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Abstract

Deep generative models such as variational autoencoders (VAEs) and generative
adversarial networks (GANs) generate and manipulate high-dimensional images. We
systematically assess the complementary strengths and weaknesses of these models
on single-cell gene expression data. We also develop MichiGAN, a novel neural network
that combines the strengths of VAEs and GANs to sample from disentangled
representations without sacrificing data generation quality. We learn disentangled
representations of three large single-cell RNA-seq datasets and use MichiGAN to
sample from these representations. MichiGAN allows us to manipulate semantically
distinct aspects of cellular identity and predict single-cell gene expression response to
drug treatment.

Keywords: Cellular identity, Disentangled representations, Generative adversarial
networks, Representation learning, Single-cell genomics

Introduction

Deep learning techniques have recently achieved remarkable successes, especially in
vision and language applications [1, 2]. In particular, state-of-the-art deep generative
models can generate realistic images or sentences from low-dimensional latent variables
[3]. The generated images and text data are often nearly indistinguishable from real data,
and data generating performance is rapidly improving [4, 5]. The two most widely types
of deep generative models are variational autoencoders (VAEs) and generative adversarial
networks (GANs). VAEs use a Bayesian approach to estimate the posterior distribution
of a probabilistic encoder network, based on a combination of reconstruction error and
the prior probability of the encoded distribution [6]. In contrast, the GAN framework
consists of a two-player game between a generator network and a discriminator network
[7]. GANs and VAEs possess complementary strengths and weaknesses: GANs generate
much better samples than VAEs [8], but VAE training is much more stable and learns
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more useful “disentangled” latent representations [9]. GANs outperform VAEs in gen-
erating sharp image samples [7], while VAEs tend to generate blurry images [10]. GAN
training is generally less stable than VAE training, but some recent derivations of GAN
like Wasserstein GAN [11–13] significantly improve the stability of GAN training, which
is particularly helpful for non-image data.
Achieving a property called “disentanglement”, in which each dimension of the latent

representation controls a semantically distinct factor of variation, is a key focus of recent
research on deep generative models [14–20]. Disentanglement is important for con-
trolling data generation and generalizing to unseen latent variable combinations. For
example, disentangled representations of image data allow prediction of intermediate
images [21] and mixing images’ styles [22]. For reasons that are not fully understood,
VAEs generally learn representations that are more disentangled than other approaches
[23–28]. The state-of-the-art methods for learning disentangled representations capital-
ize on this advantage by employing modified VAE architectures that further improve
disentanglement, including β-VAE, FactorVAE, and β-TCVAE [9, 29–31]. In contrast,
the latent space of the traditional GAN is highly entangled. Some modified GAN archi-
tectures, such as InfoGAN [32], encourage disentanglement using purely unsupervised
techniques, but these approaches still do not match the disentanglement performance of
VAEs [33–40].
Disentanglement performance is usually quantitatively evaluated on standard image

datasets with known ground truth factors of variation [41–44]. In addition, dis-
entangled representations can be qualitatively assessed by performing traversals or
linear arithmetic in the latent space and visually inspecting the resulting images
[45–49].
Recently, molecular biology has seen the rapid growth of single-cell RNA-seq technolo-

gies that can measure the expression levels of all genes across thousands to millions of
cells [50]. Like image data, for which deep generative models have proven so success-
ful, single-cell RNA-seq datasets are large and high-dimensional. Thus, it seems likely
that deep learning will be helpful for single-cell data. In particular, deep generative mod-
els hold great promise for distilling semantically distinct facets of cellular identity and
predicting unseen cell states.
Several papers have already applied VAEs [51–61] and GANs [62] to single-cell data. A

representative VAE method is scGen, which uses the same objective function as β-VAE
[9]. The learned latent values in scGen are utilized for out-of-sample predictions by latent
space arithmetic. The cscGAN paper adapts the Wasserstein GAN approach for single-
cell data and shows that it can generate realistic gene expression profiles, proposing to
use it for data augmentation.
Assessing disentanglement performance of models on single-cell data is more challeng-

ing than image data, because humans cannot intuitively understand the data by looking
at it as with images. Previous approaches such as scGen have implicitly used the proper-
ties of disentangled representations [51], but disentanglement performance has not been
rigorously assessed on single-cell data.
Here, we systematically assess the disentanglement and generation performance of

deep generative models on single-cell RNA-seq data. We show that the complementary
strengths and weaknesses of VAEs and GANs apply to single-cell data in a similar way
as image data. We develop MichiGAN, a neural network that combines the strengths of
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VAEs and GANs to sample from disentangled representations without sacrificing data
generation quality. We employ MichiGAN and other methods on simulated single-cell
RNA-seq data [63, 64] and provide quantitative comparisons through several disentangle-
ment metrics [29, 30]. We also learn disentangled representations of three real single-cell
RNA-seq datasets [65–67] and show that the disentangled representations can control
semantically distinct aspects of cellular identity and predict unseen combinations of cell
states.
Our work builds upon that of Lotfollahi et al. [51], who showed that a simple VAE

(which they called scGen) can predict single-cell perturbation responses. They also
showed several specific biological contexts in which this type of approach is useful. First,
they predicted the cell-type-specific gene expression changes induced by treating immune
cells with lipopolysaccharide. Second, they predicted the cell-type-specific changes that
occur when intestinal epithelial cells are infected by Salmonella or Heligmosomoides
polygyrus. Finally, they showed that scGen can use mouse data to predict perturbation
responses in human cells or across other species. For such tasks, one can gain significant
biological insights from the generated scRNA-seq profiles.
Our method, MichiGAN, can make the same kinds of predictions and yield the same

kinds of biological insights as scGen, but we show that MichiGAN has significant bene-
fits compared to scGen (including disentanglement and data generation performance). In
addition, we show that MichiGAN can predict single-cell response to drug treatment, a
biological application that was not demonstrated in the scGen paper.

Results
Variational autoencoders learn disentangled representations of single-cell data

Real single-cell datasets usually have unknown, unbalanced, and complex ground-truth
variables, and humans cannot readily distinguish single-cell expression profiles by eye,
making it difficult to assess disentanglement performance by either qualitative or quanti-
tative evaluations. We thus first performed simulation experiments to generate balanced
single-cell data with several data generating variables using the Splatter R package [63].
All the datasets were processed using the SCANPY software [68]. We measured the dis-
entanglement performances of different methods on the simulated single-cell data using
several disentanglement metrics and also provided qualitative evaluations on the learned
representations using the real datasets.
We first estimated simulation parameters to match the TabulaMuris dataset [65]. Then,

we set the differential expression probability, factor location, factor scale, and common
biological coefficient of variation to be (0.5, 0.01, 0.5, 0.1). We then used Splatter [63] to
simulate gene expression data of 10,000 cells with four underlying ground-truth vari-
ables: batch, path, step, and library size. Batch is a categorical variable that simulates
linear differences among biological or technical replicates. Step represents the degree
of progression through a simulated differentiation process, and path represents differ-
ent branches of the differentiation process. We simulated two batches, two paths, and
20 steps. The batch and path variables have linear effects on the simulated expression
data, while the step variable can be related either linearly or non-linearly to the simulated
gene expression values. We tested the effects of this variable by separately simulating a
purely linear and a non-linear differentiation process. We also included library size, the
total number of expressed mRNAs per cell, as a ground truth variable. A UMAP plot of
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the simulated data shows that the four ground truth variables each have complementary
and distinct effects on the resulting gene expression state (Fig. 1a and Additional file 1:
Figure S1a).
We compared the disentanglement performance of three methods: probabilistic prin-

cipal component analysis (PCA) [69], β-VAE, and β-TCVAE. The probabilistic PCA
method assumes a linear relationship between data and representations, while VAE and
β-TCVAE can learn non-linear representations. Note that we use probabilistic PCA to
allow calculation of mutual information (see below). The β-TCVAE approach penal-
izes the total correlation of the latent representation, directly minimizing the mutual
information between latent dimensions, which has been shown to significantly improve
disentanglement performance on image data.

