
REVIEW Open Access

Computational methods for chromosome-
scale haplotype reconstruction
Shilpa Garg

Correspondence: shilpa.garg@bio.ku.
dk
Department of Biology, University
of Copenhagen, Copenhagen,
Denmark

Abstract

High-quality chromosome-scale haplotype sequences of diploid genomes, polyploid
genomes, and metagenomes provide important insights into genetic variation associated
with disease and biodiversity. However, whole-genome short read sequencing does not
yield haplotype information spanning whole chromosomes directly. Computational
assembly of shorter haplotype fragments is required for haplotype reconstruction, which
can be challenging owing to limited fragment lengths and high haplotype and repeat
variability across genomes. Recent advancements in long-read and chromosome-scale
sequencing technologies, alongside computational innovations, are improving the
reconstruction of haplotypes at the level of whole chromosomes. Here, we review recent
and discuss methodological progress and perspectives in these areas.

Introduction
Haplotypes are combinations of alleles from multiple genetic loci on the same chromo-

some that are inherited together; the term haplotype can encompass as few as two loci

or refer to a whole chromosome (that is, chromosome-scale haplotype). For diploid ge-

nomes, a given length of chromosomal DNA will have two haplotypes, one inherited

from each parent, whereas several haplotypes exist for any given chromosomal region

at the population level or for polyploid genomes. DNA microarrays and short-read se-

quencing can determine the collection of alleles at genetic loci (that is, genotypes) but

provide no information at the level of haplotypes, whether alleles are co-located on the

same copy of a chromosome, or which of the parental chromosomes harbors a particu-

lar allele. Hence, computational reconstruction of haplotypes using upcoming sequen-

cing technologies, by either read mapping to a reference genome or de novo assembly,

is required.

Haplotype information is fundamental for medical and population genetics [1, 2],

where it is used to study genetic variation associated with human diseases [3, 4]. Trad-

itionally, specific SNP locus-specific association to diseases was studied with respect to

a linear reference sequence, for example, two SNPs, rs9494885 and rs2230926 in the

TNFAIP3 gene w.r.t Grch37 reference, have known correlation with scleritis disease

[5]. However, individual haplotypes (or their collection in the form of a pan-genome
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graph [6], which represents the genetic variations from populations and medical sam-

ples) can help to discover highly complex variations such as nested structural variation,

inversions, and other complex rearrangements (reviewed in [7]) and to access the full

spectrum of rare inherited variants and de novo mutations [8]. For example, the haplo-

type information is helpful to detect a rare case of keratitis-ichthyosis-deafness

syndrome that exhibits a spontaneous correction of a pathogenic mutation by another

mutation on the whole-chromosome scale [9]. Additionally, the phenomenon of com-

pound heterozygosity on homologous chromosomes is responsible for recessive

Mendelian disorders [4]. The chromosome-scale haplotypes also have functional rele-

vance—the distribution of cis- and trans-acting variants between homologous chromo-

somes, that is, the phase of variants, can affect gene expression; chromosome-scale

haplotypes help study interactions between variants in regulatory elements (long-range

promoter-enhancer interactions) [4]. Another highly relevant chromosome-scale haplo-

typing example is to understand the context of aneuploidy (chromosome loss or gain)

in cancer genomes, for example, large copy number gain in centromere 17 for chromo-

somal instability in breast cancer [10] also requires recent haplotyping approaches. The

inference of whole-chromosome haplotypes has clinical relevance: having both variants

on the same allele (cis) lead to a specific (for example, super-responder) phenotype,

while those variants were on separate alleles (trans) do not. Haplotypes also play an im-

portant role in understanding the interplay of evolutionary processes that shape genetic

variation, such as recombination, gene conversion, mutation, and selection. For ex-

ample, modification of plant breeding strategies based on evolutionary processes identi-

fied through haplotype reconstruction can result in agricultural improvements [11].

Another highly relevant application occurs in the analysis of viral infections [12], where

haplotype reconstruction can help to identify drug resistance and virulence factors and

aid treatment decisions [13, 14].

Despite recent advances, sequencing technologies are limited in their ability to cover

repetitive genomic regions to produce chromosome-scale haplotypes. Therefore, local

(short-range) and genome-wide (long-range) information must be computationally inte-

grated to assemble chromosome-scale haplotypes [15]. The integrative algorithms used

for reconstruction must be tuned for the specific genome characteristics of a species,

such as genome size, number of haplotypes, and repeat or haplotype variation. Many

large-scale sequencing initiatives, such as the Vertebrate Genomes Project [16], the

DNA Zoo project (https://www.dnazoo.org/), Darwin Tree of Life (https://www.

darwintreeoflife.org/), the Human Microbiome Project (https://www.hmpdacc.org/),

and the Human Pangenome Project (https://humanpangenome.org/), have begun to le-

verage diverse recent sequencing data types (Table 1) to reconstruct haplotypes for

various species. These projects have designed and integrated bioinformatic pipelines in

a common platform for large-scale genome analyses [24].

In this Review, we discuss the bioinformatic methods—reference-based de novo and

strain-resolved metagenome assembly—to reconstruct haplotypes in diploids, poly-

ploids, and microbial communities. We present the strengths and weaknesses of these

methods, alongside examples of their biological applications. Finally, we conclude with

challenges and future directions, with an emphasis on both the algorithmic and techno-

logical advances required to achieve routine high-quality haplotypes for further bio-

logical discoveries.
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Evolution of sequencing technologies
Early advancements in sequencing technologies [25], such as next-generation sequen-

cing with read lengths of 150–250 bp and accuracy > 99.8%, revolutionized haplotype

reconstruction [26–28] and helped to characterize the genomic landscape. However,

the fairly short read lengths limit the ability to uniquely span repeats and identify re-

gions of heterozygosity, and these technologies are unable to produce whole-

chromosome haplotypes. More recently, developments in long-read sequencing tech-

nologies [25, 29] have begun to substantially increase the utility and application of

haplotype reconstruction.

