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Abstract

Background: The increasing availability of microbial genomes and environmental

Evolutionary Biology, Harvard shotgun metagenomes provides unprecedented access to the genomic differences
University, Cambridge, MA 02138, within related bacteria. The human oral microbiome with its diverse habitats and
oA abundant, relatively well-characterized microbial inhabitants presents an opportunity
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Comparative Molecular Biology and to investigate bacterial population structures at an ecosystem scale.
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USA genomes with Human Microbiome Project (HMP) metagenomes to study the

Full list of author information s diversity of microbial residents of three oral habitats: tongue dorsum, buccal mucosa,

avallable at the end of the article and supragingival plaque. For two exemplar taxa, Haemophilus parainfluenzae and
the genus Rothia, metapangenomes reveal distinct genomic groups based on shared
genome content. H. parainfluenzae genomes separate into three distinct subgroups
with differential abundance between oral habitats. Functional enrichment analyses
identify an operon encoding oxaloacetate decarboxylase as diagnostic for the
tongue-abundant subgroup. For the genus Rothia, grouping by shared genome
content recapitulates species-level taxonomy and habitat preferences. However,
while most R. mucilaginosa are restricted to the tongue as expected, two genomes
represent a cryptic population of R. mucilaginosa in many buccal mucosa samples.
For both H. parainfluenzae and the genus Rothia, we identify not only limitations in
the ability of cultivated organisms to represent populations in their native
environment, but also specifically which cultivar gene sequences are absent or
ubiquitous.

Conclusions: Our findings provide insights into population structure and
biogeography in the mouth and form specific hypotheses about habitat adaptation.
These results illustrate the power of combining metagenomes and pangenomes to
investigate the ecology and evolution of bacteria across analytical scales.
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Introduction

The human microbiome encompasses tremendous microbial diversity. The growing
recognition of this diversity and its importance for human well-being prompted a major
effort to investigate the identity and distribution patterns of bacteria throughout the
human body, the Human Microbiome Project [1]. More recent studies have focused on
finer-scale patterns, such as the role of host individuality in determining microbiome
composition, the number and diversity of strains that can co-exist within a habitat, and
the distribution of strains across body sites [2—4]. However, the sheer numbers and
genetic diversity of bacteria in even a simple real-world microbiome present significant
challenges to study.

One approach to studying bacterial populations is metagenomics—the direct sequen-
cing of the total DNA obtained from an environmental sample [5]. By circumventing
the need for cultivation, metagenomics can afford deeper and more accurate insights
into the genetic diversity of naturally occurring microbial populations [6]. The Human
Microbiome Project (HMP) [1, 7] sequenced metagenomes from hundreds of samples
from sites all over the human body. However, the use of metagenomic methods alone
can be limited by the challenges inherent in associating short reads back to a single or-
ganism without combining sequences from separate strains [5, 8].

On the other hand, the genomic diversity and relatedness within a group of bacteria can
be studied using pangenomes. The pangenome, the sum of all genes found across mem-
bers of a given group, reveals the functional essence and diversity held within that group
[9-11]. Pangenomics can identify core and accessory genes (genes shared and not shared
by all, respectively) within a group of related bacteria, as well as the relationships between
different bacteria based on shared gene content. Notably, relating genomes by gene con-
tent allows a phylogenetically naive approach to compare genomes, so that any phylogen-
etic or ecological correlation that emerges from the comparison is informative [12, 13].
Because concepts of species pose challenges when working with bacteria, bacterial pan-
genomes may be generated at the genus or family level to illuminate gene sharing and the
degree of relatedness within these larger groupings [14, 15]. However, the environmental
distribution of groups and genes identified in the pangenome remain unidentified.

Combining pangenomes and metagenomes can offer broader perspectives into the
adaptation of microbial populations to different habitats [16]. Pangenomes and meta-
genomes are complementary even when the organisms used for the pangenome were
not isolated from the same samples whose metagenomes will be studied. A pangenome
constructed from isolates collected at different times and around the world reveals the
shared and variable gene content of the different organisms. The genomes can then be
used for metagenomic read recruitment to investigate the distribution and biogeo-
graphical patterns of environmental populations and their genes [17-21]. Such ap-
proaches have also been applied to human epidemiology [22, 23] and the human
microbiome [24-28]. Thus, by using a set of well-characterized genomes from mem-
bers of a species or genus (i.e., a pangenome of cultivars) as a reference set to recruit
reads from metagenomes spanning a variety of habitats, the relative frequency of each
gene sequence in naturally occurring populations can be quantified. The ability of
short-read mapping algorithms to map related but non-identical reads can be exploited
to use reference genomes as reference points to probe the composition and structure of
wild populations [29]. The combination of metagenomes with pangenomes, also
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referred to as “metapangenomics” [13], reveals the population-level results of habitat-
specific filtering of the pangenomic gene pool.

The oral microbiome is an ideal system in which to investigate microbial popula-
tion structures in a complex landscape. Different surfaces in the mouth, such as
the tongue dorsum, buccal mucosa, and teeth, constitute distinct habitats, each
with a characteristic microbiome [30-33]. These microbiomes are dominated by a
few dozen taxa with high abundance and prevalence [34-36], most of which have
cultivable representatives from which genomes have been sequenced ([37], www.
ehomd.org), making the system unusually tractable relative to other natural micro-
biomes. The microbiomes that assemble in the different oral habitats are clearly re-
lated to one another—composed of many of the same genera, for example—but are
largely composed of different species [36]. For example, the major oral genera Acti-
nomyces, Fusobacterium, Neisseria, Veillonella, and Rothia occur throughout the
mouth, but their individual species show strongly differential habitat distributions.
Individual species within these genera typically have 95-100% prevalence across in-
dividuals and make up several percent of the community at one oral site, but show
lower prevalence and two orders of magnitude lower abundance at other oral sites
[32, 34, 36, 38]. The reproducibility of taxon distribution across individuals, despite
the frequent communication of the habitats with one another via salivary flow, sug-
gests that founder effects and other stochastic processes are unlikely to explain the
differences in species-level distribution and that these differences likely arise from
selection. However, some apparent “habitat generalist” species, such as Haemophi-
lus parainfluenzae, Streptococcus mitis, and Porphyromonas pasteri, can be found
throughout the mouth [32, 34, 36, 38]. Altogether, the mouth is colonized by well-
characterized bacteria that build distinctive communities in the different oral habi-
tats in the absence of dispersal barriers. This setting presents an opportunity to in-
vestigate the genomic characteristics underlying the differential success of closely
related species in different habitats.

Here, we combine pangenomes and metagenomes to investigate how genes are
distributed across populations at distinct sites within the mouth. We focused on
two exemplar oral taxa with high prevalence (>95%) [31, 32, 34] and high abun-
dance in the mouth: the species Haemophilus parainfluenzae and the genus Rothia.
These two taxa represent the two oral biogeographic patterns, with H. parainfluen-
zae representing apparent habitat generalist species and the genus Rothia repre-
senting genera composed of habitat-specific species. Both Rothia spp. and H.
parainfluenzae are sufficiently abundant—making up on average several percent of
the microbiota at their sites of highest abundance—that metagenomic read recruit-
ment to reference genomes can reliably sample their natural populations. As the
basis for the analysis of natural populations, we constructed pangenomes using
genome sequences from previously cultured isolates. We then investigated the de-
gree to which each gene in the pangenome is represented in populations from the
healthy human mouth using metagenomic data from the Human Microbiome Pro-
ject [1]. We found that genomes can be clustered into distinct, nested genomic
groups that show differences in abundance between habitats. Our results suggest a
framework where bacteria are structured into multiple cryptic subpopulations,
some of which match observed habitat boundaries.
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Results

Metapangenome workflow and the environmental core/accessory designation

A metapangenome provides an integrated overview of how genes are distributed across
reference genomes and across metagenomes [13, 29]. A conceptual schematic for how
we used anvi'o [20] with the approach described by Delmont and Eren [13] to combine
isolate genomes and oral metagenomes into a metapangenome is shown in Fig. 1 and
Additional file 1: Fig. S1.