Fig. 1 Evaluating disentanglement performance on simulated data with non-linear step. a UMAP plots of
simulated data colored by batch, path, step, and library size quartile. b UMAP plots of data colored by the ten
latent variables learned by PCA, VAE, and β-TCVAE. c Bar plots of Spearman correlations between ten latent
variables and each of the four ground-truth variables for PCA, VAE, and β-TCVAE. d Bar plots of normalized
mutual information between ten representations and each of the four ground-truth variables for PCA, VAE,
and β-TCVAE
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We used the three methods to learn a 10-dimensional latent representation of the sim-
ulated data (Fig. 1b and Additional file 1: Figure S1b). Some latent variables learned by
eachmethod showed clear relationships with the ground-truth variables. For example, the
first latent variable Z1 from PCA seemed related to library size, and Z3, Z4, and Z5 were
related to batch, path, and step, respectively. The VAE representations similarly showed
some relationships with the ground-truth variables. Based on the UMAP plots, the latent
variables from β-TCVAE appeared to show the strongest and most clear relationships
with the ground-truth variables.
To quantify the disentanglement performance of the three methods, we calculated

Spearman correlation and normalized mutual information between each representation
and a ground-truth variable (Fig. 1c, d). Spearman correlation measures the strength of
monotonic relatedness between two random variables. The normalized mutual informa-
tion, on the other hand, is a more general and robust metric of statistical dependence.
A disentangled representation should have a bar plot with only four distinct bars in this
case, indicating that each ground-truth variable was captured by exactly one latent vari-
able. PCA showed the best performance as measured by Spearman correlation (Fig. 1c),
likely because the metric does not fully characterize the complex statistical dependency
between true and inferred latent variables for the VAE methods, which learn more com-
plex non-linear relationships. Based on the normalized mutual information metric, both
the PCA and VAE representations achieved some degree of disentanglement, but neither
approach fully disentangled all ground-truth variables. Multiple PCA representations had
measurable mutual information with step and library size quartile, while multiple VAE
representations identified batch and path and none of the VAE representations identified
step. In contrast, exactly one β-TCVAE representation had significant mutual informa-
tion for each ground-truth variable. Also, β-TCVAE was the only method with a unique
representation for the non-linear step variable.
We also computed the Spearman correlation and normalized mutual information for

the simulated data with linear step (Additional file 1: Figure S1c-d). The results for the
simulated data with linear step were similar and β-TCVAE did the best at identifying only
one representation for each ground-truth variable.
We further calculated the mutual information gap (MIG) metric used in [30] and Fac-

torVAE disentanglement metric [29] to measure disentanglement. The MIG metric is
defined as the average gap between the mutual information of the two latent variables
that are most related to each ground-truth variable. If there is a single latent variable that
has high mutual information with each ground-truth variable, the MIG will be high. The
FactorVAE metric is based on the error rate of a linear classifier that identifies which
ground truth variable differs based data points using latent dimensions. In addition, we
calculated a Spearman correlation gap similar toMIG. Table 1 summarizes the correlation
gap, FactorVAE metric, and MIG of the three models over 5 runs for the two simu-
lated datasets. As expected from the bar charts, the PCA representations have the largest
Spearman correlation gap and β-TCVAE has the largest MIG, showing the best disentan-
glement performance for both simulated datasets. The FactorVAE metric also shows that
β-TCVAE has the best disentanglement performance. We also evaluated InfoWGAN-GP
on the simulated data in Additional file 1: Figure S4 and found that the representations
are entangled with the ground-truth variables for simulated datasets with linear and
non-linear step.
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Table 1 Disentanglement metrics for two splatter-simulated single-cell RNA-seq datasets with four
ground truth variables

Spearman correlation gap ↑ FactorVAEmetric ↑ MIG ↑
Linear step PCA 0.68 ±0.00 0.35 ±0.01 0.54 ±0.00

VAE 0.3 ±0.04 0.4 ±0.02 0.48 ±0.13

β-TCVAE 0.18 ±0.05 0.48 ±0.03 0.72 ±0.02

Non-linear step PCA 0.72 ±0.00 0.35 ±0.01 0.55 ±0.00

VAE 0.27 ±0.07 0.41 ±0.02 0.43 ±0.08

β-TCVAE 0.16 ±0.06 0.51 ±0.04 0.66 ±0.16

The mean and standard deviation over 5 runs are presented for each method. The dimensionality of the latent space was 10 for
all three approaches

We also evaluated the disentanglement performance of the three methods with four
latent dimensions (the same as the number of ground-truth variables), for the simulated
datasets in Additional file 1: Figures S8 and S9. The β-TCVAE representations still most
effectively disentangle the ground-truth variables. Table 2 summarizes the disentangle-
ment metrics of the three methods with four latent dimensions. Although FactorVAE
metric shows similar values for the three methods, β-TCVAE consistently has much
higher MIG than PCA and VAE.
In addition, we utilized the PROSSTT package [64] to simulate three single-cell

datasets. PROSSTT simulates cells undergoing a continuous process such as differenti-
ation. As shown in Additional file 1: Figures S10a, S11a and S12a, the three PROSSTT-
simulated datasets have 3-, 4-, or 5-way branching trajectories, respectively. The three
PROSSTT-simulated datasets also have a continuous time variable. We use three ground-
truth variables (branch, time, and library size) to calculate mutual information with the
learned latent variables (Additional file 1: Figures S10b, S11b, and S12b). PCA and VAE
have multiple latent dimensions with moderate mutual information with branch and time
quartile, while β-TCVAE captures each of these quantities mostly in a single variable. We
also summarized the disentanglement metrics of the three methods on the PROSSTT-
simulated datasets in Table 3. β-TCVAE has the highest FactorVAE metric and MIG for
each of the three datasets.
In summary, our assessment indicates that β-TCVAE most accurately disentangles

the latent variables underlying single-cell data, consistent with its previously reported
superior disentanglement performance on image data [30].

