not identified in either truth sets, were related to cytokine production, which is

known to be important in B cell development [36]. HGT ranked very broad, non-

specific GO terms very highly (e.g., “molecular function,” “protein binding”), whereas

GOregion ranked more immune related gene sets in the top 10 (e.g., “leukocyte

activation”).

We compared the numbers of differentially methylated probes and genes selected

using either a region-based analysis, a probe-wise analysis with FDR < 0.05, or a probe-

wise approach selecting the top 5000 differentially methylated CpGs (Additional file 1:

Fig. S14D-F). For Stage 1 vs Stage 2 developing B cells, 11,597 probes were selected
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using DMRCate compared to only 3148 with a probe-wise analysis with FDR < 0.05,

suggesting that thousands of probes that are not individually significant were under-

lying regions (Additional file 1: Fig. S14D). A higher proportion of probes captured

using DMRcate was annotated to genes compared to the probe-wise analyses

(Additional file 1: Fig. S14E), and although DMRcate selected 11,597 probes, these were

annotated to only 1664 genes (Additional file 1: Fig. S14F). As we observed in the

sorted blood cell type data, the DMRcate-selected CpGs overlapped genes that were

unique to the region-based analysis (Additional file 1: Fig. S14F).

For this particular dataset, GOmeth and GOregion performed very similarly with all

methods (GOmeth (top 5000), GOmeth (FDR<0.05) and GOregion) showing a similar

degree of overlap with the two truth sets (Additional file 1: Fig. S15A). While there

were some differences in the top 10 ranked GO terms, they were all involved in im-

mune system processes (Additional file 1: Fig. S15B).

Although we did not filter the DMRs prior to gene set testing with GOregion for this

particular dataset, we investigated the effect of filtering on the overlap with the truth

sets (Additional file 1: Fig. S15C). Modifying Δβ or the number of CpGs underlying the

regions did not have a drastic effect on the overlap with the truth sets, although for the

gene expression array terms, the additional filter of |Δβ| = 0.2 and number of CpGs = 4

reduced the number of truth gene sets identified by GOregion.

Discussion
Gene set testing is a useful tool to gain additional biological insight into the underlying

mechanisms in an experiment. Here we present GOmeth for performing gene set test-

ing after a probe-level analysis, and GOregion, a gene set testing method following a

region-based analysis. To the best of our knowledge, GOregion is the only method that

specifically tests enrichment of gene sets for differentially methylated regions.

Through our investigation of the composition of the 450K and EPIC arrays, we have

observed that annotating statistically significant differentially methylated CpGs to genes

is not a trivial exercise. For our gene set testing methods, we choose to rely on the an-

notation provided by Illumina; however, other studies have used alternative approaches,

such as defining promoter regions as regions of +/−2kb of the transcription start sites

of genes [37].

We have shown that two sources of bias affect gene set testing: probe-number and

multi-gene bias and our methods account for both of these. Through the use of simula-

tions and resampling normal samples, we have shown that GOmeth correctly controls

the false discovery rate with minimal bias. We applied GOmeth to sorted blood cell

types and developing B cell datasets and showed that the top ranked categories are con-

sistently biologically relevant across multiple comparisons. We defined two different

types of truth sets based on the information available in the GO and KEGG databases,

as well as independently analyzed gene expression datasets. We acknowledge that our

truth sets will have shortcomings in that they are unlikely to encompass all the truly

enriched pathways, and, particularly in the case of the gene expression data analysis,

the choice of gene set testing method is likely to play a role in how gene sets are

ranked. Nevertheless, we showed that GOmeth generally outperforms other available

methods. Further, we have shown that the probe-number bias affects the probability

that a region is called differentially methylated. We therefore developed GOregion to
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perform unbiased gene set testing following a region-based analysis. For the blood cell

types and developing B cell dataset, GOregion outperformed a simple hypergeometric

testing approach that has been previously used in analyses.

An important consideration when using GOmeth is how many differentially methyl-

ated probes to use as input to the method. For comparisons that have tens of thousands

of significantly differentially methylated CpGs, in the first instance, we would recom-

mend performing a region-based analysis and using GOregion to perform gene set test-

ing. Another option would be to use GOmeth, but restrict the input CpGs to the top

ranked CpGs, with a rule of thumb that the number of input CpGs is less than 10,000.