Construction of the pangenome rests on the definition of gene clusters, groups of
genes that are close to one another in sequence space at the amino acid level (Fig. 1a
parts 1 and 2). The presence or absence of gene clusters in individual genomes can be
displayed so that sets of homologous genes are easily identified that are shared by all
genomes, shared by subsets of genomes, or unique to a particular genome (Fig. 1a part
3). In parallel with the construction of the pangenome at the amino acid level, the dis-
tribution of each gene within the human mouth is assessed at the nucleotide level by
mapping metagenomic reads against the entire collection of cultivar genomes (Fig. 1b
part 1). The result of mapping is a value for “depth of coverage,” hereafter simply
“coverage,” the number of metagenomic short reads that were mapped to a given nu-
cleotide in a given genome; the coverage value serves as an estimate of the abundance
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Fig. 1 Metapangenomic workflow. a Pangenome construction. (1) All putative protein-coding gene
sequences (colored block arrows) are extracted from each bacterial genome (colored bacilli above genes)
to be included in the pangenome and (2) clustered into homologous gene clusters via blastp results
grouped by the Markov Clustering Algorithm (sequence variants cartoonized as shades of the same color).
(3) These gene clusters become the central dendrogram of the pangenome. Note that the gene clusters
are organized by occurrence in genomes, not based on the order found in a particular genome. The
detection of each gene cluster in a genome is visualized by filling in to indicate the presence or absence of
each gene cluster across the genomes. The genomes are ordered by a dendrogram (top right) based on
each genome's gene cluster content. b Metagenomic mapping. (1) The exact genomes as above in a are
used as a reference onto which reads from metagenomes are mapped. Gene-level coverage for each gene
is then calculated. (2) These coverages are plotted for all genes from a given genome to show that
genome’s gene-level representation in those samples. (3) Environmental representation is evaluated for
each gene to decide whether that gene is environmentally core (gene’s median coverage > 0.25 of the
genome’s median coverage across metagenomes from that environment) or environmentally accessory
(gene’s median coverage < 0.25 of the genome’s median coverage). ¢ Metapangenome construction. The
environmental representation from b is then summarized for all genes and then overlaid onto the
pangenome created in a—the inner layers show the genomic representation of the pangenome, and the
outer layer shows the environmental representation of the pangenome. This outer layer summarizes the
fraction of genes in each gene cluster that were environmentally core or accessory in those
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of the gene in the sample. Critically, this mapping of all samples to all genomes is naive
to any assumptions about which genomes occur in which habitats. The detection of a
genome in a metagenome is operationally defined as the finding that at least half of the
nucleotides in the genome are covered at least once. The coverage for each gene in a
genome, for each of a large number of samples, can then be shown as a circular bar
chart (Fig. 1b part 2), with concentric rings showing the coverage recruited from each
metagenomic sample.

Comparative abundance in natural habitats can then be assessed for each gene using
a metric to determine whether genes are core or accessory to an environment, rather
than to a set of genomes [13]. This is accomplished by relating the abundance of a gene
to the abundance of the genome that carries it, with respect to a set of environmental
samples (Fig. 1b part 3). By this metric, a gene in an isolate genome is considered envir-
onmentally “core” if its median coverage, across all mapped metagenomes, is a given
fraction of the median coverage of the genome in which it resides. We used a fraction
of one-fourth, following the threshold used for metapangenomic analysis by Delmont
and Eren [13]. The gene is environmentally “accessory” if its coverage falls below this
cutoff. This method normalizes gene coverage to the genome and so is robust to differ-
ences in sequencing depth across samples. The one-fourth threshold is arbitrary, but
most genes in our samples were either completely covered (detected) in many metagen-
omes and were environmentally core or recruited no coverage and were environmen-
tally accessory (Additional file 1: Fig. S2, Supplemental Methods). Thus, the specific
value of the core/accessory cutoff has minimal effect on the identification of genes as
environmentally core or accessory. The environmental core/accessory metric provides a
way of assessing the contribution of the gene to population structure in the environ-
ment—provided that the pangenome adequately represents the nucleotide sequences of
genes found in the population. If the survival of a microbial cell in the environment
under study depends on having this gene in its genome, the gene should register as en-
vironmentally core, while if the gene were dispensable or required in only a subset of
the cells of the population, the gene would register as environmentally accessory.

The metapangenome (Fig. 1c) combines the pangenome with a summary of the map-
ping information. The outermost concentric ring of the metapangenome, here colored
in red and blue, summarizes the environmental core/accessory metric across all genes
in a gene cluster as a stacked bar chart with the heights normalized to the number of
genes in that gene cluster. The scale of this outer ring thus changes from one part of
the ring to another, as the number of genes per gene cluster ranges from one (as is the
case between 10 o’clock and 12 noon on Fig. 1c) to three in the case of this example as
shown between 3 o’clock and 8 o’clock on the figure. Thus, the metapangenome format
summarizes the cultivar genome data in a visual format that emphasizes sets of shared
or unique genes, and then summarizes the metagenomic data in the form of an envir-
onmental core/accessory metric for each of the genes in this pangenome, assessed
across all the mapped metagenome samples.

The apparent generalist H. parainfluenzae is composed of multiple subgroups
The species H. parainfluenzae is an apparent oral generalist in that it is both abundant
and prevalent at multiple sites within the human mouth [7, 36]; however, previous



Utter et al. Genome Biology (2020) 21:293 Page 6 of 25

reports have suggested that genomically distinct sub-populations may exist within the
mouth [7, 39]. To investigate the genome structure of the global H. parainfluenzae
population as represented by the sequenced cultivated strains, we downloaded thirty-
three high-quality isolate genomes from NCBI RefSeq. These genomes were sequenced
over 8 years at 9 institutions with listed isolation sources ranging from sputum to blood
(Additional file 2), with many from an unspecified body site. Thus, we consider it likely
that each study and institution sampled from independent donors. We constructed a
pangenome from these 33 genomes (Fig. 2, Additional file 3). Inspection of this pan-
genome (4318 gene clusters in total) shows a large core genome encompassing 35% of
the pangenome (N = 1493 gene clusters), shown as the continuous black bars between
9 o’clock and 12 o’clock in Fig. 2. The dendrogram in the center of the figure organizes
the gene clusters according to their presence/absence across genomes and thereby visu-
ally separates the core genome from the accessory genome. The accessory genome con-
sists of 943 gene clusters (22% of the pangenome) unique to a single isolate genome,
shown on the figure between 3 and 5 o’clock, and 1882 gene clusters (44% of the pan-
genome) shared by some but not all isolate genomes, shown between 5 o’clock and 9
o’clock on the figure. Functionally, while the core and accessory genome contained rep-
resentatives of most COG categories, compositional differences were apparent, mostly
due to fewer genes of unknown function in the core genome and fewer conserved func-
tions like translation in the accessory genome (Additional file 1: Figure S3AB, Supple-
mentary Text).