Short-range sequence and haplotype information

In the era of third-generation sequencing technologies, we define short-range (or local)

sequencing that produces genomic fragments (reads) spanning up to megabases of the

genome, but cannot connect across multi-megabase sized regions on the whole-

genome scale. For example, long-read sequencing technologies such as single-molecule

real time sequencing from Pacific Biosciences (PacBio) [30] and nanopore sequencing

[31] (including ultra-long [32]) from Oxford Nanopore Technologies produce reads of

the order of hundreds of kilobases in length, with error rates of 6–10% [33] (Fig. 1).

The latest developments of PacBio’s HiFi technology can produce reads with an average

read length of 15–20 kb at error rates similar to short-read sequencing (that is, an ac-

curacy of > 99%) [34]. These advancements have made it possible to achieve near-

complete human haplotypes that include microsatellites, repetitive elements, and other

complex structural variations [35], which were previously inaccessible. In addition to

Table 1 Third-generation sequencing initiatives and reference data sets

Initiatives # samples/#haplotypes Technologies Links

Genome in a Bottle
[17, 18] (GIAB)

2 trios and 1 sample,
6 haplotypes

PacBio, ONT,
Illumina, BioNano,
Strand-seq, 10xG

ftp://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/

Human Genome
Structural Variation
Consortium [15]
(HGSVC)

> 3 trios, > 6 haplotypes PacBio, Illumina,
BioNano, Hi-C,
Strand-seq, 10xG

https://www.internationalgenome.
org/data

Vertebrate Genome
Project (VGP; facilitated
by Genome 10 K),
Darwin Tree of Life
Project

> 100, ongoing haplotyping
efforts

10xG, PacBio, Hi-
C

https://vgp.github.io/genomeark/

Human Pangenome
Project

> 10, > 20 haplotypes PacBio, ONT, Hi-C https://s3-us-west-2.amazonaws.com/
human-pangenomics/index.
html?prefix=HPRC/

Earth Biogenome
Project (facilitated
by Genome 10 K)

> 10, ongoing haplotyping
efforts

PacBio, Hi-C https://www.earthbiogenome.org/
publications

The DNA Zoo project > 10, ongoing haplotyping
efforts

Hi-C and WGS https://www.dnazoo.org/

Japanese Reference
Project [19] (1KJPN)

> 1, > 2 haplotypes PacBio, Illumina https://jrg.megabank.tohoku.ac.jp/en

CHM1, CHM13 [20],
HX1 [21], PGP-1 [22],
AK1 [23]

Individual samples, two
haplotypes each (except
CHM1 and CHM13)

PacBio, ONT,
BioNano, Hi-C,
Illumina

n/a
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these “true” long-read platforms, the Chromium technology from 10x Genomics [34,

36] (10xG) employs genome partitioning and barcoding to generate linked reads that

span tens to thousands of bases. Finally, new optical mapping instruments from

BioNano Genomics [37–39] can rapidly fingerprint megabase segments of a genome,

Fig. 1 Third-generation sequencing technologies and their characteristics (read length, error rate and scale of
information). The read length and scale of information (local versus chromosome-scale) together determine the
haplotype range that can be achieved; moving down the schematic this range increases (orange arrow).
Sequencing costs per sample increase moving from short-read sequencing down to nanopore sequencing, and
then decrease again for BioNano and Hi-C (yellow arrows). Similarly, read length and error rate first increase
moving down to nanopore sequencing, and then decrease again for BioNano and Hi-C (green arrows)
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enabling the detection of structural variation at a fairly low cost (Fig. 1). However, local

(short-range) sequencing technologies suffer from inability to uniquely resolve near-

perfect repeats above the size of their read length to produce full haplotypes. These

limitations have necessitated the development of methods that can resolve haplotypes

at the chromosome (or genome-wide) scale.

Long-range sequence and haplotype information

Long-range (or chromosome-scale) sequencing consists of technologies that produce

genomic fragments spanning across centromeres, thereby providing information to

connect p- and q- arms over the entire genome, and connecting multi-megabases re-

gions. Chromosome conformation capture methods such as Hi-C and related chroma-

tin crosslinking protocols and produce long-range, mate-pair data for short-read

sequencing [37] (Fig. 1). Hi-C technology [40] generates chimeric DNA fragments from

two interacting chromosomal regions that are covalently linked together. These frag-

ments are sequenced to produce paired-end reads representing genomic segments of a

few kilobases and tens of megabases in physical distance.

Strand-seq is a recent single-cell sequencing advancement that allows independent se-

quencing of parental template strands and thereby characterization of individual homo-

logues [41, 42]. Specifically, in the presence of bromodeoxyuridine (BrdU) during the

DNA replication, sister chromatids generate one original template strand and one newly

synthesized, BrdU-incorporated strand. The template strand and its directionality are pre-

served during the cell division phase that helps to separate the individual homologs.

These sequencing methods provide long-range information on genomic structure

across centromeres, and they can be computationally assembled into chromosome-

scale [43] at low cost. However, these haplotypes contain many gaps, especially in larger

repeat regions. This limitation has led to further advancements in computational ap-

proaches for haplotyping (Table 2), such as the use of a hybrid approach that combines

data from long-read and chromosome-scale sequencing technologies.

Reference-based haplotype reconstruction
When a reference genome is available, haplotype reconstruction of the target sample

comprises identifying co-occurring alleles of paternal and maternal copies over variant

sites from sequencing data aligned to the reference. The process of obtaining these

haplotypes is known as haplotype phasing [2].

Traditionally, reference panels of more than 100,000 individuals (large-scale projects

such as UK10K) are genotyped and used to assign, probabilistically, the most likely

local phase of the target sample based on the underlying evolutionary model [72–74].