Simply taking a false discovery rate cut-off for the B cells vs NK cell comparison, for

example, resulted in too many genes being identified as differentially methylated (>12,

000), and we found that the gene set testing results were not very specific or biologic-

ally meaningful. In our comparisons, we have used the top 5000 differentially methyl-

ated probes and this produced good results for the blood cell type dataset. There is

additional functionality in GOmeth to restrict the list of significant CpGs by genomic

features, such as “TSS1500,” “TSS200”, and “Body,” for example. This has the effect of

decreasing the overall numbers of CpGs to use as input, but potentially retains more

biologically meaningful loci.

For users who are not comfortable with setting thresholds to select appropriate CpGs

as input to GOmeth following a probe-level analysis, mGLM and ebGSEA are alterna-

tive statistical methods that do not require setting cut-offs to select significant CpGs.

Generally, when the numbers of significant probes was large, ebGSEA-ranked large,

broad GO terms more highly compared to mGLM. However, when the numbers of sta-

tistically significant CpGs were fewer than 5000, ebGSEA performed well in our

evaluations.

Even though a region-based approach can potentially select fewer CpGs, in our ana-

lysis of the sorted blood cell types and developing B cell data, it always identified add-

itional unique CpGs not detected using the probe-wise methods. This is likely because

these CpGs were not statistically significant on their own but are identified as part of a

region. Thus, given the potential for capturing biologically important CpGs, which may

be missed by probe-wise approaches due to their reliance on rankings and significance

cut-offs, we suggest that a good quality, region-based analysis can potentially distill

more focused gene sets than a probe-level gene set analysis of the same data.

An important feature of GOmeth and GOregion is their flexibility. Unlike the

methylGSA methods, GOmeth and GOregion do not require any filtering of gene sets

to produce robust results. GOregion is compatible with the results of any software for

finding differentially methylated regions which can be expressed as a ranged data ob-

ject. Both GOmeth and GOregion are computationally efficient and can test a variety

of gene sets such as GO categories, KEGG pathways or any list of custom gene sets.

Conclusions
GOmeth and GOregion are novel statistical methods that account for biases in gene set

testing for methylation arrays. We have shown that our methods produce the most bio-

logically meaningful results while controlling the false discovery rate. All of our gene

set testing functions is available in the missMethyl Bioconductor R package.
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Methods
All analysis code presented in this manuscript can be found at http://oshlacklab.com/

methyl-geneset-testing/. The analysis website was created using the workflowr (1.6.2) R

package [38]. The GitHub repository associated with the analysis website is at: https://

github.com/Oshlack/methyl-geneset-testing.

Statistical model for GOmeth

The statistical test for GOmeth and GOregion is based on Wallenius’ noncentral hyper-

geometric distribution, which is a generalized version of the hypergeometric distribu-

tion where items are sampled with bias. For GOmeth, we take the following stepwise

procedure:

1. For each CpG i annotated to gene j, calculate a weight

wij ¼ 1
#genes annotated to CpGij

:

If each CpG is annotated to exactly one gene, then wij = 1.

2. Let i = 1, …,Ij denote the CpGs annotated to gene j. Calculate the equivalent

number of CpGs measured across gene j as:

N j ¼
XI j

i¼1
wij:

If there are no multi-gene associated CpGs, then Nj is simply the number of probes

measured across gene j.

3. Let A define the set of significant differentially methylated Cpgs. For each gene j,

define an indicator vector 1j(x) of length Ij such that xi = 1 if CpGij∈A, and xi = 0

if CpGij A, where i = 1, …,Ij.

4. Let wj define the vector of weights wij for each gene j. Calculate the differential

methylation score for each gene j

S j ¼ minð1 jðxÞ � w j; 1Þ:

Note the maximum value of Sj is 1, and Sj < 1 only in cases where the significant

CpGs are all multi-gene associated, and the summed weights are less than one. Sj = 0

when there are no significant differentially methylated CpGs across gene j.

5. Let j = 1, …, Jg denote the genes that are present in gene set g. Calculate the

enrichment statistic for Wallenius’ noncentral hypergeometric test for each gene

set g

ESg ¼
X J g

j¼1
S j:

For the standard Wallenius’ noncentral hypergeometric test, the enrichment

statistic is the intersection between the significant differentially methylated genes

and genes in gene set g, which ignores multi-gene associated CpGs. Our modified

enrichment statistic ESg accounts for multi-gene associated CpGs for gene set g.

