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Abstract

Transcription of eukaryotic genomes involves complex alternative processing of
RNAs. Sequencing of full-length RNAs using long reads reveals the true complexity of
processing. However, the relatively high error rates of long-read sequencing
technologies can reduce the accuracy of intron identification. Here we apply
alignment metrics and machine-learning-derived sequence information to filter
spurious splice junctions from long-read alignments and use the remaining junctions
to guide realignment in a two-pass approach. This method, available in the software
package 2passtools (https://github.com/bartongroup/2passtools), improves the
accuracy of spliced alignment and transcriptome assembly for species both with and
without existing high-quality annotations.
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Background
Understanding eukaryotic genomes requires knowing not only the DNA sequence but

also which RNAs are transcribed from it. Eukaryotic transcription by DNA-dependent

RNA polymerase II is associated with multiple alternative RNA processing events that

diversify the coding and regulatory potential of the genome. Alternative processing

choices include distinct transcription start sites, the alternative splicing of different in-

tron and exon combinations, alternative sites of cleavage and polyadenylation, and base

modifications such as methylation of adenosines. Patterns of alternative processing can

be extensive. For example, more than 90% of human protein-coding genes have at least

two splice isoforms [1]. Changes in RNA processing can reflect the reprogramming of

gene expression patterns during development or in response to stress, or result from

genetic mutation or disease. Consequently, the identification and quantification of
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different RNA processing events is crucial to understand not only what genomes en-

code but also the biology of whole organisms [2].

The sequencing of RNAs (RNAseq) can reveal gene expression patterns in specific

cells, tissues, or whole organisms. The success of this approach depends upon sequen-

cing methodology and the computational analyses used in interpreting the sequence

data. High-throughput sequencing of RNA rarely involves direct RNA sequencing

(DRS): instead, copies of complementary DNA (cDNA) produced by reverse transcrip-

tion of RNA molecules are sequenced [2]. However, template strand switching by re-

verse transcriptase (RT) during the copying process can produce spurious splicing

patterns and antisense RNA signals [3, 4]. Three current technologies use RT-based

RNA sequencing library preparation: Illumina, Pacific Biosciences (PacBio), and Oxford

Nanopore Technologies (ONT). Illumina RNAseq can generate hundreds of millions of

highly accurate short sequencing reads, each representing a 50–250-nt fragment of full-

length RNA [2]. Methods exist for quantifying known alternative splicing events from

short reads [5]. However, when the transcript models are unknown, for example in a

non-model organism or a mutant or disease with altered RNA processing, new tran-

script models must be generated, either de novo or with the aid of the reference gen-

ome. Because Illumina reads are short, they are unlikely to overlap multiple splice

junctions, meaning that phasing of splicing events is difficult and requires complex

computational reconstruction [6–8]. PacBio and ONT can sequence full-length cDNA

copies without fragmentation, thus allowing whole transcript isoforms to be identified

unambiguously [2]. Most recently, ONT introduced a direct sequencing method for

RNA [9–11]. Using this approach, it is now possible to capture information on the spli-

cing, 5′ and 3′ ends, poly(A) tail length, and RNA modifications of full-length RNA

molecules in a single experiment, without RT-associated artefacts [11].

The development of technologies for sequencing full-length RNA molecules makes

the identification of authentic processing events possible in principle, but software tools

are also needed to interpret the RNA processing complexity. PacBio and ONT sequen-

cing reads have a higher error rate than Illumina [10–14]. Consequently, alignment ac-

curacy for long sequence reads at splice junctions is often compromised [9–11]. This is

a problem for genome-guided transcriptome annotation because the incorrect identifi-

cation of splice junctions leads to mis-annotated open reading frames and incorrectly

truncated protein predictions. In addition, if alignment errors are systematic (i.e., occur

for transcripts with specific characteristics), then quantification of transcripts will be

compromised. Even with completely error-free reads, alignment at splice junctions is

often confounded by multiple equally plausible alternatives [15]. Accordingly, computa-

tional methods for improving the splice-aware alignment of long reads are required.

Software tools for long and short RNAseq data analysis incorporate several ap-

proaches to address the challenges presented by pre-mRNA splicing. Biologically rele-

vant information can aid the alignment of transcriptomic sequences to the genome. For

example, the vast majority of eukaryotic splicing events occur at introns bordered by

GU and AG motifs. Making RNAseq read aligners aware of these sequence features (as

is the case for the commonly used spliced aligners STAR [16], HISAT2 [17], and mini-

map2 [18]) can significantly improve the alignment of reads at splice junctions. In

addition, where genome and transcriptome annotations exist, many alignment tools

allow users to provide sets of correct splice junctions to guide alignment [16–19].
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Introns containing these guide splice junctions are penalized less than novel introns,

resulting in fewer alignment errors. For long reads, software tools such as FLAIR [10]

use post-alignment correction to improve splice junction detection and quantification.

Post-alignment correction tools take long-read alignments and guide splice junctions

from either a reference annotation or a set of accurate short RNAseq reads [10]. In-

trons from long-read alignments which are not supported by the guide splice junction

set are “corrected” to the nearest supported junction within a user-defined range. It is

unclear whether such post-alignment corrections confer any benefit over providing

guide splice junctions during alignment. Small errors in spliced alignment can also be

corrected during reference-guided transcriptome assembly. Tools such as StringTie2

[6] and pinfish (Oxford Nanopore Technologies) identify clusters of similarly aligned

reads and correct them to the median junction positions, before outputting

annotations.

Two-pass alignment has also been used to improve splice junction detection and

quantification [16, 19, 20]. In a two-pass alignment approach, splice junctions detected

in a first round of alignment are scored less negatively in a second round, thereby

allowing information sharing between alignments. This approach has been useful for

short-read data, where RNA fragmentation may occur close to splice junctions during

sequencing library preparation. The two-pass approach enables these short junction

overhangs to be aligned to splice junctions detected in other alignments [20]. Splice

junctions detected in a first pass may also be filtered to remove false positives before

second-pass alignment. Existing tools for splice junction filtering, such as finesplice and

portcullis [21, 22], use machine learning with training on a range of junction metrics. A

model is trained using high-confidence positive and negative examples from training

data and then applied to classify the remaining splice junctions at the decision bound-

ary. Splice junctions are then filtered to remove junctions predicted to be spurious.

Subsequent second-pass alignment guided by these filtered junctions can then improve

the accuracy of alignment [22].