GANs generate more realistic single-cell expression profiles than VAEs

We next evaluated the data generating performance of several deep generative models
including VAE, β-TCVAE, and Wasserstein GAN with gradient penalty (WGAN-GP), as

Table 2 Disentanglement metrics for two splatter-simulated single-cell RNA-seq datasets with four
ground truth variables

Spearman correlation gap ↑ FactorVAEmetric ↑ MIG ↑
Linear step PCA 0.57 0.36 0.56

VAE 0.37 0.44 0.39

β-TCVAE 0.65 0.33 0.72

Non-linear step PCA 0.60 0.36 0.58

VAE 0.4 0.38 0.38

β-TCVAE 0.55 0.34 0.73

The dimensionality of the latent space was 4 for all three approaches
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Table 3 Disentanglement metrics for three PROSSTT-simulated single-cell RNA-seq datasets with
three ground truth variables

FactorVAEmetric ↑ MIG ↑
3 trajectories PCA 0.54 0.10

VAE 0.58 0.08

β-TCVAE 0.64 0.27

4 trajectories PCA 0.59 0.12

VAE 0.61 0.12

β-TCVAE 0.72 0.15

5 trajectories PCA 0.59 0.06

VAE 0.53 0.06

β-TCVAE 0.62 0.26

well as traditional methods of PCA and Gaussian mixture models (GMM) on the Tab-
ula Muris dataset [65]. This dataset contains a comprehensive collection of single-cell
gene expression profiles from nearly all mouse tissues and thus represents an appropriate
dataset for evaluating data generation, analogous to the ImageNet dataset in computer
vision. We also measured data generation performance on a subset of the Tabula Muris
containing only cells from the mouse heart. We used two metrics to assess data gener-
ation performance: random forest error and inception score. Random forest error was
introduced in the cscGAN paper [62] and quantifies how difficult it is for a random forest
classifier to distinguish generated cells from real cells. A higher random forest error indi-
cates that the generated samples are more realistic. We also computed inception score
[70], a metric commonly used for quantifying generation performance on image data.
Intuitively, to achieve a high inception score, a generative model must generate every
class in the training dataset (analogous to recall) and every generated example must be
recognizable as belonging to a particular class (analogous to precision).
We show the random forest errors over 5 runs of VAE, β-TCVAE, andWGAN-GP dur-

ing training for the Tabula Muris heart subset and the whole Tabula Muris in Fig. 2a and
b. We also evaluate simpler generative models, including PCA and GMM. WGAN-GP
achieves the best generation performance, as measured by both metrics, on both the sub-
set and full dataset. The deep generativemodels significantly outperform PCA andGMM.
VAE achieves second-best generating performance and, as expected with an endeavor to
pursue more disentangled representation, the quality of β-TCVAE generation is the worst
of the three approaches. Figure 2c, d shows the inception scores over 5 runs for the two
datasets; this metric reveals the same trend as with random forest errors, indicating that
WGAN-GP has the best generation performance and β-TCVAE generates the least real-
istic data. Additionally, the generation performance of the GAN is still significantly higher
than that of the VAE even for the smaller TabulaMuris heart dataset. These results accord
well with previous results from the image literature, indicating that GANs generate better
samples than VAEs, and VAE modifications to encourage disentanglement come at the
cost of sample quality.

MichiGAN samples from disentangled representations without sacrificing generation

performance

Having confirmed that VAEs achieve better disentanglement performance, but GANs
achieve better generation performance, we sought to develop an approach that combines
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Fig. 2 Generation performance of VAE, β-TCVAE, WGAN-GP, PCA, and GMM on the Tabula Muris heart data
and the whole Tabula Muris data. a Random forest error for the five methods on the Tabula Muris heart data
during training. b Random forest error for the five methods on the whole Tabula Muris data during training. c
Inception score for the five methods on the Tabula Muris heart data during training. d Inception score for the
five methods on the whole Tabula Muris data during training. Error bars indicate standard deviation across
five runs. For clarity, the error bars for PCA and GMM are omitted because of their small and large variability

the strengths of both techniques. Several previous approaches have combined variational
and adversarial techniques [10, 71, 72]. However, when we tested these approaches on
single-cell data, we found that attempts to jointly perform variational and adversarial
training compromised both training stability and generation performance. We also inves-
tigated the InfoGAN and semi-supervised InfoGAN, but found that the disentanglement
performance was still significantly worse than that of the VAE approaches as shown in
Additional file 1: Figure S4.
We thus developed a different approach: we first train a VAE to learn a disentangled

representation. Then, we use the VAE encoder’s latent representation z for each cell x as a
given code and train a conditional GAN using the (z, x) pairs. After training, we can gen-
erate high-quality samples from the VAE’s disentangled representation. Importantly, the
training is no less stable than training VAE and GAN separately, and the GAN generation
quality is not compromised by a regularization term encouraging disentanglement. In
addition, any kind of representation—from nonlinear methods like VAEs or linear meth-
ods like PCA—can be incorporated in our approach. Wanting to follow the convention
that the names of many generative adversarial networks end with “GAN”, but unable to
devise a compelling acronym, we named our approach MichiGAN after our institution.
The MichiGAN architecture is shown in Fig. 3 and also summarized in Algorithm 1.

We find that MichiGAN effectively achieves our goal of sampling from a disentan-
gled representation without compromising generation quality (see results below). Several
previous approaches have combined variational and adversarial techniques, including
VAEGAN [10], adversarial symmetric variational autoencoder [71], and adversarial varia-
tional Bayes [72]. InfoGAN and semi-supervised InfoGAN are also conceptually related to
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Fig. 3 Overview of the MichiGAN architecture. We first train a model, such as β-TCVAE, to learn a
disentangled representation of the real data. We then use the resulting latent codes to train a conditional
GAN with projection discriminator, so that the GAN generator becomes like a more accurate decoder.
Because the VAE and GAN are trained separately, training is just as stable as training each one individually,
but the combined approach inherits the strengths of each individual technique. After training, we can
generate high-quality samples from the disentangled representation using the GAN generator

MichiGAN, but we found that none of these previous approaches produced good results
on single-cell data. While we were writing this paper, another group released a preprint
with an approach called ID-GAN, which also uses a pre-trained VAE to learn a disen-
tangled representation [40]. However, they use the reverse KL divergence framework to
enforce mutual information between the VAE representation and the generated data,
which we previously tested and found does work as well as a conditional GAN with pro-
jection discriminator [73]. Furthermore, ID-GAN uses a convolutional architecture and
classic GAN loss for image data, whereas we use a multilayer perceptron architecture and
Wasserstein loss for single-cell expression data.
Although our approach is conceptually simple, there are several underlying reasons why

