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Abstract

Background: The Boran (Bos indicus), indigenous Zebu cattle breed from sub-
Saharan Africa, is remarkably well adapted to harsh tropical environments. Due to
financial constraints and low-quality forage, African livestock are rarely fed at 100%
maintenance energy requirements (MER) and the effect of sub-optimal restricted
feeding on the rumen microbiome of African Zebu cattle remains largely
unexplored. We collected 24 rumen fluid samples from six Boran cattle fed at sub-
optimal and optimal MER levels and characterised their rumen microbial
composition by performing shotgun metagenomics and de novo assembly of
metagenome-assembled genomes (MAGs). These MAGs were used as reference
database to investigate the effect of diet restriction on the composition and
functional potential of the rumen microbiome of African cattle.

Results: We report 1200 newly discovered MAGs from the rumen of Boran cattle. A
total of 850 were dereplicated, and their uniqueness confirmed with pairwise
comparisons (based on Mash distances) between African MAGs and other publicly
available genomes from the rumen. A genome-centric investigation into sub-optimal
diets highlighted a statistically significant effect on rumen microbial abundance
profiles and a previously unobserved relationship between whole microbiome shifts
in functional potential and taxon-level associations in metabolic pathways.

Conclusions: This study is the first to identify 1200 high-quality African rumen-
specific MAGs and provides further insight into the rumen function in harsh
environments with food scarcity. The genomic information from the rumen
microbiome of an indigenous African cattle breed sheds light on the microbiome
contribution to rumen functionality and constitutes a vital resource in addressing
food security in developing countries.
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Background
Ruminant livestock represent an important part of human nutrition as a major source

of our meat and milk [1]. Increase in population and demand for such products means

that by 2050, production of meat and milk must increase by 76% and 63% globally, if

demands are to be met [2]. This presents novel challenges for the African livestock sec-

tor where increase in demand exceeds population growth, showing a greater correlation

to an increase in disposable income. Herrero and colleagues [3] highlighted that investi-

gation into the current and long-term genetic potential of indigenous livestock breeds

will help address some of these challenges. The rumen is a complex anaerobic micro-

bial ecosystem which plays an essential role in feed digestion through microbial fer-

mentation. The functionality of the rumen microbial population allows the conversion

of plant material of relatively low nutritional value into readily absorbed vital com-

pounds for the animal. Furthermore, the efficiency of the different fermentation pro-

cesses employed by the rumen microbial community dictates the quality and quantity

of production within each animal [4–6]. In commercial settings, ruminant production

as a product of rumen microbiology is a widely studied area of agricultural science. Sur-

veys of smallholder famers in sub-Saharan Africa have shown that nearly 60% of

farmers in these production systems consider lack of forage as one of the major con-

straints they face [7]. Despite this, investigation in sub-optimal farming environments is

still underrepresented. Understanding the contribution of all members of the micro-

biome to rumen functionality is paramount to the development of feeding and farming

strategies to maximise animal production to support small farming communities and

preserve global food security. Given this necessity, organisms from the rumen micro-

biome, regardless of host species and location, are generally underrepresented in gen-

ome and marker gene databases. To address this shortfall, the 16S databases have been

added to by projects such as the Global Rumen Census [8], while the Hungate1000 has

cultured and sequenced more than 400 rumen microbial genomes [9]. Although the

Hungate collection represents a global effort, only six of the isolates originated from

the African continent all from ovine origin. Furthermore, despite the Hungate1000 pro-

ject improving the availability of genomic information for the 88 described rumen gen-

era from 12.5 to 83% [9] as well as adding 30 genomes from the list of 70 ‘most

wanted’ rumen genomes, this only serves to highlight the limitations of current cultur-

ing strategies. Furthermore, while efforts have been made to address the lack of gen-

omic information about rumen organisms [9], and then use newly sequenced genomes

to infer rumen function [10], metagenome-assembled genomes represent a set of

environment-specific genomes that has not been biassed by culture or isolation tech-

niques [9].

Recent work by Stewart et al. [11, 12] has shown the value of culture-free methods in

the isolation of genomic information for rumen organisms through the release of 913

and then 4941 metagenome-assembled genomes (MAGs), leading to a fivefold increase

in the taxonomic classification of rumen taxa from various other rumen studies. The

authors also provided an unparalleled resource of functional information in the form of

thousands of novel carbohydrate active enzymes (CAZymes). As a tool for the further

study of the rumen environment, MAG data has already allowed further insight into

the complex suite of pathways involved in carbon degradation, even in previously un-

known taxa and lineages [11, 13]. However, as previously highlighted, the 913 MAGs
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(referred to as RUGs [11]) originate from the rumen of 43 Scottish cattle, the 4194

MAGs (referred to as RUG 2.0 genomes [12]) from an additional 240 Scottish cattle—

all consisting of three cross breeds (Aberdeen Angus, Limousin and Charolais) and one

pure breed (Luing), and do not represent the diversity of the rumen ecosystem in cattle

in other geographical locations and under distinct feeding regimes [8].