In this study, we develop a method for filtered two-pass alignment of the rela-

tively high-error long reads generated by techniques such as nanopore DRS. The

resulting software, which we have named 2passtools, uses a rule-based approach to

identify probable genuine and spurious splice junctions from first-pass read align-

ments. These can then be used to train a logistic regression (LR) model to identify

the biological sequence signatures of genuine splice junctions. We found that inte-

grating the alignment and sequence information extracted in this manner produced

the largest improvement in splice junction alignment and subsequent genome-

guided annotation. As a result, we can improve the utility of long-read sequencing

technologies in revealing the complexity of RNA processing and annotating newly

sequenced organisms.

Results and discussion
Reference-splice-junction-aware alignment is more accurate than post-alignment junction

correction

For sequencing experiments designed to interpret RNA from model organisms, a set of

reference splice junctions will already be available (e.g., from Ensembl). We therefore
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asked how providing these reference splice junctions to minimap2 to guide alignment

performed compared with post-alignment correction of junctions with FLAIR [10]. For

this analysis, we used four nanopore DRS datasets generated from Arabidopsis seed-

lings [11] and four datasets generated from human cell lines [10]. Several types of prob-

able alignment error were identifiable in these data, including failure to align terminal

exons and short internal exons, spurious terminal exons, and large insertions to the ref-

erence genome (Fig. 1). Because these datasets are likely to contain novel splice junc-

tions which do not appear in reference annotations, we simulated full-length reads (i.e.,

with no 3′ bias [11]) using the Arabidopsis and human reference transcriptomes,

AtRTD2 [23] and GRCh38 [24], respectively. Simulated reads were then mapped to the

corresponding reference genome using minimap2 [18], either with or without guidance

from reference splice junctions. Alignments of simulated reads were found to have

similar error profiles to genuine nanopore DRS read alignments (Additional file 1: Fig.

S1). Reads mapped without reference splice junctions were then corrected using FLAIR

with reference splice junctions.

Fig. 1 Assessment of alignment errors in nanopore DRS datasets. Nanopore DRS read alignments at
Arabidopsis AT5G05010 locus with different types of alignment error presented. Read alignments are shown
in dark blue, with soft-clipped (unaligned) ends shown in light blue. Mismatches and indels of < 30 nt are
not shown. Insertions to the reference of > 30 nt are shown as orange carets
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Although nanopore DRS has some systematic errors in base-calling (particularly at

homopolymers), the majority of sequencing errors occur stochastically [25]. In contrast,

we found that alignment errors were often repeated at similar locations in the align-

ments of independent reads from equivalent mRNA transcripts (Figs. 1 and 2a). A

common alignment error at splice junctions is failure of a short exon to align correctly.

Fig. 2 Improved spliced alignment of simulated reads using annotation-guided alignment. a Reference-
guided alignment improves the identification of small exons in nanopore DRS reads. Gene track showing
the alignment of a sample of simulated nanopore DRS reads at the Arabidopsis FLM gene. AtRTD2
reference annotation, from which reads were simulated, is shown on top, with unguided minimap2
alignments, FLAIR correction of unguided minimap2 alignments, and reference-guided minimap2
alignments shown below. Only reads where exon 6 failed to align in the initial unguided alignment are
shown. Each read alignment is colored based on the reference transcript it was simulated from, and reads
are shown in the same order within each alignment method group. Mismatches and indels are not shown.
b Reference-guided alignment improves the identification of correct transcripts globally. Boxplots with
overlaid strip-plots showing the percentage of alignments which map exactly to the splice junctions of the
transcript from which they were simulated, for unguided minimap2 alignments, FLAIR correction of
unguided minimap2 alignments using reference annotation, and reference annotation-guided minimap2
alignments. Reads simulated from intronless transcripts which map correctly without splicing were not
included in percentage calculations. Reads were simulated from Arabidopsis (left) and human (right)
nanopore DRS data aligned to the AtRTD2 and GRCh38 reference transcriptomes, respectively
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Instead, fragments of the exon are aligned to the ends of flanking exons, resulting in a

single incorrectly defined intron. A clear example of such an alignment error was de-

tected at the short (42 nt) exon 6 of Arabidopsis FLM (AT1G77080; Fig. 2a). Minimap2

uses a modified form of the Smith–Waterman algorithm for performing local align-

ment [18, 26]. This method scores alignments using bonuses for matches to the refer-

ence sequence and penalties for mismatches or the opening of insertions, including

introns. Incorrect alignment of FLM exon 6 is likely to occur because the bonus for

aligning a short exon with sequencing errors is not sufficient to overcome the penalty

for opening the two flanking introns [18]. Overall, we found that only 19.3% of simu-

lated FLM reads aligned to the correct transcript isoform. Because the sequence dis-

tance between the alignment and the genuine reference splice junctions was so great,

FLAIR was unable to perform post-alignment correction at FLM exon 6, resulting in

the reporting of incorrect introns (Fig. 2a). In all, 40.3% of simulated FLM reads were

aligned to the correct transcript isoform after FLAIR correction of splice junctions

using the reference annotation. However, providing reference splice junctions to mini-

map2 during alignment resulted in the correct identification of FLM exons and introns

in most cases: 92.1% of simulated FLM reads were aligned to the correct transcript iso-

form. We conclude that for loci with complex splicing patterns, reference-splice-

junction-guided alignment performs better than post-alignment correction.

Without guidance from a reference annotation, we found that a median of 73.2% of

Arabidopsis reads and 44.4% of human reads mapped correctly to the splice junctions

of the transcript they were simulated from (Fig. 2b). The difference between the two or-

ganisms may be explained by biological differences between the two species (e.g., in in-

tron size, number of exons per transcript, number of intronless transcripts). After post-

alignment correction of splice junctions using FLAIR, the number of correctly identi-

fied transcripts detected was improved (median of 87.9% and 63.6% for Arabidopsis

and human reads, respectively; Fig. 2b). This came at the cost of a small increase in

alignment of reads to incorrect reference transcript splice junctions: from a median of

1.79 to 2.62% for Arabidopsis and from 3.86 to 5.45% for human (Additional file 1: Fig.

S2A). This misclassification may affect the relative quantification of transcripts for

some genes, with implications for differential transcript usage analysis. Reference

annotation-informed alignment with minimap2 performed better than FLAIR, with a

median of 93.8% of Arabidopsis reads and 73.2% of human reads aligning correctly at

the splice junctions of the transcript they were simulated from (Fig. 2b), albeit with

misclassification rates of 2.61% and 5.49% respectively (Additional file 1: Fig. S2A). We

conclude that there is a clear benefit to providing reference splice junctions during

alignment of long reads with relatively high sequence error rates and that this is prefer-

able to post-alignment correction.