When the genomes themselves are clustered according to the number and identity of
gene clusters that they share, they segregate into three groups (groups 1-3) that are
distinguished by shared blocks of gene clusters (Fig. 2). The dendrogram in the upper
right of the figure (Fig. 2) shows the clustering topography, and the major branch
points in this dendrogram separate the groups. Genome completeness was >99% and
redundancy was < 10% in all genomes (Fig. 2, middle two gray bar charts), suggesting
that the observed grouping is not based on the quality of the genome assemblies. As
the number of gene clusters ranges from 1773 to 2071 per genome (Fig. 2, top right
gray bar chart), the core of 1493 gene clusters represents 72—-84% of the gene clusters
in each genome and the gene clusters found in only a single genome contribute up to
an additional 5%. Thus, collectively, the blocks of gene clusters that characterize the
subgroups of H. parainfluenzae constitute a relatively small fraction of the genome.

Haemophilus parainfluenzae subgroups are habitat-specific

Mapping of metagenomic data onto the genomes shows that the groups defined by
genome content have significantly different distributions among oral sites (p <0.001,
permutational multivariate analysis of variance using Bray-Curtis dissimilarities, calcu-
lated using ADONIS in R [40]). We applied the competitive recruitment approach to
the billions of short reads sequenced by the Human Microbiome Project (HMP [1, 2];)
for hundreds of healthy individuals for three different oral habitats (tongue dorsum,
TD; buccal mucosa, BM; and supragingival dental plaque, SUPP). The mapping infor-
mation is summarized in the heatmap shown in the upper right corner of Fig. 2. For
each oral habitat, the coverage of each genome by the median metagenome is displayed
in the colored bar charts below the heatmap.
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Fig. 2 Metapangenomic analysis of Haemophilus parainfluenza reveals hidden diversity and habitat-specific
subgroups. The inner radial dendrogram shows the 4318 gene clusters in the pangenome, clustered by
presence/absence across genomes. The 33 genomes of H. parainfluenzae strains are plotted on the
innermost 33 layers (black 270° arcs), spaced to reflect discernable groups based on genomic composition.
Gene clusters within a given genome are filled in with black; gene clusters not present remain unfilled.
Genomes are ordered by gene cluster frequency (top right dendrogram), with radial spacing added
between major groups to improve visibility. The outermost three layers show the proportion of genes
within each gene cluster determined to be environmental accessory (red) or core in HMP metagenomes
from TD (blue), BM (violet), and SUPP (green), from inside to outside, respectively. If a genome was not well
detected (< 0.5 of nucleotides covered by all metagenomes), all its genes were NA (gray) instead of
environmentally core or accessory. Extending off the pangenome above 3 o'clock are bar charts of relevant
information for each genome, with the y-axis limits in parentheses. Above the genome content summaries,
each genome’s median coverage across all TD, BM, and SUPP metagenomes is shown in the colored bar
graph. Per-sample coverage of each genome is shown in the heatmap above, where each row represents a
different sample, and cell color intensity reflects the coverage. Coverage is normalized to the maximum
value of that sample (black =0, bright = maximum; colors as before for each site)

Comparison of the pangenome groups with HMP coverage data shows that the mid-
dle group of genomes, group 2, is much more abundant in the 188 tongue dorsum
metagenomes than genomes in the other two groups (Fig. 2 heatmap, median cover-
ages). The heatmap in Fig. 2 shows that each TD metagenome typically provided high
coverage to several group 2 genomes, although there was sample-to-sample variation in
which genomes were most highly abundant. The median coverage bar plots show that
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reads from the median TD metagenome covered each of the nine genomes in group 2
to an average depth of at least 15X, indicating that organisms similar to these strains
are in high abundance on most people’s tongues. Median coverage of the other twenty-
four genomes by TD metagenomes is several-fold less (Fig. 2). By contrast, dental
plaque metagenomes map with higher coverage to the genomes in group 3 (outermost
group), whereas buccal mucosa metagenomes map with similar coverage to all three
groups (Fig. 2). Thus, genomically defined subgroups of H. parainfluenzae have differ-
ential abundance across oral habitats, as reflected in differing levels of coverage of these
genomes by metagenomic reads. Of these, the TD-abundant group of nine genomes ap-
pears most distinct.

Analysis of the phylogenetic relationships among H. parainfluenzae genomes, based
on single-copy genes, revealed that groups defined by genome content differed from
those defined by evolutionary relatedness at the strain level. We constructed a phyl-
ogeny based on nucleotide sequences from 139 bacterial genes previously identified as
present in a single copy in most genomes [41]. This phylogeny placed the TD-
associated genomes in separate clades of the H. parainfluenzae tree (Additional file 1:
Fig. S4A). Two additional methods of assessing similarity, using 16S rRNA gene se-
quences and whole-genome kmer comparisons, provided little phylogenetic signal but
indicated substantial nucleotide-level divergence among strains, respectively
(Additional file 1: Fig. S4B). Thus, these analyses suggest that genomes of H. parain-
fluenzae that are enriched in tongue metagenomes share similar gene content but do
not form a monophyletic evolutionary group.

Genomic characteristics of the tongue-enriched H. parainfluenzae subgroup

Correspondence between genome content and environmental distribution raises the
possibility that the success of a particular strain in a given habitat within the mouth
may rely on the presence of certain genes fixed by selection. Specifically, we asked
whether any genes were particularly characteristic of the nine H. parainfluenzae strains
with high abundance in TD (Fig. 2, middle group of genomes). Only a small set of
genes were present in all genomes of the TD group of H. parainfluenzae and not in
any of the other isolate genomes; these genes are marked by a dark blue wedge labeled
“TD group core” on the figure. We carried out a functional enrichment analysis, as de-
scribed in Shaiber et al. [42], to compare the prevalence of predicted functions among
TD genomes to their prevalence among non-TD genomes revealed by the metapangen-
ome. This analysis identified exactly three functions in three gene clusters altogether
encoding the three subunits of a sodium-dependent oxaloacetate decarboxylase enzyme
exclusive to the TD group (Additional file 4). This enzyme converts oxaloacetate to
pyruvate while translocating two sodium ions from the cytoplasm to the periplasm,
providing a shunt to gluconeogenesis while establishing a potentially useful Na+ gradi-
ent [43, 44]. No complete oxaloacetate decarboxylase operon was detected in any of the
other 24 H. parainfluenzae genomes (Additional file 1: Supplementary Text). No other
functions or gene clusters had this universal presence in the TD-associated group but
complete absence from the other H. parainfluenzae genomes. Aside from selection, an
alternate explanation for the unique occurrence of this oxaloacetate operon in the TD-
associated genomes could be shared evolutionary history, such as if these genomes were
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all isolated from the same subject. However, not only are the TD-associated genomes
not monophyletic (Additional file 1: Fig. S4A), they come from strains isolated from
human sputum, the human toe, and the oropharynx of a rat and have sequences depos-
ited by four different groups over 8 years (Additional file 2). Thus, the oxaloacetate op-
eron stands out as a strong candidate for further experimental investigation into the
source of selective advantage for the group of TD-abundant genomes in the tongue
dorsum habitat.