This statistical phasing technique limits chromosome-scale haplotype [25, 75] produc-

tion because the ancestry tracts from populations or the Mendelian laws of inheritance

from trios have only local information to produce the haplotypes [72–74]. Phasing dir-

ectly from sequencing reads, that is, the direct observation of two or more variants on

a single molecule or in paired reads derived from the same molecule, overcomes the

above limitations [50, 76]. The process of obtaining haplotypes directly from long-read

and chromosome-scale sequencing data of a single individual—as opposed to phasing

from genotypes by population inference or genetic analysis of pedigrees—is known as
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molecular haplotyping [2, 37, 77, 78]. Molecular haplotyping can produce

chromosome-level phasing [79] that is highly accurate as determined by evaluation

metrics (switch error rates and Hamming error rates < 1%). In molecular haplotyp-

ing, the key challenge is to disambiguate sequencing errors from true genetic

variation.

Table 2 Methods and computational tools for haplotype reconstruction

Approach Tools Data Advantages Disadvantages

Reference-based phasing

Molecular
haplotyping

WhatsHap [44],
HapCut2 [45] and
ProbHap [46]

Long reads
such as PacBio,
Hi-C of individual

Can phase de novo
and rare variants

Limitations in complex
regions such as
centromeres, HLA, etc.

Single-cell phasing CHISEL [47], Satas
et al. [48], RCK [49]

Single-cell short-
read

High precision at
single-cell, detection
of rare alleles

Engineering tricks
required to scale to
>million cells

Polyploid phasing HapTree [50],
Hap10 [51],
WhatsHap-
polyphase [52],
H-PoP [53]

Local phasing Can phase de novo
and rare variants

Limitations in repetitive
regions and not
optimized for ploidy > 5

De novo assembly

Diploid assembly Falcon Unzip [23],
Falcon phase [54]

Long reads and
Hi-C of individual

Local phased contigs No chromosome-scale
assembly and
computationally
expensive

DipAsm [55],
Porubsky
et al. [56]

Long reads and
Hi-C of individual

Chromosome-scale
diploid assembly

Collapsed assembly not
suitable for repetitive
regions

Hifiasm,
HiCanu [57],
SDip [58]

HiFi reads of
individual

High consensus
accuracy and
continuity

No chromosome-scale
assembly

pstools Hifi and Hi-C
reads

High-quality
chromosome-scale
haplotype assembly

Only designed for
haplotyping diploids

TrioCanu [59],
Hifiasm+trio,
WHdenovo [60]

Long reads of
trios

Local phased contigs Require family
information

Polyploid assembly SDA [61],
SDip [58]

Long reads of
individual

Local phased contigs Need to be optimized
for whole genomes

POLYTE [62] Illumina short
reads

Local phased contigs Does not scale well to
whole genomes

Strain-resolved metagenome assembly

De novo (re-)
assembly

IDBA-UD [63],
DESMAN [64]

Metagenome
short reads

No prior knowledge
required

Low sensitivity: rare
haplotypes can remain
undetected

OPERA-MS [65] Metagenome
using short and
long reads

High continuity Computationally
expensive

SNV-based
assembly

ConStrains [66],
StrainFinder [67],
Gretel [68]

Metagenome
short reads

Computational
efficiency

Assembly accuracy
depends on variant
calling

Read binning MetaMaps [69] Metagenome long
reads

Computational
efficiency

Accuracy depends on
database

Contig binning ProxiMeta [70],
bin3C [71]

Metagenome
short reads and
Hi-C

Reference-free, ability
to link plasmids to
host chromosome

Multiple technologies
necessary
(Hi-C + shotgun
sequencing)
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Diploid phasing

Reconstruction of haplotypes depends on how the heterozygous sites are connected on

the chromosome-scale. If there are no reads that connect these sites, then the phasing

is fragmented. Thus, the sites must be connected directly or indirectly via sequencing

reads to achieve chromosome-scale phasing (Fig. 2). Long- and linked-read sequencing

datasets, which span longer segments of heterozygous variants than short reads (Fig. 2),

have improved the production of high-quality local phasing segments and the discovery

of de novo and rare genomic variants.

The most widely used, state-of-the-art phasing methods are WhatsHap [44], HapCut2

[45], and ProbHap [46], which generate considerably longer haplotype blocks than

short reads, in the order of several megabases in length with a switch error rate of <

0.5%. The performance of these methods is comparable and are optimized for different

input data types, for example, all three methods produce comparable phasing complete-

ness/accuracy/continuity using short-range sequencing, while HapCut2 and WhatsHap

produce one large haplotype block on the chromosome-level using a combination of

short-range and long-range sequencing data. The core aim is to assign all reads to two

haplotypes while minimizing the number of sequencing error corrections or flips, also

known as the minimum error correction (MEC) problem and weighted minimum letter

flip (WMLF) problem [80]. More specifically, the MEC formalism, which is the most

widely used, is the process of finding the minimum cost of correcting the sequencing

data to partition the read set into two homologous sets such that the alleles between

any two reads in any partition match [22, 44]. The MEC formulation is NP-hard [80,

81]. In practice, this formulation is solved using computational techniques such as dy-

namic programming, probabilistic modeling, graph-based optimization, and linear pro-

gramming [82]. To scale these algorithms to human-sized genomes and beyond, a

combination of greedy heuristics and dynamic programming is prominent [45, 83].

Genome-wide molecular phasing, a task that computes combinatorial solutions at

chromosome-scale by using long-range sequencing technologies such as Hi-C and

Strand-seq (Fig. 2), is a more challenging algorithmic task. Computational tools used in

practice, such as HapCut2 [45] and StrandPhaseR [79], reduce the search space using

greedy heuristics based on the MEC formulation. Remarkably, these tools generate

haplotype blocks spanning full chromosomes [45]. However, they can typically phase

only 50–70% of variants using Hi-C/Strand-seq [48]. This phasing sparseness can be

improved with uniform-coverage data that is often difficult to produce experimentally.