Alignment metrics enable identification of genuine splice junctions

In newly sequenced organisms, suitable reference annotations to guide alignment may

not be available. We therefore asked how the spliced alignment of nanopore DRS reads

might be improved in the absence of reference annotation. Naïve two-pass alignment

has been successfully used to improve the spliced alignment of short reads [20]. We ap-

plied this approach with our real and simulated nanopore DRS reads. Splice junctions
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identified by a first-pass alignment of reads were selected and used (without filtering)

to inform a second-pass alignment. The method was compared with reference-guided

alignment with minimap2, since we find this to be the gold-standard for aligning reads

using information from a reference annotation. We found that using the naïve two-pass

approach, the median percentage of simulated Arabidopsis DRS alignments which

matched the splice junctions of the reference transcript they were simulated from could

be increased slightly from 73.2 to 75.8% (Additional file 1: Fig. S2B). The increase was

similar for reads simulated from human DRS alignments: from 44.4 to 47.3% (Add-

itional file 1: Fig. S2B).

We next considered whether further improvements in two-pass alignment could be

obtained by filtering out likely false-positive splice junctions from first-pass alignments.

This would allow us to provide more refined guide junctions for second-pass alignment

(Fig. 3a). A similar approach worked for short reads when splice junctions were filtered

by using junction metrics to train a classifier in the portcullis software tool [22]. By

using the presence or absence of a splice junction in the reference annotation as a

Fig. 3 Junction metrics can identify genuine splice junctions. a Outline of the two-pass method. b The JAD
metric can discriminate between annotated and unannotated splice junctions in simulated nanopore DRS
reads. Inverse cumulative density plot showing the distribution of per-splice junction maximum JAD values
for annotated (blue) and unannotated (orange) splice junctions. c Flowchart visualization of the first
decision tree model. Nodes (decisions) and leaves (outcomes) are colored based on the relative ratio of real
and spurious splice junctions. d Confusion matrix showing the ratios of correct and incorrect predictions of
the first decision tree model on splice junctions extracted from simulated Arabidopsis read alignments
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ground truth, we considered a range of novel or previously introduced junction metrics

[21, 22], including junction alignment distance, supporting read count, intron motif,

and the presence/absence of nearby splice donor and acceptor sites with higher sup-

porting read counts (Additional file 1: Fig. S3A-D).

The junction alignment distance (JAD) is defined as the minimum distance to the

first mismatch, insertion or deletion on either overhang of a read alignment splice junc-

tion. This metric is used by both finesplice and portcullis software tools [21, 22]. For

the simulated nanopore DRS read alignment datasets sequenced from Arabidopsis

RNA, we found that 88.9% of splice junctions found in the reference annotation had at

least one read alignment with a JAD of 4 nt, compared with only 10.1% of unannotated

splice junctions (Fig. 3b). Consequently, using a threshold of at least one read with a

JAD of 4 nt, we could identify annotated splice junctions with an F1 score of 0.902

(Additional file 1: Fig. S3A). Despite the high probability of at least some genuine unan-

notated splice junctions in the real Arabidopsis data [11], we found that the same JAD

threshold could discriminate between annotated and unannotated splice junctions in

real datasets to a similar degree (F1 score = 0.899). Similar results were also seen for

simulated human datasets, where the same JAD threshold could discriminate between

spurious unannotated and genuine annotated splice junctions (F1 score = 0.868). We

conclude that the JAD metric is a powerful discriminator of genuine splice junctions

across nanopore DRS datasets from different organisms.

Of the other metrics we tested, the read count was predictive of genuine splice junc-

tions at a threshold of > 1 read (F1 score = 0.833; Additional file 1: Fig. S3B). However,

read count correlated strongly with the JAD (Spearman’s ρ = 0.776), suggesting that it

does not provide more information. The presence/absence of a canonical intron motif

(i.e., GU/AG, GC/AG or AU/AG) had a very high recall, as 99.96% of annotated introns

in the simulated alignments were canonical (Additional file 1: Fig. S3C). However, the

precision was poorer (F1 score = 0.783). This is because in spliced alignment mode

minimap2 prefers GU/AG motifs, meaning that 67.1% of spurious splice junctions are

also aligned so as to use canonical motifs.

Finally, we developed a primary donor/acceptor metric similar to the one used in

portcullis [22]. This is calculated by identifying alternative donor or acceptor sites

in a 20-nt window around each donor/acceptor and then determining whether they

have greater read support than the current site. In case of a tie for read support

(e.g., if all splice junctions have a read count of 1), the JAD is used to break the

tie, i.e., sites with the largest maximum per-read JAD are considered most likely to

be genuine and labeled as a primary site. We found that the primary donor and

acceptor metrics were also predictive of genuine splice junctions (F1 scores = 0.842

and 0.785 respectively). By combining the metrics to select splice junctions which

are both primary donors and acceptors, the F1 score can be increased to 0.918

(Additional file 1: Fig. S3D). It is unclear why the primary donor score is more

predictive than the primary acceptor score. A possible reason is that minimap2 is

more likely to produce alignment errors at the donor site of splice junctions (e.g.,

in the case of failure to align small internal exons) or that there are more genuine

alternative acceptor sites than donor sites.

We chose to use the identified metrics to create a decision tree model, because these

models are easy to interpret and can be kept simple (or pruned) to prevent overfitting.
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A five-node tree using the JAD, primary donor/acceptor, and canonical intron motif

metrics (Fig. 3c) was best able to predict genuine Arabidopsis splice junctions (F1

score = 0.935; Fig. 3d). The same decision tree also performed well in predicting genu-

ine and spurious splice junctions from simulated human reads (F1 score = 0.934). This

indicates that the model might generalize across nanopore DRS datasets from different

organisms, despite their differences in splicing complexity.

A combination of splice junction alignment metrics and sequence information improves

authentic splice junction identification

Genuine splice junctions have sequence biases which are defined by their interac-

tions with spliceosomal uridylate-rich small nuclear RNAs [27]. We next asked

whether machine learning models could identify genuine splice junctions from the

flanking genomic sequences alone. For example, genome sequence information

might help identify genuine splice junctions with low read alignment coverage that

fail to pass the JAD filter due to stochastic sequencing errors. We therefore ex-

tracted 128-nt sequences centered on unique donor and acceptor sites and used

these to train LR or random forest models with labels generated by the first deci-

sion tree model (Fig. 4a). Using 6-fold cross-validation, we were able to train six

models on 83.3% of the data each and use them to make predictions for the

remaining 16.7%. Using this approach, we could generate predictions for all splice

junctions, with no junction being used for both training and prediction from the

same model. We found that LR and random forests performed similarly on the

data, indicating that there are few important higher-order interactions (i.e., corre-

lated sequence positions). We therefore proceeded with LR models.