6. Calculate the probability weighting function (PWF) by applying a moving average

smoother to an ordered binary vector (based on the number of associated CpGs)

where 1 indicates a gene is differentially methylated and 0 indicates the gene is not
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differentially methylated. We use the “tricubeMovingAverage” function in the

limma package which is similar to a least squares loess curve of degree zero. The

binary vector is ordered by the number of equivalent CpGs measuring methylation

across each gene, Nj, from smallest to largest. The output is a vector of the same

length as the input such that each gene is assigned a probability of differential

methylation based on the smoothed value. We then calculate the expected odds of

enrichment for each gene set g by calculating the mean PWF of the genes in the

set and comparing it to the mean PWF of the rest of the genes represented on the

array.

ODDSg ¼ mean PWF genes in gene set gð Þð Þ
mean PWF genes not in gene set gð Þð Þ

7. For testing enrichment of each gene set g, we obtain a one-sided p value from Wal-

lenius’ noncentral hypergeometric distribution with the following parameters: x =

floor(ESg), m1 = the size of the gene set Jg, m2 = the number of genes on the rest of

the array, n = the total number of significant genes, and odds = ODDSg. We use

the BiasedUrn R package to obtain p values.

Null simulations: random sampling of CpGs

We randomly selected sets of 50, 100, 500, 1000, 5000, and 10,000 CpGs from the Illu-

mina array annotation for both 450k and EPIC arrays. The sampling was repeated 100

times for each CpG set size. We tested for significant enrichment of GO categories

using a standard hypergeometric test (HGT), a Wallenius’ hypergeometric test account-

ing for probe number bias (HGT-mod) and GOmeth, which is based on Wallenius’

hypergeometric test and accounts for probe number and multi-gene bias.

Methylation datasets

The normal samples from the KIRC TCGA dataset [39] were used for estimating the

false discovery rate of the different gene set testing methods. The data was downloaded

using the curatedTCGAData Bioconductor package [40] and the 160 normal samples

extracted. The data was provided as already processed β values; however, we performed

additional filtering and removed poor quality probes, probes containing SNPs as well as

sex chromosome probes. The resulting multidimenational scaling plots showed no ap-

parent evidence of sex or other technical effects (Fig. 3C).

In addition, 85 normal samples from the BRCA TCGA dataset [41] were used to esti-

mate the false discovery rates of the seven gene set testing methods. The data was

downloaded using the curatedTCGAData Bioconductor package and the 97 normal

samples extracted. Following quality control 12 samples were removed (8 with unusual

beta value distributions and 4 African/African American samples). Poor quality probes

and probes containing SNPs were filtered out. Probes located on the sex chromosomes

were retained as all the samples were female (Additional file 1: Fig. S3C).

To compare the performance between different gene set testing methods when there

is significant differential methylation, we used Illumina Infinium HumanMethylationE-

PIC (GSE110554) data generated from flow-sorted neutrophils (Neu, n = 6), monocytes

(Mono, n = 6), B-lymphocytes (B cells, n = 6), CD4+ T cells (CD4T, n=7, six samples

and one technical replicate), CD8+ T cells (CD8T, n = 6), natural killer cells (NK, n =
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6) and 12 DNA artificial mixtures (labeled as MIX) [29]. Only the sorted cells were

used in our analysis. The data was downloaded using the ExperimentHub Bioconductor

package.

We also analyzed a developing B cell dataset that had matched DNA methylation and

gene expression measurements [42]. Four populations of early B cell developmental

stages were obtained from human fetal bone marrow, from 8 individuals. Methylation

was measured using the Illumina HumanMethylation450 Beadchip, and gene expres-

sion was measured using the GeneChip Human Gene 1.0 ST Array (Affymetrix). The

four populations were identified using flow cytometry antibodies and consist of Stage 1

(predominantly multipotent progenitors and common lymphoid progenitors), Stage 2

(pre-B-I cells), Stage 3 (pre-B-II cells) and Stage 4 (immature B cells). The data was

downloaded from the Gene Expression Omnibus (GSE45461).

Analysis and processing

The majority of the analysis was performed using R (4.0.3) and some using R (3.6.1)

[43]. The specific R and package versions used for different aspects of the analysis can

be viewed under the “Session information” sections of the analysis website associated

with this study: http://oshlacklab.com/methyl-geneset-testing/.