Many H. parainfluenzae core gene clusters contain high proportions of gene se-
quences scored as environmentally accessory, particularly in TD (Fig. 2, shown as
spikes of red in the “Environmental core/accessory” layer; Additional file 3). This result
likely stems from differences in nucleotide-level sequence divergence from gene to gene
within the population. These core gene clusters do contain sequences that are environ-
mentally core to TD, i.e., the proportion of environmentally accessory sequences in
these gene clusters is never 100% (Fig. 2). Thus, the traits represented by these core
gene clusters are not missing from H. parainfluenzae living in the mouth. Further,
metagenomic mapping can clearly distinguish between the genomes overall at the nu-
cleotide level, as shown by the differential coverage results by habitat (Fig. 2 heatmap
and median coverage bar chart). The differential abundance among some core genes’
sequence variants thus suggests population-level differentiation between different oral
habitats. As the pangenome contains proportionally fewer TD-representative genomes,
the environmentally accessory gene sequences (red spikes) are higher in TD than in
BM or SUPP. Although the metapangenome can identify gene sequences that are de-
pleted in TD, it cannot discriminate between neutral and adaptive reasons for their dif-
ferential abundance. Regardless, sequences for many H. parainfluenzae core genes are
differentially present in certain habitats and may contain signatures of distinct

subpopulations.

Pangenomic analysis of oral members of the genus Rothia

Having decomposed the species H. parainfluenzae into discrete habitat-resolved sub-
populations, we applied the same method of analysis to a genus, Rothia, that is com-
posed of multiple habitat-specialized species [31, 36]. An advantage of constructing
pangenomes at the genus level is that the genus-level core genes, as well as core and
accessory genes of the individual species and strain groups, become readily identifiable.
To assess the similarity of genome content among oral species as well as strains within
the genus Rothia, we downloaded sixty-seven high-quality Rothia genomes from NCBI.
Of the genomes for which the isolation source of the strain was reported, most were
from sputum or bronchoalveolar lavage (Additional file 2). From these 67 genomes, we
constructed a genus-level pangenome consisting of 5992 gene clusters (Fig. 3,
Additional file 5).

One immediately evident feature of the oral Rothia genus pangenome is that the indi-
vidual genomes segregate based on gene content into three major groups, each of
which shares over 200-400 gene clusters that are absent from the others (Fig. 3). Taxo-
nomic designations provided by NCBI (depicted by coloring the genome layers) show
that these groups correspond to the three different recognized human oral Rothia spe-
cies. A large set of gene clusters (n = 1129, 19% of the pangenome) were present in all
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Fig. 3 Genomes in the Rothia genus metapangenome are organized by gene content into groups that
reveal associations to specific habitats. Tips on the inner radial dendrogram, setting the angular axis,
correspond to gene clusters organized by presence/absence across genomes. The angular distance thus
holds the entirety of the Rothia pangenome, 5992 distinct gene clusters. The inner 67 layers (270° arcs)
represent genomes, colored by NCBI's taxonomic assignments, and are organized by their gene cluster
frequencies (top right vertical dendrogram). Each genome’s gene cluster content is displayed by filling in
cells (gene clusters) for genomes in which that gene cluster is present. Gaps in radial spacing of layers
delineate major groups determined by inspection of the pangenome and dendrogram. Groups of gene
clusters are annotated with text and a gray arc—"Genus core” are gene clusters core to the genus Rothig;
“Rm," R. mucilaginosa; "Rm1,” R. mucilaginosa subgroup 1; “Ra + Rd,” both R. aeria and R. dentocariosa; “Rd,”
R. dentocariosa; "Rm2," R. mucilaginosa subgroup 2; “Ra,” R. aeria; “Rm BM,” BM-abundant R. mucilaginosa.
The outermost colored three layers show the proportion of genes within each gene cluster deemed
environmental accessory (red) or core for HMP metagenomes from tongue dorsum (blue), buccal mucosa
(violet), and supragingival plaque (green). If a genome was not well detected (< 0.5 of nucleotides covered
by all metagenomes), all its genes were NA (gray) instead of environmentally core or accessory. Above the
genome content summaries, each genome’s median coverage across all TD, BM, and SUPP metagenomes is
shown in the colored bar graph. Per-sample coverage of each genome is shown in the heatmap above,
where each row represents a different sample, and cell color intensity reflects the coverage. Coverage is
normalized to the maximum value of that sample (black =0, bright = maximum; colors as before for
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of the Rothia genomes and represent the genus-level core genome. Given that each
Rothia genome contains between 1693 and 2252 gene clusters, the genus core repre-
sents half to two-thirds of any given Rothia genome. Other sets of gene clusters were
characteristic of and exclusive to R. mucilaginosa (n =207, 3% of the pangenome), R.
dentocariosa (n =274, 5%), or R aeria (n =455, 8%). Taking the species-level core
genes into account, the three Rothia species were identified unambiguously by their
conserved gene content, with 77%, 77%, and 81% of the median R. mucilaginosa, R.
dentocariosa, and R. aeria genomes, respectively, occupied by genus- or species-level
core genes. The remaining ~ 20% of each genome represents accessory genes that were
present in one or more genomes but not in all genomes of the species. Thus, for the
genus Rothia, pangenomic analysis recapitulated species designations.

Genomes within a single group also form subgroups. The major group of R. mucilagi-
nosa (Rm) genomes can be subdivided into two subgroups defined by 39 gene clusters
exclusive to the larger subgroup (gray line “Rm1” in Fig. 3) and 38 gene clusters exclu-
sive to the smaller subgroup (gray line “Rm2” in Fig. 3). Genomes deposited in NCBI
with only a genus-level designation (i.e., Rothia sp.; black layers in Fig. 3) also fell into
each R. mucilaginosa subgroup, increasing confidence in the discreteness of the sub-
groups. To investigate whether these gene clusters were localized to a single region, as
could result from, e.g., a phage insertion, or whether they were scattered through the
genome, we reordered the gene clusters (columns) to follow the genome order in an ar-
bitrary R. mucilaginosa group 1 genome (Additional file 1: Fig. S5). The gene clusters
present only in group 1 do not localize to a single region but are scattered throughout
the chromosome (Additional file 1: Fig. S5), suggesting that the differentiation between
the groups is not the result of a single recent chance event and may be instead the re-
sult of ecological and evolutionary pressures. Thus, R. mucilaginosa is comprised of at
least two cryptic subgroups.

Metagenomic mapping reveals habitat distributions of genome groups

Metagenomic mapping to the Rothia genomes demonstrated that the different genomic
groups occupy different environments within the mouth. We carried out competitive
mapping to the set of Rothia spp. cultivars using the same HMP metagenomic datasets
as above. The resulting abundance information is summarized in the coverage heatmap
and bar charts in Fig. 3. As in Fig. 2, the heatmap shows coverage data for hundreds of
metagenomes (rows) collected from over a hundred different volunteers by the HMP.
Two of the Rothia species (R. aeria and R. dentocariosa) were most abundant in SUPP
samples, where the mean depth of coverage from the median SUPP metagenome was
approximately 5X for the R. aeria genomes and 2 to 3X for most R. dentocariosa ge-
nomes (Fig. 3). The third species, R. mucilaginosa, was highly abundant in TD and for
the most part displayed only negligible coverage from SUPP and BM samples. Outliers
were also apparent—two genomes in the R mucilaginosa group received high coverage
from approximately one-third of BM metagenomes.