To address the underrepresentation of genomes from the rumen of African cattle liv-

ing in harsh tropical environments, we aimed at identifying the specificity and unique-

ness of the rumen microbiota in indigenous cattle exposed to food scarcity. Here, we

identified and characterised novel MAGs extracted from rumen samples of Boran cattle

in sub-Saharan Africa that were either fed at the minimum energy requirement (MER)

or subjected to feed restriction (40%, 60% and 80% MER). We used a genome-centric

approach to estimate MAG abundance and further investigate the MAG’s functional

potential [14]. The new MAGs extend the genomic resources currently available to the

scientific rumen microbiome community. The genomic information from the rumen

microbiome of an indigenous African cattle breed presented here further helps in deci-

phering the microbiome contribution to rumen functionality in African cattle species

and provides a vital resource in addressing food security in developing countries.

Results
Sequencing and assembly

Sequencing on an Illumina HiSeq 4000 generated 749 Gb of data from 24 samples from

the rumen of African Zebu cattle. Following read trimming, using Trimmomatic [15],

the samples contain an average of 106 million 150-bp paired-end reads (ranging from

67 to 255M). Single-sample assembly and co-assembly were performed using IDBA-

UD [16] and MEGAHIT [17] as described in the workflow (see Fig. 1 and the ‘Methods’

section). Binning of the resulting contigs from single-sample assembly and co-assembly

produced 7040 bins and 3623 bins, respectively, for a total of 10,663 draft-quality

metagenome-assembled genomes (MAGs). Filtering those MAGs based on complete-

ness and contamination using CheckM [18] resulted in 1200 high-quality MAGs. Fol-

lowing dereplication using dRep [19], 850 ‘winning’ MAGs remained (Fig. 2), i.e. 350

MAGs showed greater than 99% similarity to another MAG and had a lower genome

quality score as calculated with dRep. Additional clustering based on at least 99% simi-

larity, as described in the ‘Methods’ section, highlighted that 616 of the clusters repre-

sented singletons (51.3%), while a further 165 clusters contained duplicate bins

accounting for a further 27.5% of all high-quality bins (Table 1). Interestingly, none of

the MAGs was 100% identical to each other, and therefore, all 1200 MAGs contain

unique genetic information. The 850 winning genomes represent 697 from the single-

sample assemblies and 153 from the co-assembly.

Taxonomic classification

For basic prokaryotic classification of MAGs, the CheckM workflow within MAGpy

successfully [20] classified all 850 MAGs whereas DIAMOND and PhyloPhlAn classi-

fied 809 and 843, respectively. Moving down the taxonomic ranks, CheckM classifies

the lowest at each subsequent rank. PhyloPhlAn classifies the most MAGs down to

order level but only 159 and 51 at family and genus levels, respectively. The
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DIAMOND method classifies 594 and 592 MAGs at family and genus levels (Fig. 3 and

Table S1). As the DIAMOND classification resolved the taxonomic classification of

more bins at lower taxonomic ranks, the results of this classification method were used

for further comparisons.

Of the 1200 high-quality MAGs, 385 (32.08%) were classified as members of the Bac-

teroidetes phylum, 514 (42.83%) as Firmicutes and 85 (7.08%) as Proteobacteria

(Table 2). The proportions of genomes classified as members of each of the identified

rumen phyla were significantly, highly correlated to those from RUG (Pearson’s r =

0.99, P < 0.001) and RUG 2.0 (Pearson’s r = 0.98, P < 0.001) genomes. Spearman’s rank

correlation of the same phylum-level classifications indicated that the relative propor-

tions of the major phyla were similar between the African MAG and RUG (r = 0.79)

and RUG 2.0 (r = 0.63) genomes, but that some of the phyla with lower abundance may

Fig. 1 Bioinformatics workflow. Sequence processing and MAG discovery and identification workflow
adapted from Stewart et al. [11] (additional details in text)
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represent more variable proportions of the microbiome, while the major difference is

the relative proportion of Lentisphaerae genomes identified (Table 2).