At a prediction threshold of 0.5, the LR model overclassified positive splice junctions.

False positives may be sequences which could in principle act as splice junctions but do

not in reality due to effects that the model cannot capture. One such effect could be

the presence of alternative splice junctions which are preferentially processed. This is

thought to occur under the “first-come-first-served” model of co-transcriptional spli-

cing [28, 29]. The model is also unlikely to be able to correctly identify the intron

branchpoint motif because this can vary in position relative to the acceptor site [30].

Nevertheless, we found that the LR model approach could predict genuine splice junc-

tions from sequence data alone with comparable accuracy to the metric-based decision

tree (Fig. S4A-C). For example, for the simulated Arabidopsis datasets, using LR on

donor and acceptor sequences (with a prediction threshold of 0.5) yielded an F1 score

of 0.904 (Fig. S4C), which was similar to the F1 score obtained with the JAD or primary

donor/acceptor metrics.

We next tested whether the information from the junction metrics and reference se-

quence model was complementary, i.e., if a combination of the two approaches could

produce an improvement in splice junction prediction over each individual approach.

Use of a second decision tree model, this time including the JAD metric, primary

donor/acceptor metrics, and new LR prediction scores (Fig. 4b), further increased the

F1 score on splice junctions identified from simulated Arabidopsis read alignments to

0.954 (Fig. 4c). For splice junctions from simulated human reads, we also saw an in-

crease in the F1 score to 0.957. We conclude that an ensemble approach incorporating
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both junction metrics and sequence information works best for detecting and filtering

spurious splice junctions from alignments.

Two-pass alignment with filtered splice junctions improves transcript identification

We next applied the two decision tree filtering methods to perform two-pass alignment

of the simulated reads with minimap2 [18]. As a positive control, we compared the re-

sults to reference-guided alignment with minimap2, since this represents the best pos-

sible performance that could be achieved by two-pass alignment (i.e., if the filtered

splice junction set perfectly matched the reference annotation). Using filtered splice

junctions, the percentage of junctions identified in second-pass alignments that

matched annotated splice junctions could be increased over first-pass alignment and

naïve two-pass alignment (Fig. 5a). For example, using the simulated Arabidopsis data-

sets, the median percentage of read alignments matching the splice junctions of the

Fig. 4 Machine learned sequence information improves identification of genuine splice junctions. a Outline
of the LR model training process. Sequences from splice junctions were extracted from the reference
genome and used as training data (i.e., explanatory variables). Training labels (i.e., the response variable)
were generated by the first decision tree model. Independent models were trained for 5′ donor and 3′
acceptor sites and cross-validation used to generate out-of-bag predictions for all sites. b Flowchart
visualization of the second decision tree model. Nodes (decisions) and leaves (outcomes) are colored based
on the relative ratio of real and spurious splice junctions. c Confusion matrix showing the ratios of correct
and incorrect predictions of the second decision tree model on splice junctions extracted from simulated
Arabidopsis read alignments
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reference transcript they were simulated from increased from 73.2% in the first pass, to

88.2% and 89.3% in a second pass, using the first and second decision tree methods re-

spectively (Fig. 5a). Two-pass alignment rescued the large misalignments of exon 6 seen

at FLM (Additional file 1: Fig. S5A): overall, 86.8% of simulated FLM reads aligned to

the correct reference transcript after filtered two-pass alignment compared with 19.3%

for first-pass alignments. A global improvement in correct alignment was also seen in

the simulated human datasets: from 44.4% in the first pass to 64.3% and 65.7% for the

two decision tree methods, respectively (Fig. 5a).

Although two-pass alignment improved the number of reads aligning to the correct

transcript model, we also detected a slight increase in the number of reads aligning to

the wrong annotated transcript. In the simulated Arabidopsis reads analysis, reads

aligned using the second decision tree model performed worst on this metric: 2.74% of

reads aligned to the wrong isoform compared with only 1.79% of reads after first-pass

alignment (Additional file 1: Fig. S5B). To assess whether such misassignment affects

the quantitation of transcripts, we calculated Spearman’s correlation coefficient (ρ) for

Fig. 5 Filtered two-pass alignment improves the identification and quantification of correct transcripts
without a reference annotation. a Boxplots with overlaid strip-plots showing the percentage of alignments
which map exactly to the splice junctions of the transcript from which they were simulated, for one-pass
unguided minimap2 alignments, two-pass alignments using splice junctions filtered by decision trees one
and two, and reference-annotation-guided minimap2 alignments. Reads were simulated from Arabidopsis
TAIR10 + AtRTD2 (left) and human GRCh28 (right) nanopore DRS data. b Boxplots with overlaid strip-plots
showing the Spearman’s correlation coefficient for actual transcript level counts from simulated data against
counts produced by the alignment methods described in a. Reads were simulated from Arabidopsis (left)
and human (right) nanopore DRS data aligned to the AtRTD2 and GRCh38 reference
transcriptomes, respectively
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estimated versus known transcript level read counts for the simulated data (Fig. 5b).

The results indicated that, despite this misassignment, two-pass aligned reads could be

quantified accurately, with an overall improvement in median Spearman’s ρ for one-

pass versus two-pass of from 0.876 to 0.916 for simulated Arabidopsis reads (Fig. 5b)

and from 0.778 to 0.859 for simulated human reads (Fig. 5b). However, there may be

corner cases where transcript misassignment could have consequences for transcript

usage analysis. This should be considered for experiments where quantification is im-

portant. Overall, we conclude that two-pass alignment using filtered junctions can im-

prove both the detection of correct splicing patterns and the quantitation of nanopore

DRS reads.

Filtered two-pass alignment improves reference-guided annotation

Summarizing read alignments into annotations facilitates transcript level quantification

of short and long reads and aids the interpretation of RNA processing complexity. We

therefore asked whether two-pass alignment of spliced long reads with relatively high

sequence error rates can improve the results of genome-guided annotation tools. Sev-

eral software tools designed to produce annotations from long reads exist, including

FLAIR [10] and pinfish (ONT), which were designed for nanopore DRS data; TAMA

[31], which was designed for PacBio IsoSeq data; and StringTie2 [6], which was de-

signed as a technology-agnostic long-read assembly tool.