In this new era of advancements across technologies, hybrid algorithms that combine

different data types at local and genome-wide scale are prominent. For example, What-

sHap [44] and HapCut2 [45, 84] both have local as well as chromosome-scale phasing

modes. In addition, WhatsHap [44] can perform family-based phasing, which has been

shown to give better results than single-individual approaches in terms of accuracy and

phasing completeness [85]. The disadvantage is the unavailability of trio sequencing

data for various species.

Hybrid approaches (combining long or 10xG reads with Strand-seq or Hi-C datasets

[79]) for single individuals are leading the way into production-level efforts and provide

competitive phasing performance at chromosome-scale with hamming error rates < 1%

and switch error rates < 0.5% by using ~30x HiFi or 10x linked-reads combined with

~30x Hi-C (Fig. 2). State-of-the-art hybrid phasing tools are WhatsHap and HapCut2.
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Fig. 2 Molecular haplotyping techniques in reference-based phasing. Individual haplotypes are derived directly
from sequencing data of the target sample based on read alignments to the reference genome. Local and
chromosome-scale haplotype phasing make use of short- and long-range sequencing data, respectively; hybrid
haplotype phasing combines the two data types
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HapCut2 directly works on reads from long-read and Hi-C sequencing using likelihood

inference optimization, while WhatsHap operates on Strand-seq haplotypes and long-

read reads using MEC formulation. These methods have enabled impressive advances

in the production of high-quality chromosome-scale phasing, for example, phasing

Ashkenazi, PGP-1, Chinese human genomes [15, 86], as well as genomes from the 1000

Genome project for a comprehensive SV callset.

Beyond the above bulk sequencing methods, single-cell phasing [76] has recently

been used to study single-cell genomic heterogeneity. However, extremely low sequen-

cing coverage (< 0.05x per cell) has restricted its use in phasing of large multi-

megabase segments in individual cells for genome-scale analysis. Recent single-cell

phasing methods such as CHISEL [47], Satas et al. [48], and RCK [49] use probabilistic

models at a single-cell level that have the advantage of haplotyping rare alleles, which

can be used to determine local relationships in allele-specific somatic aberrations, but

cannot phase all variants across the genome. Thus, in the near future, combining

single-cell and bulk sequencing approaches for phasing may enable accurate and

complete genome-wide characterization of genomic heterogeneity, including rare alleles

and cancer genomes.

Polyploid phasing

In phasing diploid genomes, the haplotypes are complementary: given the genotype

data, determining one haplotype sequence directly identifies the other. However, poly-

ploidy is common in plant genomes, and in the case of a k-ploid sample, k–1 haplo-

types need to be computed before the final haplotype can be inferred. For example,

there are k! possibilities (instead of two in diploid) to connect a pair of SNPs in the

polyploid. A higher number of haplotypes also requires a greater overall sequencing

depth, resulting in a larger number of reads per genome to be processed. This add-

itional complexity requires specialized, highly optimized algorithms to resolve polyploid

phasing (Fig. 2).

To solve polyploid phasing problems, the maximum likelihood framework is a com-

mon algorithmic strategy. HapTree [50, 87] uses the relative likelihood algorithm to

identify k-ploidy phasing for first n SNPs, that is conditioned on previous n-1 SNPs.

This approach lays the first theoretical foundation of polyploidy phasing problems. A

few works have attempted to formulate the problem using approximate MEC formula-

tions, for example, SDhaP [88] solves approximate MEC using semidefinite program-

ming, and H-PoP [53] partitions the reads into haplotypes by solving a generalization

of the MEC problem. However, there is an inherent problem in MEC based methods

that it leads to inaccurate phasing as demonstrated by Motazedi et al. [89].

To address these shortcomings, local phasing methods such as Ranbow [90] fol-

lows graph-based algorithms by leveraging allele co-occurrence in overlapping short

reads to produce accurate polyploid phasing, but lacks in haplotype block N50

length. An alternative phasing approach, designed specifically for long-read sequen-

cing, is WhatsHap-polyphase [52] (available as part of the diploid phasing tool

WhatsHap) that produces accurate phasing (switch error rates < 1% and hamming

error rates < 2%) and better N50 compared to short-read methods. A recently

linked-read based method [51]: Hap++ and Hap10 produces slightly more accurate
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and comparable haplotype block N50 compared to WhatsHap-polyphase, at the

cost of efficiency. However, these methods have limitations to produce

chromosome-scale haplotypes.

Similar to diploid phasing, additional long-range information can allow for

chromosome-scale haplotype reconstruction of polyploid genomes. For example, Tri-

Poly [91] uses family information (parent-offspring trios) to infer haplotypes from ei-

ther short- or long-read sequencing data. This results in larger haplotype blocks

compared to other approaches, in particular in regions with low divergence between

haplotypes.

While these methods represent an important step forward in polyploid phasing, hy-

brid methods that leverage HiFi, or alternatively linked-read data, and long-range Hi-C

data can potentially produce chromosome-scale haplotypes for complex repetitive poly-

ploids. In the near future, further algorithmic developments in local k-mer strategies

and graphs-based approaches that focus on every haplotype could enable chromosome-

scale phasing in large polyploid genomes.

De novo haplotype assembly
De novo genome assembly exploits the overlaps between sequencing reads, without any

bias towards reference sequence. The main steps in a standard genome assembly work-

flow are sequence graph construction, error correction, contig formation, scaffolding,

and polishing of the assembled sequences [92]. The most widely used assembly soft-

ware is Canu [93], FALCON [94], Flye [95], wtdbg2 [96], and shasta [97]; we refer the

reader to a review by Sedlazeck et al. [98] for a literature survey on genome assembly

using the latest technologies. Of particular interest to haplotype assembly are assem-

blers specifically designed for PacBio HiFi datasets, which, for the first time, improved

the per-base quality of assemblies dramatically [99] and reduced the need for computa-

tional intensity of the error correction step.

After contig construction, the next step is to create scaffolds by ordering and orient-

ing contigs along the chromosomes using chromosome-scale information sources, such

as Hi-C data. Scaffolding with the chromosome-scale data types has resulted in

chromosome-scale consensus assemblies of human genomes.