Uniqueness

Following dereplication with the dRep pipeline, all 850 African MAGs and 913 Scottish

RUGs were identified as ‘winning’ genomes and were therefore not more than 99%

similar to another genome. Additionally, pairwise MASH [21] comparison of all MAGs,

RUGs, Hungate and RUG 2.0 genomes shows that no African MAGs show complete

identity to any other publicly available rumen organism genome, and only 97 MAGs

show at least 90% similarity to any other genome, 93 compared to RUG 2.0 and 3 com-

pared to genomes from the Hungate collection and only one from the original Scottish

RUGs (Figs. 4 and 5a and Table S2), and the majority of the MAGs (753/850) show less

than 90% similarity to any of the publicly available genomes (Fig. 5a). Comparing the

genomes within the African MAG dataset, 658 MAGs show less than 90% similarity to

another MAG, and 192 genomes showing at least 90% similarity to another MAG

(Figs. 4and 5b and Table S2).

Fig. 2 CheckM-generated quality metrics for all 850 dereplicated African MAGs. a Distribution of
completeness. Orange: substantial completeness (> 80%). Blue: near completeness (> 90%). b Distribution of
contamination level. Grey: medium (< 10%) contamination. Blue: low (< 5%) contamination. Orange:
no contamination

Table 1 Distribution of 1200 high-quality MAGs in secondary clusters from the dRep workflow

#MAGs (cluster size) No. of clusters No. of genomes (%)

7 3 21 (1.75)

6 3 18 (1.5)

5 7 35 (2.92)

4 12 48 (4)

3 44 132 (11)

2 165 330 (27.5)

1 616 616 (51.33)

Total 850 1200

The three largest clusters consisted of 7 genomes, indicating that in this case 21 high-quality genomes were dereplicated
into 3 ‘winning’ genomes. Singleton clusters (unique genomes) accounted for 616 genomes, and doubletons more than
a quarter of all 1200 MAGs
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Functional annotation

Comparison of the 1,613,102 predicted proteins to the KEGG database resulted in a total of

768,535 hits to 3999 KEGG orthologs (KOs) identified in the African MAGs. These mapped

to 7470 pathway modules within the KEGG BRITE database (Table S3 – KO_Counts).

Comparison of the KOs identified within the African MAGs to those within the CowPI

Fig. 3 Venn diagram showing numbers of taxonomic assignments in agreement between methods for 850
MAGs. Classification of the taxonomic assignments of the 850 winning MAGs by the three methods
incorporated in MAGpy (CheckM, DIAMOND, PhyloPlAn). Intersections represent numbers of taxonomic
classification in agreement between methods

Table 2 Phylum-level taxonomic classification of MAGs and RUGs

Classified phyla High-quality MAGs
(1200)

Winning MAGs (850) Scottish RUGs (850) RUG 2.0 (4941)

No. of
genomes

% No. of
genomes

% No. of
genomes

% No. of
genomes

%

Bacteroidetes 385 32.08 253 29.76 288 33.88 1707 34.55

Firmicutes 514 42.83 377 44.35 391 46.00 2407 48.71

Proteobacteria 85 7.08 65 7.65 30 3.53 133 2.69

Fibrobacteres 3 0.25 2 0.24 6 0.71 42 0.85

Actinobacteria 3 0.25 2 0.24 30 3.53 164 3.32

Lentisphaerae 76 6.33 50 5.88 8 0.94 20 0.40

Spirochaetes 7 0.58 6 0.71 10 1.18 59 1.19

Tenericutes 22 1.83 16 1.88 4 0.47 118 2.39

Planctomycetes 9 0.75 5 0.59 4 0.47 12 0.24

Fusobacteria 5 0.42 4 0.47 1 0.12 0 0.00

Verrucomicrobia 1 0.08 1 0.12 0 0.00 47 0.95

Elusimicrobia 16 1.33 13 1.53 8 0.94 26 0.53

Synergistetes 1 0.08 1 0.12 0 0.00 0 0.00

Ignavibacteriae 1 0.08 1 0.12 0 0.00 0 0.00

Euryarchaeota 7 0.58 6 0.71 29 3.41 126 2.55

Bacteria 65 5.42 48 5.65 41 4.82 80 1.62

Distribution of genomes classified to prokaryotic genera within the high-quality (1200) and ‘winning’ (850) MAGs,
metagenome-assembled original Scottish RUGs and RUG 2.0 genomes
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database [10], which consists of 4585 KOs from genomes in the Hungate collection,

highlighted 2675 KOs in common between these datasets. The CowPI data contained

1910 KOs not identified in the African MAGs, 1049 of which are associated with me-

tabolism functions. The African MAGs contained 1324 KOs that have not been identi-

fied in the CowPI dataset, 573 of which are associated with metabolism. The MAGs

contained 260 KOs, not present in the Hungate genomes, that are poorly characterised

within the KEGG database, whereas the Hungate genomes only contain 53 such KOs

(Table S3 – KO_Counts).