Whereas the heat map summarizes coverage information for each genome and meta-
genome as a single data point, the mapping analysis provides finer-grained information
about the frequency of each gene sequence in natural populations by relating the abun-
dance of each gene to the abundance of the genome that carries it. The three outer
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multicolored layers of Fig. 3 summarize the outcome of this analysis with the Rothia
genus pangenome for SUPP, BM, and TD samples. If a cultivar genome does not re-
ceive enough coverage in a habitat to be considered “detected,” i.e., if more than half of
a genome’s nucleotides received no coverage in every metagenome from a habitat, then
the result for genes from that genome is shown in gray rather than in color to indicate
that the environmental core/accessory status could not be assessed.

Mapping results, as summarized by the environmental core/accessory metric, rein-
forced the conclusion from the coverage heatmap that the genomic groups correspond-
ing to different named Rothia species occupied different habitats within the mouth.
The Rothia genus core genes were environmentally core in all habitats except where
their surrounding genome was not detected—which occurs because many of the R
mucilaginosa genomes were undetectable in BM and SUPP, and many of the R. dento-
cariosa genomes were undetectable in TD. In contrast, species-specific core genes were
only environmentally core to specific habitats. The core genes unique to R mucilagi-
nosa (“Rm” gene clusters, Fig. 3) were environmentally core in TD, but their parent ge-
nomes were not detected in SUPP and BM—with the exception of the two R
mucilaginosa genomes that were abundant in BM and one that passed the detection
threshold in SUPP (thin purple and green lines in Fig. 3). Conversely, the core genes
unique to R. dentocariosa (“Rd,” Fig. 3) were environmentally core in SUPP and BM,
but their parent genomes for the most part were not detected in TD. Thus, these two
species show distinct and complementary habitat distributions. R. aeria genomes be-
haved differently: they were detected in SUPP, BM, and TD and while their unique core
genes (“Ra” gene clusters, Fig. 3) were environmentally core at all three sites, they
attained significantly more coverage from SUPP than from TD or BM (Fig. 3, “median
coverages”) reflecting a bias towards SUPP. Thus, the core genes of Rothia species can
distinguish their distinct habitat ranges. Investigating the predicted functions core to
each species also supported the observed differentiation of species (Additional file 1:
Supplementary Text, Fig. S3C).

R. mucilaginosa genomes divide into subgroups

Subgroups can be distinguished within major species by the presence and absence of
sets of gene clusters, and mapping of metagenomic reads can be used to assess whether
these within-species groups have similar distribution patterns in the sampled oral habi-
tats. The large group of R. mucilaginosa genomes can be subdivided at the pangenome
level into two subgroups that differ by a small set of core genes (“Rm1” and “Rm2” in
Fig. 3). Their genome-scale abundance as assessed by mapping is similar, with both
recruiting coverage primarily from TD metagenomes (Fig. 3 heat map) and detected
primarily in TD (Fig. 3 environmental core/accessory layers). Similarly, at the finer,
gene level of mapping resolution, both the R. mucilaginosa group 1 core genes and the
R. mucilaginosa group 2 core genes were environmentally core in TD. Further, both
subgroups obtained high coverage from many HMP samples. Thus, these two R. muci-
laginosa subgroups do not appear to be the result of a broad habitat shift such as from
tongue to teeth or buccal mucosal sites. Instead, they may represent co-existing sub-
populations, perhaps with distinct microhabitats within the TD community or between
individual mouths.
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We also detected evidence for habitat shifts between major habitats by a small num-
ber of genomes, in the form of outlier results in the mapping of human oral metagen-
omes to Rothia cultivar genomes. These outliers consist of the two R mucilaginosa
genomes that recruited high coverage from BM metagenomes (heat map, Fig. 3). The
two R. mucilaginosa genomes abundant in BM satisfied the detection metric in BM
and plaque, and the genes shared only by these two genomes (labeled RmBM in Fig. 3)
were environmentally core in BM. This distribution provides evidence that a bacterium
similar to R mucilaginosa is in buccal mucosa samples at high enough abundance to
satisfy the detection metric and that sequences from this bacterium find their closest
match in these two R. mucilaginosa genomes in our set of sequenced cultivars.

Two Rothia mucilaginosa genomes represent a BM-adapted subpopulation

To assess how well the outlier R. mucilaginosa genomes with high coverage and detec-
tion in BM represent a true buccal mucosa Rothia community, we inspected the cover-
age of one of the two outlier genomes, R sp. E04, in more detail at the gene level
(Fig. 4). In Fig. 4a, each unit around the near-complete circle represents a different
gene in the genome, and the 90 small tracks show each gene’s coverage in the 30 meta-
genomes per habitat with the highest R sp. E04 coverage (Supplemental Methods). The
BM and SUPP metagenomes covered the majority of this genome’s genes relatively
evenly, evidenced by the taller and more dense bars in the purple (BM) and green
(SUPP) metagenomes, as expected for samples containing populations related to E04
(Fig. 4a). However, this pattern was not observed with TD metagenomes (Fig. 4a, inner
30 rings); instead, the coverage from TD metagenomes was low to absent in most re-
gions of the genome and only dense for a handful of genes. Similar analysis of the other
BM-abundant genome, R. sp. C03, revealed similar results (Additional file 1: Fig. S6).
This pattern suggests the TD coverage results from spurious mapping of isolated re-
gions of high similarity or mobility, e.g., phage elements. Particularly, the intermittent
TD coverage at both the gene level (Fig. 4a) and the nucleotide level (Fig. 4b) indicates
these samples do not contain a population closely related to R. sp. E04. If the reads
from TD metagenomes that do map originate from phylogenetically related but non-
Rothia or non-R. mucilaginosa populations, their evolutionary distance should produce
higher densities of single-nucleotide variants relative to the R. sp. E04 genome. This is
observed in Fig. 4b where the vertical black lines report the mean Shannon entropy of
mapped nucleotide variants; high levels of entropy indicate variability at that nucleotide
position. Thus, inspection of gene-level coverage of outlier isolate genomes validates
these genomes as representatives of an R. mucilaginosa population more abundant in
buccal mucosa rather than the tongue.

The identification of R. sp. E04 as the closest match to the BM-dwelling R. mucilagi-
nosa population allows investigation into the genomic characteristics of the BM popu-
lations. There are 22 gene clusters shared by both genomes abundant in BM but absent
from other known Rothia isolates (Fig. 3 genes "RmBM"). Further, these 22 gene clus-
ters uniquely shared by R. sp. C03 and E04 are scattered throughout the genome (Fig. 4a
genes marked with black tick marks, Additional file 1: Fig. S5), suggesting that these
two genomes are not related simply by a single large shared insertion event, but that
their set of distinctive genes accumulated over time. While these 22 gene clusters do
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(See figure on previous page.)