Quality control and normalization

All methylation data was processed using the minfi [3, 44] R Bioconductor [45, 46]

package. Between array and probe-type normalization was performed using the strati-

fied quantile normalization (SQN) method [47]. Probes with a detection P value > 0.01

in one or more samples were discarded. Probes potentially affected by common SNPs

(minor allele frequency > 0) proximal to the CpG of interest (up to 2 bp upstream and

1 downstream) and non-specific probes [37, 48] were also removed from further

analysis.

Statistical analysis

The proportion of methylation at each CpG is represented by the βvalue, defined as the

proportion of the methylated signal to the total signal and calculated from the normal-

ized intensity values. Statistical analyses were performed on M values ½M ¼ methylated
unmethylated �

as recommended by Du et al. [49].

Comparison of gene set testing methods using sorted blood cell data

CpG probe-wise linear models were fitted to determine differences in methylation

between cell types (B cells vs NK, CD4 vs CD8 T cells, monocytes vs neutrophils)

using the limma package [2]. Differentially methylated probes (DMPs) were identi-

fied using empirical Bayes moderated t tests [50], performing robust empirical

Bayes shrinkage of the gene-wise variances to protect against hypervariable probes

[51]. Empirical Bayes moderated-t p values were then calculated relative to a mini-

mum meaningful log-fold-change (lfc) threshold on the M-value scale (lfc = 0.5,

corresponding to |Δβ| ~ 0.1) [30]. P values were adjusted for multiple testing using

the Benjamini-Hochberg procedure [52].
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For each comparison, we tested for significant enrichment of GO categories and

KEGG pathways. We only tested sets with at least 5 genes and at most 5000 genes for

the methylGSA methods. The top ranked 5000 CpGs were tested using the HGT and

GOmeth, from the missMethyl package, for enrichment of GO terms and KEGG path-

ways. The raw p values were passed as input to the methylGSA methods. The ebGSEA

methods were run using the ebGSEA R package (https://github.com/aet21/ebGSEA).

Comparison of gene set testing methods using kidney clear cell carcinoma (KIRC) data

The KIRC data [39] from the curatedTCGAData package was provided as β values with

masked data points; data points were masked as “NA” if their detection p value was

greater than 0.05 or the probe was annotated as having a SNP within 10 base pairs or

repeat within 15 base pairs of the interrogated CpG [53]. We extracted only the 160

normal samples and removed probes with any NA values, as well as SNP-affected

probes and multi-mapping and sex-chromosome probes, as previously described. This

left 364,602 probes for downstream analysis.

We ran 100 null simulations by randomly subsampling the normal samples and split-

ting them into two artificial “groups” with 5, 10, 20, 40, and 80 samples per group. For

each of the 100 simulations, at each sample size, DMPs between groups were identified

using empirical Bayes moderated t tests [50], performing robust empirical Bayes shrink-

age of the gene-wise variances to protect against hypervariable probes [51].

We then performed gene set testing of the differential methylation analysis results

using several methods with the Broad MSigDB gene sets available in the ChAMP Bio-

conductor package. GOmeth was run using both the top 1000 and top 5000 significant

CpGs as input. The methylGSA methods; mGLM, mRRA (ORA), and mRRA (GSEA)

were run with gene set sizes restricted to a minimum of 5 and maximum of 5000 genes.

The ebGSEA method was run using default parameters and both its KPMT and WT

output were compared.

Comparison of gene set testing methods using breast invasive carcinoma (BRCA) data

As with the KIRC data, the BRCA data [41] was downloaded using the curatedTCGA-

Data package. We then extracted the 97 normal samples and removed probes with any

NA values, as well as SNP-affected probes and multi-mapping probes, as previously de-

scribed. Sex chromosome probes were retained since all sample donors were female.

This left 371,389 probes for further analysis. Twelve outlying samples were removed (8

with unusual beta value distributions and 4 African/African American samples), leaving

85 samples for downstream analysis.

We ran 100 null simulations by randomly subsampling the normal samples and split-

ting them into two artificial groups with 5, 10, 20, and 40 samples per group. DMPs be-

tween the two groups were identified as described for the KIRC data, followed by the

same gene set testing approach using the seven different methods previously outlined.