Due to sequencing errors, the reads often undergo error correction before contigs are

formed; this is particularly relevant when using error-prone long-read sequencing tech-

nologies. Despite the error correction process, contigs and scaffolds may still be errone-

ous and thus another round of error correction is performed (now referred to as

polishing) using tools such as Racon [100].

However, for diploid and polyploid genomes, most standard de novo assemblers col-

lapse the haplotypes into a single consensus sequence, but it is important to realize that

all haplotype information is ignored. Nevertheless, the consensus assembly is useful for

de novo haplotype assembly approaches as discussed below.

Reconstructing every individual haplotype from sequencing data instead is known as

de novo haplotype assembly (Fig. 3) and is even more challenging than consensus gen-

eration (de novo assembly) due to varying repetitive and heterozygosity rates, noisy se-

quencing data, chimeric reads, insufficient read length, and non-uniform coverage.

In de novo haplotype assembly, there are two major related challenges: finding order-

ing of sequencing reads and distinguishing reads to haplotypes. To find ordering of
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reads, the brute-force approach is to align all reads to all other reads, where the per-

formance is directly proportional to the square of the number of reads. In repetitive re-

gions, finding alignments of reads is even more expensive. For systematic study,

overlap-based [101] or de Bruijn graph [102]-based techniques are used. To solve an-

other challenge of finding haplotype of reads, the commonly used approach was

Fig. 3 Haplotype-aware de novo assembly. Collapsed assembly approaches identify sequence variants on a
consensus assembly and subsequently phase these variants into haplotypes using chromosome-scale data
(Hi-C). Semi-collapsed approaches follow a similar approach, but after phasing, variants in the initial
assembly graph are updated and final contigs are produced based on this updated graph. Uncollapsed
approaches directly determine haplotype-specific overlaps in local sequencing reads by retaining SNPs and
repeat variation in all possible overlaps and construct haplotypes based on the selected overlaps
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heterozygous SNPs informative sites to partition reads to haplotypes in the space of

single consensus sequence (due to high error rates in long-read PacBio and ONT data);

however, latest advancements in Hifi allowed to separate reads to haplotypes during

the overlapping step as discussed below.

Diploid haplotype assembly

Algorithms for long-read sequencing are now able to produce megabase contigs for hap-

lotypes and improve the availability of reference-quality genomes for humans and various

other eukaryotic organisms [23, 103, 104]. This technique has been applied to assemble

phased sequences of humans [55, 103] (Table 1), diploid potato [105], zebra finch [54],

cattle [54], and goat genomes [106]. Broadly, the bioinformatic approaches for diploid as-

sembly fall into three classes: collapsed, semi-collapsed, and uncollapsed (Fig. 3).

In collapsed diploid assembly, generic de novo assemblers are used to generate a con-

sensus sequence. Subsequently, by using heterozygous SNP information from reads

aligned to the consensus sequence, long-read and chromosome-scale sequencing reads

are partitioned into haplotype-specific read sets, which are then separately assembled

into haplotypes. This technique is used by tools such as DipAsm [55] or Porubsky et al.

[56], resulting in phased contigs of up to several tens of megabases and chromosome-

scale phased scaffolds, with haplotype sizes of ~ 3 Gb each and overall base quality

scores of >Q48. The preferred input data types are PacBio Hifi and Hi-C. This tech-

nique works well for the human genome in regions of low heterozygosity, but fails in

highly repetitive and high heterozygosity regions.

Alternatively, the widely used FALCON-unzip [23] method uses a semi-collapsed ap-

proach for diploid assembly from long noisy reads, where the initial assembly graph is

generated using FALCON and a consensus sequence is generated. Similar to the col-

lapsed approach, reads are partitioned into haplotype-specific sets using SNP informa-

tion. Phased read information is then used to update the initial assembly graph, and

phased contigs (size of about several tens of megabases with quality score < Q48) are

reported [94]. These phased contigs are then combined into scaffolds using phase infor-

mation (> 1Mb) provided by ultra-long nanopore or Hi-C data, as employed by

FALCON-Phase [54], producing a chromosome-scale diploid assembly. The preferred

input data types are PacBio CLR and Hi-C. Similar to the collapsed approach, it works

particularly well for human genomes when the heterozygosity rate is low, but fails in

regions or genomes with high repeat and heterozygosity rates. However, the most

promising uncollapsed approaches overcome these limitations by directly determining

haplotype-specific overlaps in the overlap step of graph generation using SNP informa-

tion from overlapping reads [58]. The core idea is to preserve heterozygosity and repeat

information from various data types in the graph space. To achieve this, on every refer-

ence read, similar reads from the same haplotype and repeat are detected based on

shared alleles at SNP sites and are clustered together. Standard tools use run-length

encoding or base-level alignment [57] in the overlap step. Thus, a haplotype and

repeat-aware overlap graph is generated with subsequent graph cleaning steps, finally

reporting phased contigs.

The recent invention of PacBio HiFi technology has made the diploid assembly

process, that entains ordering as well as the phasing in the assembly process, easier
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[58]. A whole generation of new algorithms based on uncollapsed approaches have be-

come possible due to the availability of accurate long-read data and are implemented in

tools such as Hifiasm (https://github.com/chhylp123/Hifiasm), HiCanu [57], and SDip

[58], producing contigs with lengths of several tens of Mb having base quality scores

>Q50, but phased blocks of only a few hundreds of kb. In these systems, the field is

moving towards accurate HiFi data using k-mer based strategies for haplotype-aware

error correction of phased contigs, which can be completed in a few hours for human-

scale genomes. Similar to semi-collapsed approaches, these phased contigs can be

combined into phased scaffolds using long-range information to produce a

chromosome-scale diploid assembly. For phased scaffolding, one of the largest chal-

lenges is the development of computational models that combine both phasing and

scaffolding information together, an approach that is recently explored by the pstools

method (https://github.com/shilpagarg/pstools) in the graph sequence space. The pre-

ferred input data types are PacBio Hifi and Hi-C.