Fig. 4 Gene-scale metapangenomic analysis suggests candidate gene-level drivers of habitat adaptation. a
Gene-level coverage of Rothia sp. E04. Units along the angular axis are R. sp. EO4 genes, arranged in order
found in R. sp. E04 with contigs joined arbitrarily. The innermost ring labels whether each gene was shared
with all of R. mucilaginosa group 1 (pink), only between the BM-enriched strains R. spp. E04 and CO03 (black;
also shown with black lines outside figure), or otherwise (gray). The innermost 30 layers show coverage of
each gene for 30 TD metagenomes with the highest coverage; middle 30, BM metagenomes; outer 30,
SUPP metagenomes. Each layer's y-axis shows coverage by an individual sample, with y-axes scaled
independently for each layer. The three outermost layers show whether genes were determined as
environmental accessory (red) or core in TD (blue), BM (violet), or SUPP (green). Arrowheads show examples
of gene abundance patterns: uniformly low-to-absent coverage across metagenomes (empty black) vs
stochastically abundant but typically environmentally accessory (filled black). b Nucleotide-level coverage
for a 20-kb contiguous stretch of R. sp. E04's genome that includes a candidate gene driver of the BM
adaptation, GC_00004770. This stretch is shown by the labeled grey arc in a. Each trace shows a single
sample’s coverage, colored according to its oral site. Black bars show the mean Shannon entropy for variant
sites covered at least 10x. Gray boxes above the SUPP traces mark genes, with GC_00004770 highlighted in
black. ¢ Table of the 22 gene clusters unique to R. sp. E04 and R. sp. C0O3 (also marked with black ticks in
panel a). The columns labeled “Environmental Core/Accessory” show the fraction of genes in each gene
cluster that are core (colored according to that habitat's color) or environmentally accessory (red). The
corresponding Pfam function is listed for gene clusters for which a function could be predicted. The gene
clusters environmentally core in BM and SUPP but not in TD are bolded

not contain any unique predicted functions, only a handful of them were environmen-
tally accessory in TD but environmentally core elsewhere (bolded gene clusters in
Fig. 4c). In other words, the four genes in bold in Fig. 4c recruited less coverage than
their surrounding genomes in the 188 TD metagenomes where other R. mucilaginosa
were abundant (Fig. 3 heatmap), yet these four genes had abundance similar to their
surrounding genomes in the 169 BM and 198 SUPP metagenomes (Fig. 4a,b). These
four genes thus represent prominent candidates for future experimental investigation
of their potential role in the adaptation of a TD-abundant taxon to the new habitat of
BM. However, even in BM and SUPP samples, large contiguous portions of the E04
and C03 genomes recruited little to no coverage relative to the rest of the genome (e.g.,
filled red arrowhead in Fig. 4a). Thus, although the cultivated strains R. sp. E04 and
CO03 are the best match out of all 69 genomes and provide some insight into the BM-
inhabiting R. mucilaginosa population, the populations native to BM and possibly SUPP
likely harbor many additional novel genes. In summary, gene-level mapping reveals fea-
tures of the distribution of Rothia strains that suggest fine-tuned adaptation to each

oral site.

Some gene sequences are scarce across all metagenomes; others are intermittently
abundant More broadly, visualizing the mapping at the gene scale reveals different pat-
terns of abundance for genes found in a single cultivated genome. Gene-level mapping
highlights that some of this genome’s sequences for both core and accessory genes may
be at low abundance in the sample relative to the R. sp. EO4 genome across the numer-
ous metagenomes sampled. Many of the environmentally accessory genes are also
accessory in the pangenome (genes from accessory gene clusters colored gray in the in-
nermost ring, Fig. 4a), but many genes identified as members of the core genome
(bright pink; innermost ring) are also environmentally accessory in HMP metagenomes.
However, many such genes scored as ‘environmentally accessory’” are not uniformly low
abundance across all individuals. Rather, they are at or below the limit of detection in
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most samples (i.e., most mouths) but abundant in a few (e.g., the gene indicated by a
filled black arrowhead in Fig. 4a). Thus, the existence of a cultivar containing this se-
quence indicates that cultivation selected a strain with this particular sequence from
relatively low prevalence, either stochastically or as a result of cultivation bias. On the
other hand, some gene sequences are more or less uniformly rare across samples (e.g.,
the empty black arrowhead in Fig. 4a). Such uniform rarity could reflect their restric-
tion to a low-abundance niche or selection against that sequence in the environment,
yet a lineage with that gene survived the bottleneck of isolation. Altogether, these re-
sults illustrate how a given cultivar’s gene sequences may not be equivalently represen-
tative of environmental populations.

Discussion

Metapangenomics provides a means of analyzing complex natural populations from a
springboard of well-characterized isolate genomes. Starting from the solid foundation
of virtually complete genome sequences from cultivated isolates, we constructed pan-
genomes and then used metagenomic read mapping to analyze the distribution of each
gene in the pangenome in wild populations. Our metapangenomic analysis demon-
strated that genomes that nominally belong to the same species in fact comprise
habitat-specific subgroups within H. parainfluenzae and within a species of the genus
Rothia.

Our metapangenomic findings elucidate the population structure of H. parainfluen-
zae and the genus Rothia, revealing differential distribution of species across habitats
within the mouth that are within millimeters of one another and are in continual com-
munication via saliva. Such biogeographic distributions have been suggested by prior
studies based on cultivation as well as 16S rRNA gene surveys [32, 36, 38, 39]; however,
the metapangenomic mapping approach is more comprehensive than cultivation and
relies not on a marker gene to define a population but on complete genomes to dem-
onstrate unequivocally the presence of different sets of microbes in the different habi-
tats of supragingival plaque, tongue dorsum, and buccal mucosa.

The finding of habitat-specific subgroups shows that the buccal mucosa, in particular, is
colonized by a previously unrecognized, distinctive microbiota. Among the three sampled
oral habitats, dental plaque and the tongue dorsum are both characterized by extraordin-
arily dense, complex, and highly structured microbial communities [34, 38, 45, 46],
whereas the buccal mucosa is more thinly colonized by a generally simpler set of microbes
in which the genus Streptococcus comprises approximately half the cells. In this context,
the Rothia spp. detected in 16S rRNA gene surveys on the buccal mucosa could be inter-
preted as microbes shed from the teeth and tongue and lodged transiently on the buccal
mucosa or present in the sample as incidental contaminants from saliva. Our finding of a
distinctive mapping pattern consistent across hundreds of HMP metagenomes for each of
the three sampled oral sites rules out this interpretation and indicates that these microbes
in fact represent a distinctive subpopulation adapted to the buccal mucosa niche.

Pangenomes that combine metagenome-assembled genomes (MAGs) with reference
genomes can offer deeper insight into the gene pool and population structure of environ-
mental microbes [47]. Given the rapid increase of publicly available MAGs [4, 48, 49],
pangenomes of critical populations such as the BM-abundant R. mucilaginosa could be
dramatically expanded. However, combining MAGs with cultivar genomes poses some
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fundamental obstacles. Due to the inherent complexity of metagenome-sampled popula-
tions and assembly algorithms, a MAG is at best a consensus genome of closely related,
perhaps clonal, members of a population, as opposed to a cultivar genome from a single
cell’s clonal lineage that provides comparatively higher confidence that all genes co-occur
in the same cell [5, 8]. While assembly and binning algorithms are improving rapidly,
poorly refined MAGs can suffer from significant contamination issues [6], which can in-
fluence ecological and pangenomic insights [50]. Hence, we focused only on high-quality

cultivar genomes to benefit from higher confidence in their accuracy.