it performs so well, and recognizing these led us to pursue this approach. First, train-
ing a conditional GAN maximizes mutual information between the condition variable
and the generated data. This is a similar intuition as the InfoGAN, but unlike Info-
GAN, MichiGAN does not need to learn its own codes, and thus the discriminator can
focus exclusively on enforcing the relationship between code and data. A nearly opti-
mal discriminator is crucial for maximizing this mutual information, but the Wasserstein
loss also has this requirement, and we meet it by training the discriminator 5 times for
every generator update. Second, the adversarial loss allows the GAN generator to capture
complex, multi-modal distributional structure that cannot be modeled by the factorized
Gaussian distribution of the VAE decoder. This is particularly helpful if multiple distinct
types of cells map to a similar latent code, in which case the unimodal Gaussian distri-
bution of the VAE decoder will generate the average of these cell types. In contrast, even
though the GAN generates from the same latent representation as the VAE, the GAN can
fit complex, multimodal distributions by minimizing the Wasserstein distance between
generated and true data distributions. Additionally, a data-dependent code (the posterior
of the VAE encoder) allows the GAN to generate from a flexible latent space that reflects
the data distribution, rather than an arbitrary distribution such as the commonly used
standard normal. We believe this inflexibility contributes significantly to the relatively
poor disentanglement performance of InfoGAN. For example, InfoGAN is highly sensi-
tive to the number and distribution chosen for the latent codes; if classes are imbalanced
in the real data but the prior has balanced classes, it cannot learn a categorical variable
that reflects the true proportions.
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Based on the results from our disentanglement comparison (see below), we chose to use
the β-TCVAE to learn the latent representation for MichiGAN. We then use either the
posterior means or the random samples from the posterior as the condition for the GANs;
both choices have been utilized to evaluate disentanglement performance in previous
studies [9, 29, 30].
The last step of MichiGAN involves training a conditional GAN. We found that a con-

ditional Wasserstein GAN with projection discriminator [73] and gradient penalty [12]
is most effective at enforcing the condition. We also assessed semi-supervised InfoGAN
[74] and a conditional GAN based on simple concatenation, but found that these were
less effective at enforcing the relationship between code and generated data (Additional
file 1: Figure S7) and less stable during training.
We evaluated the MichiGAN algorithm on the simulated single-cell data with the

trained β-TCVAE models. Figure 4a shows the UMAP plots of real data colored by β-
TCVAE latent representations and generated data colored by code using WGAN-GP and
MichiGAN on the simulated data with non-linear step. The WGAN-GP representations
are very entangled and none of the representations shows an identifiable coloring pattern.
In contrast, the UMAP plots have consistent coloring patterns between the β-TCVAE and
MichiGAN representations. Thus, the generator of MichiGAN preserves the relationship
between latent code and data, effectively sampling from the disentangled representation
learned by the β-TCVAE. Because there is no inference network for the generated data
of either WGAN-GP or MichiGAN, we are unable to measure the mutual information
for the generators. Therefore, we used Spearman correlation as an indicator of whether
MichiGAN retains the relationship between disentangled latent representation and data.
Figure 4b also shows the bar plots of Spearman correlations between representations
and variables for the three methods. We used the correlations between each represen-
tation and ground truth variables for β-TCVAE, WGAN-GP, and MichiGAN. For GAN
models, we trained a k-nearest neighbor regressor (k = 3) for each variable based on
the real data and predicted the variables for the generated data. The WGAN-GP rep-
resentations do not show large correlation with any inferred ground-truth variable. In
contrast, the representations for β-TCVAE and MichiGAN show nearly identical corre-
lations to the true variables in the real data and predicted variables in the generated data,
respectively.
We also trained MichiGAN using PCA to obtain the latent code, instead of β-TCVAE.

Additional file 1: Figure S3a-b show the UMAP plots of real data colored by the PCA rep-
resentations and generated data colored by the MichiGAN-PCA representations on the
two simulated datasets. In addition, Additional file 1: Figure S3c-d show nearly identical
Spearman correlation bar plots between PCA and MichiGAN. MichiGAN trained with
principal components preserves the relationship between the latent representations and
real data, underscoring the generalizability of our approach.
We present the UMAP plots colored by the representations as well as bar plots of cor-

relations for the simulated data with linear step in Additional file 1: Figure S2a-b. The
results for the simulated data with linear step also indicate that MichiGAN restores the
disentanglement performance of β-TCVAE, while the WGAN-GP representations are
entangled. We further summarize the correlation gaps for the three methods on two sim-
ulated datasets in Table 4. For each simulated dataset, the MichiGAN and β-TCVAE have
very similar correlation gaps andWGAN-GP has a very small correlation gap, as expected.
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Fig. 4 Disentanglement and generation performance of WGAN-GP, β-TCVAE, and MichiGAN. a UMAP plots
of real data colored by the ten representations of β-TCVAE and generated data colored by the ten
representations of WGAN-GP and MichiGAN on the simulated data with non-linear step. The β-TCVAE panel
is reproduced from Fig. 1b for clarity. b Bar plots of Spearman correlations between ten representations and
each of the four ground-truth or inferred variables for WGAN, β-TCVAE and MichiGAN on the simulated data
with non-linear step. The β-TCVAE panel is reproduced from Fig. 1c for clarity. c Random forest error of PCA,
GMM, VAE, β-TCVAE, WGAN-GP, and MichiGAN on the whole Tabula Muris data during training. d Inception
score of PCA, GMM, VAE, β-TCVAE, WGAN-GP, and MichiGAN on the whole Tabula Muris data during training.
Error bars indicate standard deviation across 5 runs. For clarity, the error bars for MichiGAN are shown only for
the last 100 epochs because the convergence speed in earlier epochs is variable, and the error bars for PCA
and GMM are omitted because of their small and large variability

We evaluated MichiGAN on the whole Tabula Muris dataset (Fig. 4c, d). MichiGAN
greatly improved the data generation performance based using the disentangled repre-
sentations of β-TCVAE. The random forest error of MichiGAN was larger than VAE and
nearly as good as theWGAN-GP, while still generating samples from a disentangled latent
space.
Additionally, we applied PCA, GMM, VAE, β-TCVAE, WGAN-GP, and MichiGAN

on the pancreas endocrinogenesis dataset [66]. We obtained the cells’ latent time and
cell cycle scores for G2M and S phases from [75]. Additional file 1: Figure S13a shows
the UMAP plots of data colored by latent time and the difference between G2M and
S scores. The β-TCVAE method gives qualitatively more disentangled representations
(Additional file 1: Figure S13b), and gives much better disentanglement metrics (Addi-
tional file 1: Figure S13c). In addition, Additional file 1: Figure S13c also shows that
MichiGAN significantly improves the data generation performance of β-TCVAE.
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Table 4 Spearman correlation gap for WGAN-GP, InfoWGAN-GP, PCA, MichiGAN-PCA, VAE, β-TCVAE,
and MichiGAN on the two splatter-simulated single-cell RNA-seq datasets