When trios are available, methods such as TrioCanu [59] search for k-mers from ma-

ternal and paternal haplotypes in reads that were sequenced from the child to produce

haplotype-specific read sets and then assemble these separately. New methods

(Hifiasm+trio and WHdenovo [60]) use both trio and local phasing information from

sequencing data, thus resulting in high-quality phased contigs. Although pedigree-

based haplotype assembly allows for improved accuracy as compared to haplotype

assembly of individuals, it requires sequencing of three individuals which limit its appli-

cations. Moving forward, substantial improvements to the uncollapsed approach using

graphs and k-mers from local and chromosome-scale sequencing datasets in single in-

dividuals are expected to become routine for chromosome-scale diploid assembly

within the next few years.

Polyploid haplotype assembly

Polyploid assembly is in principle an immediate extension of diploid assembly;

however, an increase in the number of haplotypes inflates the search space dramat-

ically on the whole-genome scale. Some progress has been made in computational

approaches for local haplotype assembly in polyploids as a potential step towards

chromosome-scale polyploid assembly. For example, using Illumina short-read se-

quencing reads, POLYTE [62] performs overlap graph-based de novo assembly for

diploids and polyploids. Since short reads cannot span difficult-to-assemble regions

such as long repeats or variant deserts, the haplotype-specific contigs produced by

this algorithm remain relatively short, yet highly accurate. Alternatively, linked-read

technologies have been used to obtain long, contiguous, polyploid genome assem-

blies [107]. Long-read based methods such as SDA [61] and SDip [58] have dem-

onstrated their ability to assemble polyploid regions in human genomes several

megabases in length (Fig. 3). With some further algorithm engineering, it should

be feasible to apply these methods to obtain chromosome-scale haplotypes of poly-

ploid genomes with chromosome sizes of less than tens of megabases in size. How-

ever, for large complex repetitive polyploid genomes, algorithm development is

required to exploit the latest HiFi sequencing, and its combination with other tech-

nologies such as Hi-C, by separating all haplotypes during the assembly process in

graphs on the whole-genome scale.
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Strain-resolved metagenome assembly
Haplotype reconstruction plays an important role in strain-resolved metagenome as-

sembly, that is, the computational reconstruction of haplotypes from pooled sequencing

to identify microbial strains (Fig. 4a). Variation within and across species and low per-

strain (haplotype) sequencing depth across different datasets make it extremely difficult

Fig. 4 Strain-resolved metagenome assembly. a Given a pooled sequencing sample, the goal of strain-
resolved metagenome assembly is to reconstruct all individual microbial strains. b A typical workflow
consists of four steps: de novo assembly, contig binning, bin-wise re-assembly, and assembly curation. Each
step can be performed at the species-level or at the strain-level, as illustrated in the left and middle
column, respectively. Some workflows skip the initial de novo assembly step and perform strain-resolved
binning directly on the sequencing reads, which can be reference-guided (right column)
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to distinguish genetic variation from sequencing errors [108, 109]—a microbial sample

can contain several hundreds of haplotypes with levels of variation ranging from < 1 to

> 5%. Similar to de novo haplotype assembly for diploid and polyploid genomes, add-

itional hurdles are the longer repeats and homologous regions between closely related

strains (that is, intergenomic repeats) relative to sequencing read lengths.

The bioinformatic approaches for metagenome assembly are highly related to haplo-

type reconstruction in diploids and polyploids, as noted by Kolmogorov et al. [110] and

Nicholls et al. [111]. In practice, various diploid or polyploid haplotyping approaches

are adapted to solve the strain-resolved metagenome assembly problem [67, 68, 110]

and vice versa [62]. Here, we classify two classes of methods: species-level and strain-

resolved metagenome assembly—species-level reconstruction aims at constructing a

single (consensus) haplotype per species, while strain-resolved assembly aims at every

strain of species. Each class of methods can further be distinguished into reference-

based (database of species/strains) and de novo approaches—similar to diploids and

polyploids approaches. The advantage of reference-based approaches is that they are ef-

ficient, but they often lead to biases towards the database(s) being used, for example,

due to incompleteness of reference databases, as many microbes on Earth remain

uncharacterized [112]. This type of reference bias is even more pronounced than the

reference bias observed in diploid and polyploid assembly, hence de novo algorithms

are an essential component of any complete, unbiased analysis of metagenomes.

From an author’s perspective, we present a general workflow for metagenome assem-

bly that consists of several steps [113–116] (Fig. 4b): (1) de novo metagenome assembly

to produce contigs or scaffolds; (2) contig binning per genome, either de novo or

reference-guided; (3) mapping reads back to individual bins and reassembling each bin;

and (4) curation of the resulting assembly per bin. In theory, each of these steps can be

performed at the species-level or at the strain-level, depending on the goals of the

study.

Short-read metagenome assembly

The commonly used data structures for metagenome assembly are de Bruijn and over-

lap graphs with special tuning of parameters related to sequencing depth, variations,

and errors. For example, IDBA-UD [63] is the first metagenome assembly method

based on de Bruijn graphs, and LSA [117], a method that uses k-mers to identify (par-

tial) bacterial strains in short-read sequencing data with relative abundances as low as

0.00001%. Other de novo approach tools are MEGAHIT [118] and metaSPAdes [119],

but these can only produce species-level assemblies. Alternatively, several approaches

are based on single-nucleotide variants (SNVs), which are identified using metagenome

assemblies or reference databases, or entirely de novo—see REF [120] for a detailed re-

view. The major limitation of such approaches is that structural variants are completely

ignored. Available methods for SNV-based metagenome assembly with strain-

resolution include ConStrains [66] and StrainFinder [67], both of which can trace strain

identities across multiple samples (a longitudinal time series). Recently, a Bayesian

model for local haplotype reconstruction was proposed in a promising approach called

Gretel [68], which is based on a new data structure designed to efficiently store vari-

ation across sequencing reads. All of these methods (ConStrains, PathFinder, Gretel)
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aim at strain-level sensitivity in step 1 (Fig. 4b). Another class of methods achieve

strain-level sensitivity in step 3 while relying on species-level sensitivity described in

steps 1 and 2 (Fig. 4b). DESMAN [64] is one such method, which leverages base haplo-

type frequencies in a Bayesian model. Finally, if strain-level assembly is not achieved in

steps 1–3, further curation in step 4 can help to identify intra-species variation [121]

(Fig. 4b).