Niche adaptation at the genomic level

Metapangenomic analysis reveals the differential abundance of genes across habitats
and thus presents an opportunity to ask whether the presence or absence of particular
genes is key to abundance in a given environment and whether these genes may encode
traits under differential selection pressures. Several recent studies have applied func-
tional enrichment or depletion analyses to a pangenome to investigate adaptation to
the particular habitats from which those genomes were obtained [14, 15, 51]. Genomic
biogeographic patterns also exist at the global scale, as shown by a recent study that
identified differentiation in the motility and metabolic potential of European E. rectale
populations relative to those from other continents [52]. Another recent study used
methods conceptually similar to ours, i.e., using metagenomic abundances of reference
genes to detect ecologically different subgroups within a population, to identify genes
important for determining which Bacteroides strains engrafted from human mothers to
infants [28]. By summarizing metagenomic recruitment across the entire pangenome,
we extend such investigations of genomic biogeography to evolutionary scales, which
allowed us to detect genomic subgroups with novel niche associations and directly in-
vestigate the frequencies of subgroup-specific genes among environmental populations.
A limitation of the approach we used, however, is that it addresses only the presence
and absence of coding sequences in the genome and cannot identify regulatory regions,
structural variants, or other more subtle genomic traces of potential significance for
niche adaptation.

Our finding of distinctive subpopulations of H. parainfluenzae is consistent with pre-
vious studies that have reported that H. parainfluenzae may be divided into at least
three biotypes based on classical metabolic phenotyping [53]. Further, two recent stud-
ies employed population genetic approaches using metagenomes to detect H. parain-
fluenzae subpopulations with different habitat abundances [2, 39]. These and our
results point towards this apparent generalist population being structured into distinct
subpopulations that represent the partitioning of the oral niche. Additionally, the meta-
pangenomic analysis we used identified the genomic subtypes and specific genes that
are associated with the TD-abundant subpopulation, the oxaloacetate decarboxylase
operon.

The environmental relevance of reference genomes
Ideally, reference genomes for ecological analysis should accurately represent their na-
tive environments. However, in practice, most reference genomes are obtained from or-

ganisms that have been isolated and subjected to repeated subculture under laboratory
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conditions. Many organisms are unable to grow under such conditions; those that grow
may undergo genomic changes due to the imposition or relaxation of selection pressure
under cultivation foreign to their native selective regime. Thus, it is important to evalu-
ate the degree to which existing cultivar genomes serve as suitable references.

In general, although most core and some accessory genes of cultivars were well-
represented in the oral environment, a few core and many accessory genes were un-
common in the oral environment. Genomic core and accessory genes do not corres-
pond precisely to environmentally core and accessory genes, respectively. Particularly,
singleton accessory genes were environmentally accessory, relative to their surrounding
genomes. This result is not unexpected, as the set of accessory genes may be very large
in an open pangenome whereas the microbiome in any mouth consists of a finite num-
ber of strains. Indeed, recent studies have shed light on the magnitude of previously un-
known genes contained within the human microbiome [3, 4]. Nonetheless, it indicates
that the features of any individual strain that are conferred by such accessory genes will
be unrepresentative of a community in the mouth.

A major benefit of employing a metapangenomic strategy is that it permits us to
identify which genes and cultivars are most representative of the microbiota growing in
a given natural habitat. We used metapangenomics to query each gene from the Rothia
and H. parainfluenzae cultivar pangenomes across metagenomes from the human oral
cavity and measure the abundance of each cultivar gene across environments. These
data can serve as a resource to guide the selection of the most environmentally repre-
sentative strains and gene sequences for future experiments.

Cultivars are a valuable starting point for a metapangenomic analysis because they
provide a high-quality foundation for assessing the presence, absence, and precise nu-
cleotide sequence of genes. The source from which a cultivar is isolated, however, is
not necessarily indicative of its environmental distribution; this distribution is more
suitably assessed using metagenomic data. The Baas-Becking hypothesis that “every-
thing is everywhere, but the environment selects” [54] suggests that the isolation of a
single cell does not necessarily imply the existence of a population. The mapping of
metagenomic data to a cultivar genome, by contrast, does indicate the overall abun-
dance of an isolate in a habitat [42, 55], and the depth of coverage provided by different
samples can indicate that the location of the highest abundance of a resident popula-
tion may not be its original site of isolation. For example, the obligate bacterial sym-
biont TM7x was first isolated from a salivary sample in association with an
Actinomyces odontolyticus strain [56]. However, as saliva is a transient mixture of bac-
teria shed from other oral sites, the ultimate source of TM7x remained ambiguous until
metagenomic mapping was used to identify dental plaque as its native habitat [42].
Many of the genomes we used in this study came from strains isolated from sputum
and non-oral sources such as blood, gallbladder, and skin (Additional file 2). Nonethe-
less, these genomes proved to be valuable references to probe the oral distribution of
populations related to these genomes using metagenomic mapping. Based on our map-
ping results that show the high prevalence and abundance of oral populations similar
to the isolate genomes, we infer that the strains isolated from blood and other non-oral
samples are migrants dispersed from resident oral populations.

Mapping metagenomic short reads onto reference genomes can be used to investigate
the relative divergence between a sampled population and the reference genome [17,
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29]. The specific patterns of single-nucleotide variants (SNVs) among even closely re-
lated strains provide one of the most powerful ways to distinguish and track highly re-
lated strains, e.g., from mothers to infants [28]. In this study, we compared the relative
frequencies of SNVs between different habitats as a proxy for relatedness to infer which
sites had populations that were most similar to the reference strain. However, we did
not explicitly search for specific SNVs that were enriched in one habitat vs. another.
Future studies of nucleotide and codon variants across habitats will reveal the import-
ance of nucleotide- and amino-acid-level changes for habitat specialization [57].

We take no position on the species concept

Darwin, recognizing the difficulty in discriminating “doubtful species” [58], declined to
discuss the various definitions that had been given to the term species in his day and
indeed hoped that science would “be freed from the vain search for the undiscovered
and undiscoverable essence of the term species.” He noted that the amount of differ-
ence needed to confer the rank of species was at times “quite indefinite,” that “no clear
line of demarcation” could be drawn between species and sub-species, and therefore
the term species was one “arbitrarily given for the sake of convenience” adding, “ ... to
discuss whether they are rightly called species or varieties, before any definition of these
terms has been generally accepted, is vainly to beat the air.”

Metapangenomics does not alter Darwin’s general conclusion; rather, it confirms and
refines it at the genomic level. Our results indicate that for some taxa, such as the
genus Rothia, pangenome analysis broadly supports the currently recognized species
definitions, while for other taxa such as H. parainfluenzae habitat-associated subpopu-
lations are detected that may or may not warrant species-level recognition. Even group-
ing whole genome sequences by hierarchic clustering based on gene composition
results in “no clear line of demarcation.” Rather, we observed a spectrum of genome
cluster relatedness.

Conclusions

In conclusion, our results reveal the detailed association between the environmental
distribution and genomic diversity of oral bacterial populations. These patterns reveal
that seeming generalist species are composed of cryptic subpopulations and that poten-
tially only a small number of genes are associated with each subpopulation. More
broadly, diversification to fully exploit available ecological niches is observed at many
levels, from recognized species distinguished by many genes down to closely related

subpopulations.