Model Linear step Non-linear step

WGAN-GP 0.07 ±0.02 0.10 ±0.06

InfoWGAN-GP 0.05 ±0.05 0.04 ±0.02

PCA 0.68 ±0.00 0.72 ±0.00

MichiGAN-PCA 0.65 ±0.01 0.68 ±0.00

VAE 0.3 ±0.04 0.27 ±0.07

β-TCVAE 0.18 ±0.05 0.16 ±0.06

MichiGAN 0.18 ±0.04 0.15 ±0.05

The mean and standard deviation are presented for each method over 5 runs

MichiGAN enables semantically meaningful latent traversals

Disentangled representations of images are often evaluated qualitatively by performing
latent traversals, in which a single latent variable is changed holding the others fixed.
Looking at the resulting changes in the generated images to see whether only a single
semantic attribute changes provides a way of visually judging the quality of disentangle-
ment. We wanted to perform a similar assessment of MichiGAN, but single-cell gene
expression values are not individually and visually interpretable in the same way that
images are. We thus devised a way of using UMAP plots to visualize latent traversals on
single-cell data.
We performed latent traversals using both the Tabula Muris dataset and data from

the recently published sci-Plex protocol [67]. After training on the Tabula Muris dataset
(Additional file 1: Figure S5a), we chose a starting cell type, cardiac fibroblasts (Addi-
tional file 1: Figure S5b). We then varied the value of each latent variable from low to high,
keeping the values of the other variables fixed to the latent embedding of a particular
cell. For the sci-Plex dataset, which contains single-cell RNA-seq data from cells of three
types (A549, K562, MCF7; Additional file 1: Figure S5c) treated with one of 188 drugs, we
subsampled the data to include one drug treatment from each of 18 pathways by select-
ing the drug with the largest number of cells (Additional file 1: Figure S5b). This gives
one treatment for each pathway; the numbers of cells for each combination are shown
in Additional file 1: Table S1. We then performed latent traversals on cells with cell type
MCF7 and treatment S7259 (Additional file 1: Figure S5e).
To visualize the traversals, we plotted each of the generated cells on a UMAP plot con-

taining all of the real cells and colored each generated cell by the value of the latent
variable used to generate it. Figure 5a and b show how traversing the latent variables con-
centrates the generated values on each part of the UMAP plots for Tabula Muris data
using the first 10 dimensions of 128-dimensional WGAN-GP and MichiGAN, respec-
tively. Figure 5c and d are the latent-traversal plots for the sci-Plex data usingWGAN-GP
and MichiGAN. As shown in Fig. 5b, all but three of the latent variables learned by
the β-TCVAE behave like noise when we traverse them starting from the fibroblast
cells, a property previously noted in assessments of disentangled latent variables learned
by VAEs [29]. The remaining dimensions, Z3, Z6, and Z10, show semantically mean-
ingful latent traversals. Latent variable Z3 shows high values for mesenchymal stem
cells and fibroblasts, with a gradual transition to differentiated epithelial cell types from
bladder, intestine, and pancreas at lower values of Z3. This is intriguing, because the
mesenchymal-epithelial transition is a key biological process in normal development,
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Fig. 5 Latent traversals of WGAN-GP and MichiGAN on Tabula Muris and sci-Plex datasets. a UMAP plot of
latent traversals of the 10 representations of latent values that generate data closest to fibroblast cells in heart
within the Tabula Muris data using WGAN-GP with 128 dimensions. b UMAP plot of latent traversals of the 10
representations of latent values of fibroblast cells in heart within the Tabula Muris data using MichiGAN. c
UMAP plot of latent traversals of the 10 representations of latent values that generate data closest to MCF7-
S7259 cells within the sci-Plex data using WGAN-GP with 128 dimensions. d UMAP plot of latent traversals of
the 10 representations of latent values of MCF7-S7259 cells within the sci-Plex data using MichiGAN

wound healing, and cell reprogramming [76]. Latent variable Z6 generates mesenchymal
and endothelial cells at low values, and mammary epithelial and cardiac muscle cells at
high values. Latent variable Z10 is clearly related to immune function, generating immune
cells at low and medium values and traversing from hematopoietic stem and progenitor
cells to monocytes, T cells, and B cells. In contrast, latent traversals in the latent space
of 128-dimensional WGAN-GP (Fig. 5a) do not show semantically meaningful changes
along each dimension.
Figure 5d also shows that MichiGAN’s latent traversals gives meaningful changes on

the sci-Plex data. Latent variable Z8 has lower values on MCF7 cells and gradually
transitions to higher values on K562 cells. In addition, latent variable Z9 also shows
an A549-MCF7 transition with lower values on the A549 cells. The latent traversals of
the 128-dimensional WGAN-GP, however, do not provide interpretable changes across
the UMAP plot along each dimension. We also provide the latent traversals using 10-
dimensional WGAN-GP for the two datasets in Additional file 1: Figure S6a-b and find
that the latent traversals are still not semantically meaningful.

MichiGAN predicts single-cell gene expression changes under unseen drug treatments

One of the most exciting applications of disentangled representations is predicting high-
dimensional data from unseen combinations of latent variables. We next investigated
whether MichiGAN can predict single-cell gene expression response to drug treatment
for unseen combinations of cell type and drug.
We trained MichiGAN on data from the recently published sci-Plex protocol. The

dataset contains single-cell RNA-seq data from cells of three types (A549, K562, MCF7),
each treated with one of 188 drugs. The drug is known for each scRNA-seq profile. We
subsampled the data to include one drug treatment from each of 18 pathways by select-
ing the drug with the largest number of cells (Fig. 6a). We then have one treatment for
each pathway; the numbers of cells for each combination are shown in Additional file 1:



Yu and Welch Genome Biology          (2021) 22:158 Page 14 of 26

Table S1. We also held out three drug/cell type combinations (A549-S1628, K562-S1096
and MCF7-S7259) to test MichiGAN’s out-of-sample prediction ability.
We predict single-cell gene expression for each drug/cell type combination in a two-

step process. First, we estimate the mean latent difference between the target cell type
and another control cell type for other treatments using either posterior means or poste-
rior samples from the β-TCVAE encoder. We then add the average latent difference to the
latent values with the same treatment and the control cell type. This latent space vector
arithmetic assumes the mean cell type latent differences are homogeneous across differ-
ent treatments. Note that this assumption may not hold if there is a strong interaction
effect between cell type and drug treatment.
Because there are a total of three cell types, we have a total of six predictions for the

three held-out drug/cell type combinations. Figure 6b shows UMAP plots for these six

Fig. 6 Predicting single-cell gene expression effects of unseen drugs using MichiGAN. a UMAP plots of
sci-Plex dataset colored by cell type (left) and treatment (right). b UMAP plots of the predicted (green), real
(blue) and control (red) cells for 6 predictions of three missing cell type/drug combinations (A549-S1628,
K562-S1096, and MCF7-S7259). c Random forest errors between MichiGAN and β-TCVAE for all combinations.
MichiGAN was trained using mean representations (left) or representations sampled from the posterior
distribution (right)
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predictions. For all six predictions, the predicted values are closer to the true drug-treated
cells on the UMAP plot than the control cells used to calculate the latent vector. However,
the predicted cells do not overlap with the treated cells for the combinations A549-S1628
and K562-S1096, while the two predictions for MCF7-S7259 appear to be more accurate.
For both β-TCVAE and MichiGAN, we measure their random forest errors between the
real and predicted cells for each combination. The random forest scatter plots for sampled
representations are shown in Fig. 6c. MichiGANwith sampled representations has signif-
icantly better random forest error than β-TCVAE (p < 10−4, one-sided Wilcoxon test)
andmost of the points are above the diagonal line.We also show the random forest scatter
plots for mean representations in Fig. 6c, which does not show significantly larger random
forest errors compared to β-TCVAE (p > 0.05, one-sided Wilcoxon test) and might be
due to the remaining correlations among mean representations of β-TCVAE [19]. Thus,
MichiGAN with sampled representations is able to more accurately make predictions
from latent space arithmetic than β-TCVAE. However, some of the six predictions for the
missing combinations show low random forest errors from both methods, and some of
the predictions fromMichiGAN are only marginally better than those of β-TCVAE.