These short-read methods take an important step in strain-level metagenome assem-

bly field and are widely used in studying the human microbiome, health and disease

[122, 123], as well as the biodiversity of marine ecosystems [64]. These methods estab-

lish the first step towards producing chromosome-scale metagenome assembly.

Hybrid metagenome assembly

Local and chromosome-scale sequencing is essential in achieving chromosome-scale,

strain-resolved metagenome assemblies. Recently, a hybrid metagenomic assembly ap-

proach (OPERA-MS) was proposed that combines short-read contig assembly with

long-read scaffolding and binning to obtain high-quality, strain-resolved metagenomes

[65]. OPERA-MS provides an order-of-magnitude improvement in contiguity compared

to short-read metagenomic assemblers and a 200% increase compared to generic long-

read assemblers. As little as 7x haplotype coverage with long reads was sufficient to

obtain megabase N50 genomes [65]. Alternatively, the first long-read metagenome

assembler (MetaFlye [110]) proposes the use of local k-mer distributions to identify

species of low abundance. MetaFlye can assemble haplotypes with as little as 10x per-

haplotype coverage [110], though the extent to which it can distinguish between closely

related strains remains to be evaluated. Another approach by Anoton et al. [124] uses

long-read assembly (with MetaFlye), followed by assembly curation using short- and

long-read data. Yet, another approach, MetaMaps [69], offers strain-level long-read bin-

ning, but this requires a reference database and therefore complicates discovery of new

haplotypes (Fig. 4b).

Alternatively, the combination of Hi-C and shotgun sequencing enables

chromosome-scale, strain-resolved metagenome assembly through improved clustering

of metagenome-assembled contigs at strain level, as well as linking of plasmid se-

quences to the chromosomes of their hosts [40, 70, 71]. Such an approach has recently

been used to leverage structural information obtained from Hi-C data of the human

gut microbiome to perform strain-level assembly and enable tracking of microbial evo-

lution over time [125].

For complex repetitive metagenomes, HiFi reads, in combination with Hi-C, have the

ability to become the strategy of choice to produce complete, strain-level resolved

metagenome assemblies in the near future.

Remaining challenges and perspectives
Repetitive regions

Haplotype reconstruction remains challenging in multi-megabase complex repetitive

regions. Despite considerable time and effort, the current version of the human refer-

ence genome either contains gaps or is collapsed in these regions without haplotype-

level resolution. These regions include tandem repeats [126], segmental duplications
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[127, 128], sex chromosomes (containing complex heterochromatin repeat structures)

[129, 130], the mitochondrial genome [131], pseudo-autosomal regions [132] (PARs),

centromeres (or pericentromeric regions) [133], ribosomal DNAs [134] (or acrocentric

regions), and subtelomeric regions [135]. For example, the human genome includes

complex satellite arrays of repeats in centromeres. α-satellite DNA contains ∼171-bp

tandem repeats that are organized into higher-order repeats (HORs), with a single

repeat structure reiterated over hundreds or thousands of times with high (>99%)

sequence conservation [136]. Some human chromosomes comprise ~3200 repeats of

~2 kb HORs and ~1,100 repeats of a 1.8-kb HOR unit [137]. The centromere assembly

produced by state-of-the-art tools (centroFlye [138], HiCanu [57]) using HiFi and ultra-

long nanopore reads is haploid [20]. Humans are diploid and should produce two

haplotype sequences in centromeres; however, currently, there are no algorithms, tech-

nologies, or tools to achieve this goal.

Recent developments in long, accurate long reads (Hifi) as well as ultra-long nano-

pore reads could pave the way for new advancements in finishing centromeric and

other highly repetitive regions in humans and polyploids. Computationally, Hifi reads

can be decomposed into monomers [139] that are represented in the graph, where

monomers are nodes and edges represent the adjacencies of node sequences from

reads. In this process, the haplotype variation is also considered in the monomers that

can result in a haplotype-aware graph. Through this graph, the ultra-long nanopore

reads are anchored to potentially find ordering between repeating units and disentangle

the graph. On a complex centromeric region involving >2000 repeat units, the in situ

information such as chromosome visualization [140] can further be helpful to order the

repeating units. Further increase in read lengths to several megabases in size, and/or

reads with spatial coordinates, and/or longer reads with > 99% accuracy, as well as in-

novations in k-mer and graph-based strategies to distinguish variations/motifs may en-

able exploration of high-resolution haplotypes in these human centromeric regions.

Scale

Developments are required to scale haplotype reconstruction efforts to overcome

current limitations and enable routine application to more than hundreds of ge-

nomes at a time. Such developments require innovations in technologies that are

cheaper and easy to use than long-read, HiFi and Hi-C sequencing. Alternatively, a

further reduction in sequencing costs of existing technologies will be required to

scale up efforts.

With an exponential growth in datasets, the real challenge will be to store and

access haplotyping data in an efficient way, which can potentially be achieved by

applying massive parallelism (detailed reviews in [141, 142]). In addition, cloud-

based strategies will be required for storing, accessing, and sharing data (for ex-

ample, https://vgp.github.io/genomeark/). Building a collaborative haplotyping plat-

form that can serve as a repository of data and computational tools and enable

exchange of ideas for the scientific community may help to usher in a new era of

biological discoveries.