We benchmarked our methods using StringTie2 because it is reported to be fas-

ter and more accurate than FLAIR on simulated nanopore DRS data [6]. Using

full-length reads simulated from real Arabidopsis and human nanopore DRS data,

we could identify the intron-chain-level precision and recall of annotations assem-

bled from reads processed using either one-pass or two-pass alignment. Here, pre-

cision is defined as the percentage of assembled transcripts whose combination of

introns match a transcript in the reference annotation, and recall is defined as the

percentage of annotated transcripts for which at least one read was simulated and

whose combination of introns match a transcript assembled from simulated reads.

We assessed reads aligned using guide splice junctions from the reference annota-

tion as a positive control.

For both Arabidopsis and human datasets, two-pass alignment generally produced a

clear improvement in both precision and recall of StringTie2 transcript assembly over

first-pass alignment (Fig. 6a). Of the two decision tree methods produced, decision tree

2 (using junction sequence information) performed best (median F1 score was 0.699

for the Arabidopsis data and 0.629 for the human data). There was a particularly large

increase in precision for reference annotation-guided alignment of at least 8.7% and

9.6% over one-pass alignment for all Arabidopsis and human samples, respectively

(Fig. 6a).

We next considered whether two-pass alignment could improve the genome-guided

transcriptome assembly performance of Stringtie2 on real datasets, using current refer-

ence annotations as a ground truth. However, it is important to note that there may be

genuine transcript examples in the datasets that are not yet included in the reference

annotation; if so, this will affect the measurement of precision. Furthermore, recall

against the reference is likely to depend on the sequencing depth of samples. We
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therefore report the number of annotated transcripts assembled for each sample, rather

than the recall.

Two-pass alignment improved both the precision and the number of transcripts as-

sembled for Arabidopsis, human, and mouse samples [10, 11, 32] (Fig. 6b–d). This

Fig. 6 Filtered two-pass alignment improves genome-guided annotation. a Scatterplot showing precision
against recall for intron chains in genome-guided transcriptome annotations generated from alignments
using StringTie2. Precision and recall scores were calculated against reference annotations filtered to
include only transcripts for which at least one read was simulated. Reads were simulated from Arabidopsis
(left) and human (right) nanopore DRS data aligned to the AtRTD2 and GRCh38 reference transcriptomes,
respectively. b–e Stripplots with box and whiskers showing the number of correct transcripts assembled
(left panels) and precision of transcripts assembled (right panels) for genome-guided transcriptome
assembly using StringTie2. Two-pass alignment improved the precision and number of transcripts
assembled for real nanopore DRS data for b Arabidopsis, c human, d mouse, and e yeast. For all boxplots,
overlaid strip-plots are shown for individual samples. Each sample was assigned a unique marker so that
the changes in each sample could be tracked between the one-pass, two-pass, and reference-guided
alignments. Box and whiskers not shown for samples with less than 4 data points. Y limits vary between
figures since within-figure (i.e., same species and sequencing technology) comparison is more important
than between-figure comparisons
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approach resulted in a median increase in assembly precision compared with one-pass

alignment of 7.1% for Arabidopsis samples, 3.5% for human samples, and 2.2% for

mouse samples (median increase in annotated transcripts assembled per sample of

478.5, 257.5, and 238, respectively). We conclude that for organisms with complex pat-

terns of pre-mRNA splicing, two-pass alignment can improve both the precision and

number of correct (annotated) transcripts assembled by StringTie2 from real nanopore

DRS data.

When we applied the same approach to the yeast Saccharomyces cerevisiae, the

results were very different (Fig. 6e). In this species, two-pass alignment resulted

in a median increase of only three more annotated transcripts assembled per

sample and an increased number of unannotated transcripts assembled, resulting

in a median decrease of 0.8% in assembly precision. Splicing complexity in S. cer-

evisiae is relatively low: there are only 364 annotated introns in the Ensembl R64

annotation, most genes are intronless, and most introns are constitutive [33].

This led to a high ratio of unannotated splice junctions in first-pass alignments

(the median number of junctions identified was 8056), suggesting that the vast

majority of junctions in the dataset are spurious. Furthermore, most S. cerevisiae

introns occur close to mRNA 5′ ends, resulting in typically short upstream exons

that present challenges to alignment software. Such a large ratio of spurious to

genuine splice junctions is likely to affect the precision of junction filtering. Not-

ably, even when the reference annotation was used to guide alignment, precision

was only improved by a median of 1.9% (with a median of six more transcripts

assembled correctly). Intron-containing genes are generally more highly expressed

(many encode ribosomal proteins) than intronless genes [34]. This may mean that

the coverage of annotated transcripts is already good and, thus, that the number

of true annotated transcripts assembled cannot be much improved. This result

suggests that both reference annotation-guided and two-pass alignment methods

have limited use for genome-guided transcriptome assembly in organisms with

low complexity splicing.

Finally, we considered whether filtered two-pass alignment could improve genome-

guided annotation of nanopore DRS reads derived from sequencing cDNA copies and

from PacBio IsoSeq data (Fig. S6A-D). To assess this, we used the recommended align-

ment parameters for minimap2 [18], but with the splice junction filtering parameters

that were used for nanopore DRS data. Overall, the precision and recall of transcripts

assembled from both nanopore cDNA and PacBio IsoSeq data for human, mouse, and

Arabidopsis samples could be improved using two-pass alignment. For human and

mouse nanopore cDNA samples, two-pass alignment resulted in a median increase of

3.85% and 2.3% in assembly precision, respectively, compared with one-pass alignment

(median increase in annotated transcripts assembled per sample of 609.5 and 420.0, re-

spectively; Additional file 1: Fig. S6A,B). For Arabidopsis and human PacBio IsoSeq

samples, two-pass alignment resulted in a median increase of 8.45% and 1.35% in as-

sembly precision, respectively, compared with one-pass alignment (median increase in

annotated transcripts assembled per sample of 63 and 242.5, respectively;

Additional file 1: Fig. S6C,D). We conclude that a two-pass method can improve

genome-guided transcript assembly of the high-error long reads produced using a

range of sequencing technologies.
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Two-pass alignment can aid novel splice-isoform discovery in annotated species

We have shown that a two-pass approach can improve the accuracy of spliced align-

ment in the absence of a reference annotation. However, even the most well-studied ge-

nomes are likely to be incompletely annotated, and so novel splice-junction discovery

which builds upon existing annotations is also desirable. We therefore developed an al-

ternative two-pass method which allows users to provide reference annotations. The

annotation is used to train random forest models which can then predict novel splice

junctions. These models replace the pre-trained decision trees used in the annotation-

independent method. We refer to this method hereafter as annotation-aided two-pass

alignment.