Accuracy of latent space arithmetic influences MichiGAN prediction accuracy

We next examined factors influencing the accuracy of MichiGAN predictions from latent
space arithmetic. We suspected that the prediction accuracy might depend on the accu-
racy of the latent coordinates calculated by latent space arithmetic, which could vary
depending, for example, on whether the drug exerts a consistent effect across cell types.
To investigate the reason for the difference in prediction accuracy, we developed a novel

metric for assessing the accuracy of latent space arithmetic for a particular held-out cell
type/perturbation combination. For a subset of the data g(X) and the latent space τ(Z),
we define the latent space entropy as:

H
{
τ(Z), g(X)

} = −Eτ(Z)

[
logEg(X)

{
qφ(Z | X) | Z}]

.

Intuitively, H quantifies the concentration of Z with respect to X. We can then compare
the entropy of the latent embeddings for the held-out data and the latent values predicted
by latent space arithmetic by calculating �H = H

{
τFake(Z), g(X)

} − H
{
τReal(Z), g(X)

}
,

where τFake is calculated by latent space arithmetic and τReal is calculated using the
encoder. The quantity �H then gives a measure of how accurately latent space arithmetic
predicts the latent values for the held-out data. If �H is positive, then the latent space
prediction is less concentrated (and thus more uncertain) than the encoding of the real
data.
The quantity �H measures how accurately latent space arithmetic predicts the latent

values for the held-out data. Thus, we expect that MichiGAN should be able to more
accurately predict drug/cell type combinations with a small �H .
As Fig. 7a shows, �H is significantly correlated with the difference in random for-

est error between MichiGAN and β-TCVAE, when sampling from either the posterior
distribution of the latent representations or the posterior means. This supports our
hypothesis that accuracy of the latent space arithmetic influences MichiGAN perfor-
mance. To further test this, we selected the three drug/cell type combinations with the
lowest overall �H values, and re-trained the network using all combinations except these
three. Figure 7b shows the predicted, real and control cells for the six predictions of the
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Fig. 7 MichiGAN predicts unseen or observed combinations in the large screen sci-Plex data. a Scatter plots
of random forest errors’ difference between MichiGAN and β-TCVAE versus delta entropy for MichiGAN with
mean representations (left) and sampled representations (right) on the large screen sci-Plex data without
three combinations of A549-S1628, K562-S1096 and MCF7-S7259. b UMAP plots of the predicted (green), real
(blue) and control (red) cells for 6 predictions of the three missing combinations of MCF7-S1262, MCF7-S1259,
and MCF7-S7207. c Random forest errors between MichiGAN and β-TCVAE for MichiGAN with mean
representations (left) and sampled representations (right) after selecting held-out combinations with low �H

three newmissing combinations based onMichiGANusing sampled representations. The
predicted cells (green) overlap most parts of the real cells (blue) for all six predictions. As
expected,MichiGAN predicted each of these low�H held-out combinations significantly
more accurately than β-TCVAE (Fig. 7c).
We also compared the performance of VAE andMichiGAN trainedwith VAE on the sci-

Plex data after holding out the selected drug/cell type combinations with lowest overall
�H values in Additional file 1: Figure S15. MichiGAN trained with VAE gives accu-
rate prediction of the unseen combinations (Additional file 1: Figure S15a), and also has
significantly higher random forest error than that of VAE to predict different drug/cell
type combinations using the latent space vector arithmetic algorithm (Additional file 1:
Figure S15b).
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Discussion
Our work provides fundamental evaluations of disentanglement performances of deep
generativemodels on single-cell RNA-seq data.We show that combining GANs and VAEs
can provide strong performance in terms of both data generation and disentanglement.
MichiGAN provides an alternative to the current disentanglement learning literature,
which focuses on learning disentangled representations through improved VAE-based
or GAN-based methods, but rarely by combining them. Additionally, as the state of
the art in disentangled representation advances, we can immediately incorporate new
approaches in the MichiGAN framework, since the training of representation and GAN
are completely separate.
We envision several exciting future directions. First, it would be interesting to inves-

tigate the representations learned by β-VAE or β-TCVAE across a range of biological
contexts. Second, incorporating additional state-of-the-art GAN training techniques may
further improve data generation quality. Additionally, there are many other biological set-
tings in which predicting unseen combinations of latent variables may be helpful, such as
cross-species analysis or disease state prediction.

Methods
Real scRNA-seq datasets

The Tabula Muris dataset is a compendium of single-cell transcriptomic data from the
model organismMus musculus [65]. We processed the Tabula Muris data using SCANPY
[68] and the dataset contains 41,965 cells and 4062 genes from 64 cell types. The sci-Plex
dataset has three cell types treated with 188 molecules targeting 22 pathways [67]. We
selected the 18 common pathways among the three cell types and chose the drug treat-
ment from each pathway with largest number of cells. We also use SCANPY to process
the data and then have 64,050 cells and 4295 genes. The pancreatic endocrinogenesis con-
tains 3696 cells and 27,998 genes [66]. We filtered and normalized the pancreas data to
2,000 genes using the scVelo package [75]. We also and obtained the latent time and G2M
and S cell cycle scores for each cell.

Simulated scRNA-seq datasets

To simulate data with the Splatter package, we first estimated simulation parameters to
match the Tabula Muris dataset [65]. Then, we set the differential expression probabil-
ity, factor location, factor scale, and common biological coefficient of variation to be
(0.5, 0.01, 0.5, 0.1). We then used Splatter [63] to simulate gene expression data of 10,000
cells with four underlying ground-truth variables: batch, path, step, and library size.
Using the PROSSTT package, we simulated 2000 genes across 10,500 (3 trajectories),

10,800 (4 trajectories), and 11,000 cells (5 trajectories).We followed the steps and parame-
ter settings exactly as described in the PROSSTT tutorial (https://github.com/soedinglab/
prosstt/blob/master/examples/many_branches_cells.ipynb), varying only the number of
branches, cells, and genes.

Variational autoencoders VAEs have an encoder network with parameters (φ), which
maps the input data (X) to a latent space Z, and a decoder network parameterized by (θ ),
which reconstructs the high-dimensional data from the latent space.
Rather than learning a deterministic function for the encoder as in a conventional

autoencoder, a VAE learns themean and variance parameters of the posterior distribution

https://github.com/soedinglab/prosstt/blob/master/examples/many_branches_cells.ipynb
https://github.com/soedinglab/prosstt/blob/master/examples/many_branches_cells.ipynb
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over the latent variables. However, even using a factorized Gaussian prior, the posterior is
intractable. Thus, VAEs perform parameter inference using variational Bayes. Following
a standard mean-field approximation, one can derive an evidence lower bound (ELBO).
The objective function of VAE is to maximize the ELBO or minimize its opposite with
respect to φ and θ :

LVAE = −ELBO = Eq(X)

[−Eqφ(Z|X)pθ (X | Z) + KL
{
qφ(Z | X)||p(Z)

}]
,

The ELBO has a nice interpretation: the first term is reconstruction error and the second
term is the Kullback-Leibler divergence between the posterior and prior distributions of
the latent variables (Z). If the prior distribution p(Z) is factorized Gaussian or uniform
distribution, the KL divergence encourages the latent factors to be statistically indepen-
dent, which may contribute to the good disentanglement performance of VAEs. This
effect can be further enhanced by introducing a weight β to place more emphasis on the
KL divergence at the cost of reconstruction error, an approach called β-VAE [9].