Further integration of datasets using scalable bioinformatics approaches will be

important. Innovative algorithm engineering (for example, using sequence sketches
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instead of full sequences has been shown to vastly reduce storage and memory require-

ments [143]) could enable production-level integration of datasets for haplotype recon-

struction. Beyond engineering efforts, combining reference-based and de novo

approaches will improve scalability. More specifically, genomes that are similar to

known samples can be reconstructed efficiently using reference-based approaches, thus

reducing de novo efforts to the remaining highly divergent genomes.

Validation, benchmarking, and annotation

For the final haplotype assemblies of diploid genomes, many high-quality benchmarks

are available, and validation is done with standardized evaluation metrics as a standard

practice for non-repetitive regions. This is not the case for polyploids, tumors, and

complex repetitive regions in diploids. Innovations in algorithms (beyond k-mer

approaches) that improve the capability for assessment and biological validation could

benefit from a public collection of high-quality benchmarks, for example in the form of

a community-driven assessment initiative similar to the Critical Assessment of Meta-

genome Interpretation [108] (CAMI), Assemblathon [144, 145], and Genome Assembly

Gold-standard Evaluations [146] (GAGE). As the field advances to produce high-

quality chromosome-scale phased sequences, the next critical step will be in the

development of new gene annotation tools [147] to enable more precise downstream

analyses in the coming decade.

Visualization

Another challenge is the visualization of large-scale haplotyping raw sequencing

datasets and haplotype sequences from multiple species. The combination of long

haplotype sequences and divergence across or within genomes and the large diver-

sity of haplotyping data types pose numerous visualization challenges. While a

number of tools exist (reviewed in [148, 149]), none can be used to visualize large-

scale phased sequences. New visualization techniques will be required that enable

abstractions or reductions in data dimensions from multi-scale, multiple data mea-

surements, binary encoding of variations and divergence across haplotypes for vis-

ual maps, and discovery of informative patterns in the haplotyping data. Interactive

visualization or animation in the chromosome-scale coordinate system can be

useful.

Conclusions
Chromosome-scale haplotype reconstruction has yielded new insights into the

genetic underpinnings of disease pathogenesis, evolution, and comparative biology.

To overcome the limitations of sequencing reads to cover genomic repeats,

chromosome-scale haplotype reconstruction using a combination of long-read (HiFi

and ultra-long ONT) and chromosome-scale sequencing (Hi-C) datasets, along with

integrative algorithms, has become a common strategy to produce haplotypes in

diploids, but not polyploids yet.

Improvements in fragment lengths and combining complementary technologies

through innovative algorithms (graphs, k-mers and data-driven) will be state-of-the-

art to reconstruct high-quality haplotypes with fewer gaps in the near future. Both
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fragment accuracy and length—a few megabases size with accuracy of > 98%—could

be important to finish haplotypes. Major reductions in sequencing and computing

costs will be critical to scale efforts to thousands of genomes at a time. In the next

decade, algorithmic and technological advances, paired with the incorporation of

haplotypes with disparate layers of biological information, could mark a new era of

gapless end-to-end haplotypes and further our understanding of complex biological

phenomena.

Glossary
Barcoding

Labeling reads with barcode sequences to identify fragments from the same partition
Base-level alignment

Position-wise alignment of nucleotides in a pair of sequences
Chromosome-scale haplotype

Nucleotide sequence spanning a full chromosome for a given homologous copy across centromeres
Compound heterozygosity

The phenomenon where a combination of recessive alleles for a given locus harboring different mutations
together can cause genetic disease

Pan-genome graph
A data structure that contains sequences shared across multiple genomes of species. The differences in genome
sequences are also stored

Diploid
A genome containing two complete sets of chromosomes, one from each parent

Aneuploidy
Normal human cells contain two chromosomes. Aneuploidy is the phenomenon of increase or decrease in
chromosomes in cancer cells compared to normal cells

Dynamic programming
A mathematical optimization approach where the problem is recursively divided into subproblems whose
solutions build towards a global, optimal solution

Optical mapping
A technique for constructing ordered restriction maps of the whole genome, called optical maps, by locating
restriction enzyme sites on an unknown genomic sequence

Genome partitioning
Using microfluidics to physically separate genomic sequences

Greedy heuristic
Solving an optimization problem by finding a locally optimal solution

Heterozygosity rate
Rate of mutations (differences) between haplotypes

k-mer distribution
Frequency distribution of substrings of length k from an original sequence

Long-range promoter-enhancer interaction
Transcriptional enhancers interacting with their target-gene promoters over a considerable genomic distance, af-
fecting gene expression

Mate-pair sequencing
Generating paired-end (short) reads with particularly long inserts to span a large genomic region

Haplotype block
A genomic region on the chromosome in which a series of SNPs (or genetic loci) are phased together

Scaffolds
Scaffolds are the sequences produced by ordering the contiguous sequences with their correct orientation

Variant deserts
Genomic regions with a fewer variants compared to an average

NP-hard
The complexity class of decision problems that are intrinsically harder than those that can be solved by a
nondeterministic Turing machine in polynomial time

Sequence sketches
Sketching of genomic sequences is the process of indexing and hashing the data for faster direct access and
efficient memory usage

Hamming error
It is an evaluation metric to compare the binary strings. This metric is used to evaluate the long-range phasing
on the chromosome-scale level

Switch error rate
Number of switches between true and alternative haplotypes, relative to the number of variant positions

Base quality
Number of erroneous bases relative to total assembly length (can evaluate mismatch errors and indel errors
separately or jointly)

Phased contig
Contiguous nucleotide sequences that represent a subsequence of a haplotype
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Phased scaffold
Haplotype sequence linking phased contiguous sequences (contigs) originating from the same haplotype,
separated by gaps of known length

Polyploid
A genome containing more than two sets of chromosomes; this is common in plant species

Metagenome
The collection of genomes of many species as well as their strains present in an environmental sample.

Run-length encoding
A form of lossless data compression in which each repetitive sequence is stored as a single repetitive element
along with its number of consecutive occurrences, rather than the whole repetitive sequence

Variant calling
Variant calling is the process of finding genomic variation (mutations) from sequencing data aligned to the
reference genome
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