If a reference annotation for a species is truly complete—i.e., there are no new splice-

junctions to be discovered, then two-pass alignment can only reduce the accuracy of

alignment by introducing false-positive introns into the guide splice junction set. We

therefore hypothesize that two-pass alignment will be useful when many genuine splice

junctions are missing from the annotation, because genuine novel splice junctions

added to the guide junction set will outweigh false positives that are introduced. We

refer to the percentage of genuine splice junctions that are unannotated as the level of

annotation “missingness”. To test our hypothesis, we performed random subsampling

of transcript isoforms in the Arabidopsis reference annotation to simulate an incom-

plete reference at a range of missingness levels, from 0.1 to 90% missing. We then per-

formed annotation-aided two-pass alignment of the nanopore DRS dataset and

assessed the predictive performance on splice junctions which were absent from the

subsampled annotation. We found that the annotation-aided method performed best

for medium missingness levels. For example, in Arabidopsis DRS data, when between

25 and 66% of reference isoforms were missing, the true positive rate/recall was high

(minimum of 0.86), for a low false-positive rate (maximum 0.15) and a high precision

(minimum 0.85) (Fig. 7a, b). This translates to a 1.3–3.9% improvement in the percent-

age of correctly aligned reads compared to reference-guided alignment (Fig. 7c). At

missingness levels of less than 25%, the false-positive rate increased and precision de-

creased (Fig. 7a, b). The reason for this decrease in performance is because as the refer-

ence annotation nears completion, the imbalance between genuine novel splice

junctions and false positives caused by alignment errors increases. However, reductions

in splice-junction level precision do not translate to a large drop in the percentage of

correctly aligned reads—at 0.1% missingness, the reduction was 0.36% (Fig. 7c). Fur-

thermore, at lower levels of missingness, the recall remained high, with at least 96.7%

of all genuine novel splice junctions being detected. At extremely high levels of annota-

tion missingness, the recall of the two-pass filtering method begins to fall—at 90%

missing, recall is only 0.12 (Fig. 7b). This is likely to be because when the reference is

extremely incomplete, it no longer represents a good training dataset, since a large

proportion of junctions missing from the reference will be genuine. For reference

missingness levels > 75%, it was therefore better to perform two-pass alignment

without the reference annotation (Fig. 7c, d). With human RNA datasets, we found

that annotation-aided two-pass alignment improved the percentage of correctly

aligned reads when transcript isoform missingness was at least 25% (Fig. 7d). This

is likely due to the completeness of human annotation—more junctions are found

in more than one transcript isoform. We conclude that annotation-aided two-pass
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alignment is most useful when a high-quality annotation is available, but where the

conditions of the experiment are expected to produce a significant number of

novel splice junctions.

Two-pass alignment discovers novel splice isoforms in the Arabidopsis RNA exosome

mutant hen2-2

To validate the annotation-aided two-pass approach, we performed a case study with

Arabidopsis using the hen2-2 mutant. HEN2 functions as an accessory protein to the

nuclear RNA exosome and is required for the processing and degradation of specific

classes of mRNAs and non-coding RNAs [35]. As a result, many RNAs, some of which

contain novel splice junctions, accumulate in the hen2-2 mutant compared to wild-

type. Many of these transcripts are unannotated because exosome-mediated decay

Fig. 7 Annotation-aided two-pass alignment rescues missing splice junctions. a ROC scatterplot and b
precision/recall scatterplot showing true-positive rate and false-positive rate of novel splice junction
classification in simulated Arabidopsis read alignments, at different rates reference annotation missingness.
Annotated transcript isoforms were subsampled to simulate incomplete reference annotations, and these
were used to inform annotation-aided two-pass alignment. c, d Line plots showing the improvement in the
percentage of correctly aligned reads using two-pass alignment compared to reference-guided alignment
at different reference annotation missingness rates for c Arabidopsis and d humans, respectively. Blue line
shows improvement compared to reads aligned using two-pass method only. Orange line shows
improvement compared to reads aligned using reference-annotation in first-pass, followed by annotation-
aided junction filtering and second-pass alignment. Shaded regions represent 95% confidence intervals
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means that they are effectively “hidden” in wild-type plants. We have previously per-

formed Illumina RNAseq of hen2-2 mutants at relatively high depth [11]. We therefore

generated nanopore DRS reads from similar tissue and performed annotation-aided

two-pass alignment to detect novel splice junctions. Of the 17,521 unannotated splice

junctions detected in first-pass alignment of the nanopore DRS data, only 20% (3548)

are supported by Illumina RNAseq, and only 24% (4210) passed filtering, indicating that

the majority are spurious (Fig. 8a). However, of those that pass filtering, 57% (2382)

were supported by Illumina RNAseq. This represents 67% of the 3548 unannotated

junctions which were supported by both nanopore DRS and Illumina RNAseq. For ex-

ample, we detected novel isoforms of annotated genes, such as AT1G19396, where use

Fig. 8 Annotation-aided two-pass alignment identifies novel splice isoforms in hen2-2 mutants. a Upset
plot showing the intersection of splice junctions detected using nanopore DRS or Illumina RNAseq, and
presence in the AtRTD2 annotation. Horizontal bars show the overall number of junctions detected using
each technology/annotation, while stacked vertical bars represent set intersections. For nanopore DRS data,
splice junctions with one or more supporting read alignment are shown. For Illumina RNAseq, splice
junctions with ten or more supporting read alignments are shown. Nanopore DRS junctions which are
classified as spurious by the two-pass filtering method are labeled in blue, while junctions which are
classified as genuine are labeled in orange. Set intersection bars not including nanopore DRS are shown in
gray. b, c Gene track showing novel splice isoforms detected at b AT1G19396 and c AT3G12140 in hen2-2
nanopore DRS data. AtRTD2 annotation is shown in black. Nanopore DRS reads are shown in blue (positive
strand) or light blue (negative strand). Novel splice junctions are shown in orange
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of an alternative donor site in a large intron results in a novel exonic region (Fig. 8b).

We also detected completely unannotated transcripts, such as an antisense RNA at

AT3G12140 with multiple novel splicing events (Fig. 8c). We conclude that two-pass

alignment is able to detect genuine novel introns in well-annotated species, under less

well-annotated conditions.

Conclusions
RNA sequencing is a fundamental tool for understanding what genomes really encode.