β-TCVAE The total correlation variational autoencoder (β-TCVAE) is a VAE exten-
sion that further promotes disentanglement. The KL divergence of VAE can be further
decomposed into several parts:

Eq(X)

{
KL

[
qφ(Z | X)||p(Z)

]} = KL
[
qφ(Z,X)||qφ(Z)q(X)

] + KL

⎡

⎣qφ(Z)||
∏

j
qφ(Zj)

⎤

⎦

+
∑

j
KL

[
qφ(Zj)||p(Zj)

]
,

The first part is referred to as the index-code mutual information (MI), the second part
is the total correlation (TC), and the third part is the dimension-wise KL divergence [30].
The total correlation is the most important term for learning disentangled representa-
tions, while penalizing the two other parts does not directly improve the disentanglement
performance, but increases the reconstruction error.
The β-TCVAE specifically penalizes the TC in the loss function [29, 30]:

Lβ-TCVAE = LVAE + βKL

⎡

⎣qφ(Z)||
∏

j
qφ(Zj)

⎤

⎦ ,

where β = 0 gives the VAE loss function. There is no closed form for the total correlation
of the latent representation, so β-TCVAE approximates it as follows:

Eqφ(Z)

{
log qφ(Z)

} ≈ Eqφ(Z)

[
logE

[{qφ(Z | X) | Z}]
,

and

Eqφ(Zj)
{
log qφ(Zj)

} ≈ Eqφ(Zj)
[
logE

{
qφ(Zj | X) | Zj

}]
.

Estimating TC is difficult from a small minibatch, so we utilize the minibatch stratified
sampling mentioned in [30] to estimate E

{
qφ(Z | X) | Z}

during training.

Generative adversarial networks (GAN) A generative adversarial network consists of a
generator network G and a discriminator network D. There are many types of GANs, but
we specifically focus onWasserstein GANwith gradient penalty (WGAN-GP) [12], which
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significantly stabilizes GAN training. The discriminator loss function for WGAN-GP is

LDiscriminator = Ep(Z),q(X)

[
D(X) − D {G(Z)} + λ

{||�X̃D(X̃)||2 − 1
}2] ,

where �XD is the gradient of the discriminator on input X and X̃ = εX + (1 − ε)G(Z)

with ε sampled from a uniform distribution on [ 0, 1]. The generator loss function for
WGAN-GP is

LGenerator = Ep(Z) [D{G(Z)}] .
Upon convergence, WGAN-GP gives the generated data distribution G(Z) that matches
the real data distribution P(X).

InfoGAN and ssInfoGAN The Information Maximizing Generative Adversarial Net-
works (InfoGAN) framework extends the regular GAN to encourage disentanglement
[32]. The InfoGAN decomposes the latent variables into latent code C and noise Z. To
encourage disentanglement, InfoGAN maximizes the mutual information between the
latent code and the generated data. To estimatemutual information, InfoGAN relies on an
additional network Q that takes generated data as input and predicts the code Q(C | X)

that generated the data. Q(C | X) is very similar to an encoder in a VAE and estimates
a posterior distribution in the same as the prior distribution of the code p(C). Info-
GAN then maximizes mutual information between the code and generated data with the
following loss functions for the discriminator and generator:

min
G,Q

max
D

L(D,G,Q) = min
G,Q

max
D

{LGAN(G,D) − λMILMI(G,Q)} ,
where LMI(G,Q) = EC∼P(C),X∼G(C,Z)[ logQ(C | X)]+H(C) is a lower bound for the
mutual information between C and X and H(C) is the entropy of the codes. We imple-
mented InfoGANwith theWasserstein distance, which we refer to as InfoWGAN-GP.We
choose a factorized normal distribution with unit variance forQ(C | X) (the unit variance
stabilizes InfoGAN training [32, 36]).
InfoGAN architecture can also be extended to semi-supervised InfoGAN (ssInfoGAN),

if labels are available for some or all of the data points [74]. The ssInfoGAN maximizes
mutual information not only between the generated data and the codes, but also between
the real data and corresponding labels. This guides the learned codes to reflect the label
information.

Conditional GAN and PCGAN The conditional GAN extends GANs to respect the
relationship between generated data and known labels [77]. There are many different
network architectures for conditional GAN [77–79], but found the conditional GAN
with projection discriminator (PCGAN) [73] works best. A recent paper similarly found
that PCGAN worked well for single-cell RNA-seq data [62]. The original PCGAN paper
mentions that the projection discriminator works most effectively when the conditional
distribution p(C|X) is unimodal. One theoretical reason why PCGANmay be well-suited
for MichiGAN is that the posterior multivariate Gaussian distributions of latent variables
from VAEs are, in fact, unimodal.
In implementing the PCGAN, we do not use the conditional batch normalization or

spectral normalization mentioned in [73], but instead use standard batch normaliza-
tion and Wasserstein GAN with gradient penalty. Thus, we refer to this approach as
PCWGAN-GP.
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MichiGAN Algorithm 1 describes how to train MichiGAN:
Algorithm 1:MichiGAN
Input: single-cell RNA-seq data X
1. Obtain disentangled representations ZX from an approach such as PCA, VAE or
β-TCVAE.
2. Utilize the representations ZX as codes.
3. Train a conditional GAN [73] using the codes.
Result: a generator network that produces high-quality samples from a disentangled
latent representation

Latent space vector arithmetic

MichiGAN’s ability to sample from a disentangled representation allows predicting
unseen combinations of latent variables using latent space arithmetic. We perform latent
space arithmetic as in [51] to predict the single-cell gene expression of unseen cell states.
Specifically, suppose we have m cell types C1, . . . ,Cm and n perturbation D1, . . . ,Dn.
Denote Z

(
Ci,Dj

)
as the latent value corresponding to the expression data with combi-

nation
(
Ci,Dj

)
for 1 ≤ i ≤ m and 1 ≤ j ≤ n. If we want to predict the unobserved

expression profile for the combination
(
Ci′ ,Dj′

)
, we can calculate the average latent differ-

ence between cell type Ci′ and another cell type Ck in the set of observable treatments 	

that �Ci′ ,Ck = ∫
	

{Z (Ci′ ,Ds) − Z (Ck ,Ds)} dP(s) and then use the latent space Z
(
Ck ,Dj′

)

of observed combination
(
Ck ,Dj′

)
to predict

Ẑ
(
Ci′ ,Dj′

) = Z
(
Ck ,Dj′

) + �Ci′ ,Ck .