RNA-Seq data and analysis

The RNA-Seq data for the sorted blood cell types was downloaded from SRA

(GSE107011; SRP125125) [31, 32]. The reads were mapped to hg19 reference transcrip-

tome (http://refgenomes.databio.org/v2/asset/hg19_cdna/fasta/archive?tag=default) and
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quantified using Salmon (1.2.1) [54]. Salmon transcript-level estimates were imported

and summarized at the gene-level as length-scaled TPM using the tximport Bioconduc-

tor package [55]. Lowly expressed genes were filtered out using the edgeR [56] “filter-

ByExpr” function as described by Chen at al [57].. The data was then TMM normalized

[58] and transformed using “voomWithQualityWeights” [59], to increase power by

combining “voom” [60] observational-level weights with sample-specific weights.

Probe-wise linear models were then fitted for each gene to determine gene expression

differences between cell types (B cells vs NK cells, CD4 vs CD8 T cells, monocytes vs

neutrophils) using limma [2]. Differentially expressed genes were identified using em-

pirical Bayes moderated t tests [50], performing robust empirical Bayes shrinkage of the

gene-wise variances to protect against hypervariable probes [51]. P values were adjusted

for multiple testing using the Benjamini-Hochberg procedure [52].

We used the goana function from the limma package to test enrichment of GO cat-

egories, kegga to test for enrichment of KEGG pathways and a generalized version of

goana and kegga; to test for enrichment of the Broad MSigDB gene sets. All the

methods took gene length bias into account [23]. GO, KEGG and MSigDB truth sets

were then defined for each cell type comparison from the RNA-Seq analysis as the top

100 enriched sets.

Affymetrix array gene expression data and analysis

The Affymetrix Human Gene 1.0 ST Array gene expression data for pre-B cell develop-

ment was downloaded from GEO (GSE45460) [42].

The raw CEL files were loaded and processed using the oligo Bioconductor package.

The data was background corrected, normalized, and summarized using Robust Multi-

chip Average (RMA) pre-processing [33, 34]. Only probes with a median intensity

greater than 4.5, in at least 7 samples, were retained. Transcript-cluster identifiers that

mapped to multiple Entrez identifiers were filtered out, along with any probes that did

not map to Entrez identifiers, leaving 19,494 genes for downstream analysis.

Probe-wise linear models were then fitted for each gene to determine gene expression

differences between Stage 1 and Stage 2 of pre B cell development (Stage 1 vs Stage 2)

using limma [2]. Differentially expressed genes were identified using empirical Bayes

moderated t tests [50], performing robust empirical Bayes shrinkage of the gene-wise

variances to protect against hypervariable probes [51]. P values were adjusted for mul-

tiple testing using the Benjamini-Hochberg procedure [52]. Genes with a log2 fold

change greater than 0.5 using TREAT [30] and FDR less than 0.05 were deemed to be

differentially expressed.

The goana function from the limma package was used to test enrichment of GO cat-

egories and kegga to test for enrichment of KEGG pathways. GO and KEGG truth sets

were then defined for the Stage 1 versus Stage 2 comparison from the gene expression

analysis as the top 100 enriched sets.

Evaluation of GOregion using flow sorted blood cell data

The lllumina Infinium HumanMethylationEPIC (GSE110554) data generated from

flow-sorted blood cells was used for identification of DMRs. The data was processed as

previously described. DMRs between cell types (B cells vs NK cells, CD4 vs CD8 T
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cells, monocytes vs neutrophils) were identified using the DMRcate Bioconductor

package [16]. The analysis was performed on M values using default parameters.

Downstream gene set testing was performed on a filtered list of DMRs with a mean

|Δβ| ≥ 0.1 and at least 3 underlying CpGs.

GO terms were tested for enrichment of DMR-associated genes using goregion and a

standard HGT, as implemented in the goana function from the limma Bioconductor

package. A gene, as defined in the TxDb.Hsapiens.UCSC.hg19.knownGene Bioconductor

package, was included in the list of genes to be tested using goana if it overlapped a

DMR by at least 1bp.

Evaluation of GOregion using pre-B cell development data

The lllumina Infinium HumanMethylation450 (GSE45459) data generated from 4

stages of pre B cell development was used for identification of DMRs. The data was

processed as previously described. DMRs between Stage 1 and Stage 2 were identified

using the DMRcate Bioconductor package [16]. The analysis was performed on M

values using default parameters. DMRs were not filtered prior to gene set testing.

GO terms were tested for enrichment of DMR-associated genes using goregion and a

standard HGT, as previously described for the sorted blood cell data.
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