Methods

Metapangenomes were prepared using publicly available genomes annotated as belong-
ing to the genus Rothia, a gram-positive oral facultative anaerobe in the phylum Acti-
nobacteria, and genomes annotated as the species Haemophilus parainfluenzae, a
facultative gram-negative anaerobe in the phylum Proteobacteria. A flowchart linking
the major methods and analyses is provided in Additional file 1: Fig. S1, and the Sup-
plemental Methods, a detailed narrative methods document with reproducible code, is
available at https://dutter.github.io/projects/oral_metapan.
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Genomic and metagenomic data acquisition

Genomes were downloaded from NCBI RefSeq based on the associated names using
the assembly summary report obtained from ftp://ftp.ncbinlm.nih.gov/genomes/AS-
SEMBLY_REPORTS/. Sequence names were simplified to contain only the strain iden-
tity and a unique contig id for all contigs, and then concatenated into a single FASTA
file containing all genomes of interest. This file was used as the starting point for the
anvi'o pangenomic analysis [20].

For the genus Rothia, 67 of the 73 genomes present in RefSeq were used. Genomes
were inspected for potential errors and contamination which were identified based on
expected genome size and gene count, fragmentary assemblies composed of short con-
tigs, aberrantly high coverage of specific genes of unknown function (e.g., > 1000x
coverage for genes that are neither rRNA nor mobile elements), and existing literature
[59]. Of the six genomes not used, R. nasimurium was discarded for not being recog-
nized as an oral resident by the HOMD, while R. sp. Olga and R. sp. ND6WEIA were
discarded as non-oral isolates with aberrantly large unique gene contents (potentially
contaminant genes). One R. dentocariosa genome was discarded for aberrant coverage
and two R. dentocariosa genomes (OG2-1 and OG2-2) for containing potential contam-
inant genes based on aberrant coverage and for being identified as contaminated by
Breitwieser et al. [59]. For Haemophilus parainfluenzae, all 33 genomes in RefSeq
passed the contamination inspection and were used for analysis. Metadata from NCBI
available for each strain is provided in Additional file 2.

Raw short-read metagenomic data from the Human Microbiome Project (HMP) were
downloaded for tongue dorsum (TD, n =188), buccal mucosa (BM, n =169), and
supragingival plaque (SUPP, n =194) using the HMP data portal at https://portal.
hmpdacc.org/. These short-read data had undergone the HMP quality-control pipeline
which includes trimming of low-quality bases and subsequently discarding of reads
below 60 bp [1].

Metapangenomic workflow

The metapangenome was constructed for each taxon using anvi'o with methods modi-
fied from Delmont et al. (2018; Additional file 1: Fig. S1). Open reading frames (ORFs)
were identified on the downloaded contigs using Prodigal [60] and converted into an
anvi'o-compatible database using the command anvi-gen-contigs-db. ORFs were
exported and functionally annotated with InterProScan (version 5.30-69) using Pfam,
TIGRFAM, ProDom, and SUPERFAMILY [61-64]. Coverage of each taxon’s genomes
was determined in each HMP metagenome using bowtie2 [65] with default parameters
(--sensitive). Coverage of units encompassing multiple nucleotides, e.g., a gene or gen-
ome, is calculated from the per-nucleotide bowtie2 coverages by dividing the sum of
nucleotide coverages in that unit by the number of nucleotides, as is the standard
method for reporting a unit’'s coverage. Short reads from each metagenome were
mapped against all genomes for that taxon; thus, the bowtie2 matched each read to the
best-matching genomic locus, randomly choosing between multiple loci if they were
equally best. Thus, coverage at highly conserved regions is affected by the total popula-
tion abundance in that sample, while the coverage at variable loci reflects that particu-
lar sequence variant’s abundance. These per-sample coverages were then incorporated


ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/
ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/
https://portal.hmpdacc.org/
https://portal.hmpdacc.org/

Utter et al. Genome Biology (2020) 21:293 Page 21 of 25

into the anvi'o database, and per-ORF coverages and summary metrics (max, min,
mean, median) were determined. Single-nucleotide variants (SN'Vs) were also called per
nucleotide if that nucleotide was covered at least 10x.

To compute pangenomes, we used the anvi'o workflow for pangenomics (see http://mer-
enlab.org/p for a tutorial). Briefly, this workflow uses BLASTP [66] to compute amino-acid-
level identity between all possible ORF pairs, from which removes weak matches by employ-
ing the --minbit criterion with default value 0.5 which requires that the bitscore of BLAST
be at least half the maximum possible bitscore given the length of the sequences. The work-
flow then uses the Markov Cluster Algorithm (MCL) [67] to group ORFs into putatively
homologous gene groups (gene clusters; Additional file 1: Supplementary Text) and aligns
amino acid sequences in each gene cluster using MUSCLE [68] for interactive visualization.
For display of the pangenome, the order of the genome layers was determined by clustering
the genomes based on the frequency with which each gene cluster appeared in each gen-
ome, also shown as a dendrogram above the genome layers (e.g., top right of Figs. 2 and 3).
Dendrogram branch length is fixed to an arbitrary constant.

Each gene’s environmental core/accessory status was determined for any genomes
covered at least 1x over half the genome length in at least one sample. A gene was clas-
sified as environmentally core with respect to an oral site if the median coverage of that
gene by samples from that oral site was at least one-fourth the median coverage by
those same samples of the genome from which it came [13]; otherwise, the gene was
classified as environmentally accessory. If the genome was not confidently detected (if
less than half of the nucleotides in the genome were covered) in any metagenome, all
genes were reported NA instead of environmentally core or accessory.

A phylogenomic tree for the H. parainfluenzae isolates was constructed in RAxML
[69] with the GTRCAT model and autoMRE boostrapping option using a nucleotide
alignment of 139 concatenated single-copy core genes obtained with the anvi-get-
sequences-for-hmm-hits program.

Single-genome mapping
Per-sample coverage of a single genome was determined from the results of the meta-
pangenomic analysis. For each oral habitat, coverage data for each strain’s genome was
extracted from the metapangenomic data using the command anvi-script-gen-distribu-
tion-of-genes-in-a-bin, with the same environmental detection threshold as above
(0.25). Per-habitat analyses were combined using a custom wrapper script employing
anvi'o functions, subsetting to show coverage for the 30 samples per oral habitat with
the highest median coverages, while retaining the environmental core/accessory deter-
mination from all samples, not just the selected 30 samples (Supplemental Methods).
For visualization of nucleotide-level coverage in Fig. 4b, coverage was obtained using
the anvi-get-split-coverages for the splits containing the gene(s) of interest and plotted
with a custom R script (Supplemental Methods). SNV information from each metagen-
ome was reported using anvi-gen-variability-profile command (variability information was
recorded during the mapping step described earlier) which outputs the Shannon entropies
of each variable position. Higher Shannon entropy signifies more environmental variabil-
ity while low entropy signifies less variability. The mean of the observed Shannon entro-
pies from all reporting metagenomes was then plotted for each position by oral habitat.
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Functional enrichment analyses
Functional enrichment analyses were carried out following the pipeline described in
Shaiber et al. [42]. The analysis uses the anvi-get-enriched-functions-per-pan-group
function, which de-replicates the predicted functions of each genome and then carries
out a series of functional contrasts between specified groups of genomes. For the H.
parainfluenzae analysis, the three groups displayed in Fig. 2 were used as the groups,
and TIGRFAM functions were used. The analysis identifies enriched and depleted func-
tions by group based on the prevalence of each function in genomes belonging to that
group vs. the prevalence of that function in genomes outside that group.

Figures were generated with anvi'o [20] and cleaned for publication in Inkscape
(https://inkscape.org/).
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