Technological approaches that directly sequence full-length RNA molecules substan-

tially increase the useful information that RNA sequencing can provide. The challenges

that alternative splicing, in particular, presents to the interpretation of high-throughput

RNA sequencing data means that software development needs to accompany progress

in sequencing technology. In this way, knowledge gained from ambitious genome se-

quencing programs such as the Earth BioGenome Project, which aims to characterize

all eukaryotic life on Earth [36], can be maximized. We have shown that a two-pass

alignment approach, informed by splice junction alignment metrics and machine learn-

ing of sequence features associated with splicing, can improve the accuracy of intron

detection in long-read data. Knowledge of existing splice junctions can also be applied

to aid the discovery of novel splicing events when annotations are incomplete—for ex-

ample, in disease states with altered gene expression. Consequently, this approach can

enhance the utility and realize the potential of long-read RNA sequencing.

Methods
Nanopore and PacBio data

Four replicates of nanopore DRS reads derived from Arabidopsis Col-0 RNA were used

[11]. These datasets are available in FAST5 format from the European Nucleotide Archive

under accession no. PRJEB32782. The first four listed replicates of DRS and cDNA se-

quencing reads derived from human cell line GM12878 were used: Birmingham DRS

samples 1, 2, 3, and 5; Birmingham cDNA samples 1 and 2; and Hopkins cDNA samples

1 and 2 [10]. DRS datasets were downloaded in FAST5 format and cDNA datasets in

FASTQ format using the links provided on GitHub (http://s3.amazonaws.com/nanopore-

human-wgs/rna/links/NA12878-DirectRNA_All.files.txt). Mouse DRS and cDNA datasets

in FASTQ format [32] were downloaded from the European Nucleotide Archive (acces-

sion no. PRJEB27590). Yeast DRS datasets in FASTQ format [9] were downloaded from

the European Nucleotide Archive (accession no. PRJNA408327). Human IsoSeq datasets

in FASTQ format were downloaded from the PacBio AWS webserver (http://datasets.

pacb.com.s3.amazonaws.com/2014/Iso-seq_Human_Tissues/list.html). Arabidopsis Iso-

Seq data in FASTQ format [37] was downloaded from the European Nucleotide Archive

(accession no. PRJNA371677).

hen2-2 nanopore DRS data

For newly sequenced nanopore DRS data, hen2-2 seeds were sown on MS10 medium

plates, stratified at 4 °C for 2 days, germinated in a controlled environment at 22 °C under

16 h light/8 h dark conditions, and harvested 14 days after transfer to 22 °C. RNA isolation

and nanopore direct RNA sequencing were performed as described previously [11].

Parker et al. Genome Biology           (2021) 22:72 Page 18 of 24

http://s3.amazonaws.com/nanopore-human-wgs/rna/links/NA12878-DirectRNA_All.files.txt
http://s3.amazonaws.com/nanopore-human-wgs/rna/links/NA12878-DirectRNA_All.files.txt
http://datasets.pacb.com.s3.amazonaws.com/2014/Iso-seq_Human_Tissues/list.html
http://datasets.pacb.com.s3.amazonaws.com/2014/Iso-seq_Human_Tissues/list.html


Preliminary data processing

Pipelines for processing of data were written using snakemake version 5.10.0 [38].

FAST5 data was re-basecalled locally using guppy version 2.3.1 (ONT). All alignments

were performed using minimap2 version 2.17-r963 [18]. Arabidopsis reads were aligned

to the TAIR10 reference genome [39] and AtRTD2 reference transcriptome [23]. Hu-

man, mouse, and yeast reads were aligned to the GRCh38, GRCm38, and R64–1-1 pri-

mary assemblies and to cDNA transcriptomes from Ensembl, respectively [24].

Alignments to reference genomes were performed using spliced parameters. For DRS

datasets, these were -k14 -x splice -L --cs=long. For nanopore cDNA and PacBio data-

sets, the parameters used were -x splice -L --cs=long. The maximum intron size (-G)

was set at 10,000 nt for Arabidopsis samples, at 200,000 nt for human and mouse data-

sets, and at 5000 nt for yeast, to match the known intron length distributions in these

organisms. For two-pass alignments using a guide splice junction set, a junction bonus

(--junc-bonus) of 12 was also used, as this was found to improve the percentage of cor-

rectly aligned simulated reads when performing reference-guided annotation, compared

to the default (--junc-bonus 9). Alignments of DRS reads to the reference transcrip-

tome were performed using splicing-free parameters, namely: -k14 --for-only -L --cs=

long.

Simulation of DRS reads

To provide a ground truth with a complete set of known splice sites, sequences were

simulated from the reference transcriptomes, with length and error profiles matching

those of real DRS reads. This was done by modeling the length, homopolymer error,

and other error profiles of real reads. Only primary alignments were considered. The cs

tags of reads aligned to the reference transcriptome were used to recreate pairwise

alignments between each read and the reference, ignoring refskips. Alignments were

inverted to match the 3′→ 5′ sequencing direction of nanopore DRS. Aligned basecalls

at reference homopolymers of ≥ 5 nt in length were used to build a probability model

of homopolymer calls given the reference homopolymer. To prevent these error profiles

being modeled multiple times, the reference homopolymer was then replaced with the

aligned basecall in the pairwise alignment. Next, the altered alignment was used to cre-

ate a Markov chain model of basecalled sequence given the reference sequence. For

each base in the reference sequence in the alignment, the aligned portion of the query

sequence was identified. The “state” of the alignment (i.e., match, mismatch, insertion,

or deletion) was also identified. The probability of seeing a query sequence was calcu-

lated, given the current and previous four bases of the reference and the previous four

states of the alignment.

The reference transcriptome was also used to simulate data using these models. The

number of primary alignments in the real data for each reference transcript was used

as the number of simulated reads per transcript. To simulate basecall errors, sequences

were inverted to the 3′→ 5′ direction and reads were generated using Markov chain

Monte Carlo simulations with the basecall model. The reference sequences were pre-

pended with a 10 nt oligo(A) sequence to mimic a short poly(A) tail so that the initial

state of the Markov chain was always “AAAAA” and “====” (i.e., four matches). Ho-

mopolymers in the simulated read were identified and replaced with randomly selected

Parker et al. Genome Biology           (2021) 22:72 Page 19 of 24



sequences from the homopolymer model. The read was then reverted to the 5′→ 3′

direction for mapping. Because we wanted to assess the alignment of full-length reads,

we did not model or simulate the 3′ bias, which is inherent to nanopore DRS data.

However, 10 nt of simulated read was subtracted from the 5′ end of reads to simulate

loss of signal at the end of sequencing.