The predicted Ẑ
(
Ci′ ,Dj′

)
is further used to generate predicted data of the unseen combi-

nation. The predicted latent space assumes the average latent difference across observed
treatments is equal to the latent difference of the unobserved treatment, which may not
hold if there is a strong cell type effect for the perturbation.

Disentanglement metrics

Mutual information

Following [30], we measure the disentanglement performance of the representations
using mutual information gap (MIG). Denote p (Vk) and p (X | Vk) as the probability of
a ground-truth variable Vk and the conditional probability of the data X under Vk . Given
qφ

(
Zj,Vk

) = ∫
X p (Vk) p (X | Vk) qφ

(
Zj | X)

dx, the mutual information between a latent
variable Zj and a ground-truth variable Vk is defined as

I
(
Zj,Vk

) = Eqφ(Zj ,Vk)

{

log
∫

X∈XVk

qφ

(
Zj | X)

p (X | Vk) dX
}

+ H
(
Zj

)
,

where XVk is the support of p (X | Vk) and H
(
Zj

)
is the entropy of Zj. Due to the dif-

ferent variabilities of the ground-truth variables, the normalized mutual information is
better to be used with a normalization term of H (Vk), the entropy of Vk . The posterior
distribution qφ

(
Zj | X)

is obtained from the encoder (for VAEs) or the derived posterior
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distribution for probabilistic PCA [80]. With K ground truth variables {V1, . . . ,Vk}, the
mutual information gap (MIG) is further defined as

MIG = 1
K

K∑

k=1

1
H(Vk)

{

I
(
Zj(k) ,Vk

)
− max

j �=j(k)
I(Zj,Vk)

}

,

where j(k) = argmaxj I
(
Zj,Vk

)
.

The MIG metric is the average difference between largest and the second largest
normalized mutual information value across all ground-truth variables. Intuitively, this
indicates how much each ground truth variable is captured by a single latent variable. As
described in [30], the MIG metric has the axis-alignment property and is unbiased for all
hyperparameter settings.

FactorVAEmetric

For completeness, we also calculated the disentanglement metric introduced in the
FactorVAE paper [29]. In each of multiple repetitions, we first randomly choose a ground-
truth variable and then generate data, keeping this variable fixed and other variables
at random. We normalize each dimension by the empirical standard deviation over the
whole data and choose the dimension with the lowest empirical variance. The dimension
with the lowest empirical variance and the fixed ground-truth variable are then used as
(x, y) pairs to train a majority vote classifier. The FactorVAE disentanglement metric is
defined as the accuracy of the resulting classifier.

Spearman correlation

Inspired by the MIG metric, we also utilized Spearman correlation to quantify disen-
tanglement performance. Although Spearman correlation is a more restricted metric of
statistical dependence than mutual information, it has the advantage that it can be com-
puted without a distributional estimate of a latent representation, which is not available
for GAN models. Given the Spearman correlation S = cor

(
Zj,Vk

)
between inferred rep-

resentation Zj and ground truth variable Vk , we define the corresponding correlation gap
as |cor

(
Zj(k) ,Vk

)
| − maxj �=j(k) |cor (

Zj,Vk
) |, where j(k) = argmaxj |cor

(
Zj,Vk

) |.

Generation metrics

Random forest error

We follow the random forest error metric introduced in the cscGAN paper [62] to quan-
tify how difficult it is for a random forest classifier to distinguish generated cells from real
cells. A higher random forest error indicates that the generated samples are more realis-
tic. We randomly sample 3000 cells and generate 3000 additional cells. Then we train a
random forest classifier on the 50 principal components of the 6000 cells to predict each
cell to be a real or fake cell. We train with 5-fold cross validation and report the average
error across the 5 folds.

Inception score

We also define an inception score metric similar to the one widely used in evaluating
performance on image data [70]. Intuitively, to achieve a high inception score, a generative
model must generate every class in the training dataset (analogous to recall) and every
generated example must be recognizable as belonging to a particular class (analogous to
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precision). We train a random forest classifier on 3000 randomly sampled real cells to
predict their cell types. Based on the trained cell-type classifier, we are able to predict
the probabilities of being different cell types for each generated cell. We then input the
predicted probabilities to the calculations of the inception score.

Tuning β values in β-TCVAE

The β value is a hyperparameter in the β-TCVAE model that controls the relative impor-
tance of penalizing the total correlation of the learned representation. Because β is a
hyperparameter in an unsupervised learning approach (no ground truth is available in
general), there is no direct way to pick a single best value for β . This is not a prob-
lem unique to the β-TCVAE, but is a general challenge with any unsupervised learning
approach. Our best recommendation is to choose a value in the range of 10–50 and use
whatever biological prior knowledge is available, such as annotations of cell time point,
condition, or cell type, to qualitatively assess the disentanglement of representations for
different values. One of the best things one can hope for with unsupervised learning algo-
rithms is that the results are robust to different hyperparameter settings. To show that
this is true in this case, wemeasured disentanglement performance of VAE and β-TCVAE
for β = 10 and 50 on the simulated datasets as shown in Additional file 1: Figure S14. We
found that β-TCVAE with β = 10 or 50 consistently gives a higher mutual information
gap (MIG) than VAE. In short, even if you do not choose the perfect value of β , it is still
better to use β-TCVAE than VAE.

Implementation

The VAE-based methods use multilayer perceptron (MLP) units and have two fully con-
nected (FC) hidden layers with 512 and 256 neurons, followed by separate parameters for
mean and variance of the latent representation. The first two hidden layers in the decoder
have 256 and 512 neurons, while the last layer gives mean gene expression and has the
same number of neurons as the number of genes. Each hidden layer utilizes batch nor-
malization, activated by Rectified Linear Unit (ReLU) or Leaky ReLU. Each hidden layer
employs dropout regularization, with a dropout probability of 0.2. We also experimented
with three hidden layers for the VAE encoders, but found that the training became unsta-
ble. This is consistent with a previous report [60] that found most VAEs for biological
data have only two hidden layers. The GAN-based methods also use MLP for both gener-
ator and discriminator. There are three FC hidden layers with 256, 512, and 1024 neurons
as well as three hidden layers with 1024, 512, and 10 neurons from data to output. The
hidden layers of GANs also have Batch Normalization and ReLU or Leaky ReLU activa-
tion. The generator uses dropout regularization with dropout probability of 0.2 for each
hidden layer. The VAE-based methods are trained with Adam optimization, while the
GAN-based methods are trained with Adam and the gradient prediction method [81].
All the hyperparameters of each method on different datasets are tuned for the optimal
results.
We trained all models for 1000 epochs and used 10 latent variables. We used β = 10

for β-TCVAE on all of the splatter-simulated single-cell RNA-seq datasets, except that
we used β = 5 for β-TCVAE with 4 latent dimensions on the simulated data with linear
step. We used β = 50 for β-TCVAE on the PROSSTT-simulated datasets and pancreas
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dataset. For the two real scRNA-seq datasets, we used β = 100.We used 118-dimensional
Gaussian noise for MichiGAN. All models were implemented in TensorFlow.
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