Post-alignment splice junction correction with FLAIR

BAM files were converted to the BED12 format using bedtools [40]. BED12 files were

then corrected using the reference GTF annotation with FLAIR correct version 1.4 and

default settings [10].

Junction metric calculations

Splice junctions and junction metrics were extracted from aligned reads using the long

form cs tag produced by minimap2 version 2.17 [18] using pysam version 0.15.4. The

per-read JAD was calculated as the length of the shorter of the two match operations

immediately flanking refskip (splicing) operations. Where there were mismatches or

indels immediately adjacent to refskips, a JAD of zero was assigned. The per-splice

junction JAD was calculated as the maximum of the per-read JADs. Intron motifs were

extracted from cs tags. For Arabidopsis, human and mouse samples, GU/AG, GC/AG,

and AU/AG splice junctions were all considered canonical. For yeast samples, only

GU/AG splice junctions were considered canonical. To calculate the primary donor/ac-

ceptor metrics, interval trees of donor and acceptor sites were constructed using NCLS

[41]. Donors were assigned as primary donors if there were no alternative donor sites

within 20 nt with higher read counts. Likewise, acceptors were considered primary if

there were no alternative acceptors within 20 nt with higher read counts. Ties were

broken using the JAD metric, i.e., the splice junctions with higher JADs were assigned

primary status. Where there were still ties after read count and JAD comparisons, no

splice junctions were assigned primary status. Splice junctions extracted from four rep-

licates of Arabidopsis or human DRS reads were used to build decision tree models

with scikit-learn version 0.22.1 [42]. A minimum depth of 4, minimum number of sam-

ples required to split a node of 1000, and minimum Gini impurity decrease required to

split a node of 0.005 were used. The decision tree generated from Arabidopsis reads

was a subtree of the human tree (i.e., it could be created by pruning the human tree),

indicating that the decision function can generalize across samples.

Reference sequence filtering using LR models

Splice junctions obtained from a first-pass alignment were separated into lists of unique

donor sites and unique acceptor sites. These were labeled as positive training examples

if they participated in at least one donor/acceptor pair which passed the first decision

tree function. Sequences of 128 nt for each splice junction (centered on the donor or

acceptor site) were extracted from the reference genome using pysam version 0.15.4

and one hot encoded into four binary variables to create a 512-feature training dataset.

LR models were trained using 6-fold cross-validation with scikit-learn version 0.22.1

[42]. For each fold, the model was used to generate out-of-bag predictions on the held-

out data. The probabilities produced were then used in place of the canonical intron
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motif to produce the second decision tree, using a maximum depth of 6, a minimum

number of samples of 1000, and a minimum Gini impurity decrease of 0.003. Thresh-

olds for splice scores in the tree were simplified to comprise only a high confidence

threshold of 0.6 (for rescuing splice junctions failing the JAD metric threshold) and a

low confidence threshold of 0.1 (for removing false positives from junctions passing the

JAD metric threshold).

Annotation-aided two-pass alignment

For use cases where high-quality annotations are already available, we developed an

annotation-aided two-pass approach. Here, annotated junctions are provided along with

read alignments. Annotated junctions are labeled as genuine. Unannotated junctions

discovered in alignments are assumed to be mainly spurious. These labels are then used

to train an extremely random forest model on junction metrics. Out-of-bag predictions

for each junction are used as refined labels for LR models to detect splice junction

sequence. A final extremely random forest model is trained on refined labels, using

junction metrics and splice junction sequence scores determined by LR models.

Positive examples which are not in the annotation will be a mixture of false positives

and genuine novel splice-junctions. Any false negatives from the annotation are

(optionally) retained.

Evaluation of splice junction models

Performance of the metrics and models was evaluated at splice junction level using the

reference annotation as a ground truth. For simulated datasets, annotation is the abso-

lute ground truth because all reads are simulated using only splice junctions in the an-

notation. For real datasets, some “false positives” are likely to be genuine splice

junctions and some junctions in the reference, which appear as false negatives, are ac-

tually incorrectly annotated or not expressed. Precision is defined as the number of true

positives divided by the total number of positive predictions by the model, i.e., true pos-

itives ÷ (true positives + false positives). Recall is defined as the number of true posi-

tives divided by the total number of real positive examples in the dataset, i.e., true

positives ÷ (true positives + false negatives). The F1 score is the harmonic mean of the

precision and recall.

Evaluation of alignments

To evaluate alignments, we used the intron chain of reference transcripts as a ground

truth. The intron chain is the pattern of linked splicing in a transcript, disregarding the

transcription start and termination sites. Alignments of simulated reads were consid-

ered correct if they mapped correctly to the intron chain of the reference transcript

they were simulated from, with no mistakes. Simulated reads that were mapped using

intron chains not included in the reference or as being intron-less when they should

have splicing were considered novel spurious alignments. Simulated reads that were

mapped using the intron chain of a reference transcript other than the transcript they

were simulated from were considered to be misassigned. For measures of quantification

accuracy, alignment counts for transcripts were generated using the number of simu-

lated reads that aligned with the same splice junctions as the reference transcript.
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Spearman’s correlation coefficients were then calculated against the known input tran-

script counts for simulation.

Reference-guided assembly

Reference-guided transcriptome assemblies were produced using StringTie2 [6] version

2.1.1 in long-read mode, with otherwise default parameters.

Evaluation of assemblies

Reference-guided transcriptome assemblies were evaluated using the precision and re-

call of intron chains calculated using gffcompare with default settings [43]. The input

reference GTF files were filtered to include only transcript models for which at least

one read had been simulated.

Reference missingness analysis

To simulate incomplete references, transcript isoforms were removed from the Ara-

port11 (Arabidopsis) and GRCh38 (human) reference annotations at rates from 0.1 to

90%. These incomplete references were then used to perform reference guided align-

ment of reads simulated using the full reference annotation. Splice junctions from read

alignments were then filtered using the annotation-aided method, and reads were

realigned using filtered junctions as a guide. Performance on splice-junctions was mea-

sured on junctions which were not present in the annotation (i.e., training set) only.

Performance at read-alignment level was measured as the change in the percentage of

correctly aligned reads compared to using only the incomplete reference annotation to

guide alignment.

Illumina RNAseq analysis

hen2-2 Illumina RNAseq data was downloaded from PRJEB32782. Reads were mapped

to the TAIR10 genome using STAR, with a splice junction database built from the Ara-

port11 annotation. Splice junction set intersections were identified in Python using

pysam, and the visualized using upset plots.
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