Comparison of MAG proteins to HMM profiles representing CAZymes, as provided

in the dbCAN [22] database, resulted in identification of 69,628 carbohydrate active en-

zyme sites across 68,850 proteins within the dataset, consisting of 39,566 glycoside hy-

drolases (GH), 17,473 glycosyl transferases (GT), 1052 polysaccharide lyases (PL), 9060

carbohydrate esterases (CE), 111 with auxiliary activity (AA) and 2366 carbohydrate

binding modules (CBM) (Table S4 – CAZy_Counts).

The proportion of CAZymes identified within African MAGs shows a similar distri-

bution to those identified in the both the original RUGs from Scottish cattle and RUG

Fig. 4 Distribution of minimum Jaccard distance (y axis) between sets of genomes. Distances within a
single dataset from African MAGs (MAG), Scottish RUGs (RUG) or Hungate (HUN); between two datasets
(MAGvRUG, MAGvHUN, RUGvHUN, MAGvAll, RUGvAll, HUNvAll). X axis shows number of genomes

Fig. 5 Number of MAGs with maximum percent identities calculated from Jaccard Mash distances. a 850
MAGs compared to 913 RUGs, 4941 RUG 2.0 and 460 Hungate genomes. b 850 MAGs compared to all
other MAGs
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2.0 (Table 3). CAZymes also showed similar taxonomic association with MAGs/RUGs

identified as being taxa involved with carbohydrate metabolism (Table 4, Figs. 6 and 7).

To assess novelty, all 68,850 identified carbohydrate active proteins from African MAGs

were compared to proteins in the nr, env_nr, M5nr and UniProt/TrEMBL databases; the

Hess et al. gene predictions; and additionally the RUG and RUG 2.0 predicted proteins.

Only 1286 proteins were completely identical to a protein in any other database or data-

set. Furthermore, 78.2% (53,838) of proteins with carbohydrate activity showed less than

95% protein identity to a protein in any other database or dataset (Table 5).

Comparison of CAZyme families present in each dataset indicated the RUGs contained

218 CAZymes in total with 8 GHs, 7 CBMs, 2 GTs and one AA and one PL only encoded

by the RUGs, whereas the MAGs contained 225 total CAZymes and 13 GHs, 3 CBMs, 7

GTs and 3 PLs not present in the RUGs. The RUG 2.0 genomes encoded 224 of the 225

MAG CAZymes, missing GH100 as in the RUGs. They also encoded all 19 of the

CAZymes contained in the RUGs and not the MAGs, and an additional 22 CAZymes not

found in the MAGs or RUGs. Clustering reconstructed groups of enzymes associated with

taxa known to contribute to specific substrate degradation, for example, cellulose degrad-

ation in the Clostridia, xylan in the Prevotellaceae and Ruminococcaceae and hemicellu-

lose also in the Prevotella (Fig. 7). Comparison of the clustered CAZyme profile of

African MAGs (Fig. 7a, Fig. S1) to that of the Scottish RUGs (Fig. 7b, Fig. S2) indicates

differences in the abundance of some enzyme families within the genomes of rumen or-

ganisms from the two systems.

Effect of diet restriction on rumen microbiome structure and functional potential

Estimation of MAG abundance by mapping reads to MAG contigs, and correcting for

length and GC content bias, showed that all 850 MAGs were present in all animals and

all diets, with at least one supporting read (Table S5). Average abundance of the major

rumen phyla associated with each diet treatment ranged between 53.15–57.80% for the

Bacteroidetes, 21.54–24.28% for the Firmicutes and 2.52–3.41% of Proteobacteria. Add-

itionally, the abundance of MAGs classified as members of the phylum Lentisphaerae

ranged between 12.03 and 12.78% (Table 6). Analysis at MAG level indicated 30 (20

log2 fold change (LFC) > 0, 10 LFC < 0) differentially abundant MAGs when comparing

40% and 80% MER diet treatments, and 30 (16 LFC > 0, 14 LFC < 0) when contrasting

60 to 80% MER diets (Table S6). Classification of the differentially abundant MAGs

Table 3 Presence and distribution of CAZy modules within the MAGs and RUGs

CAZy
module

African MAGs Scottish RUGs RUG 2.0

Count % Count % Count %

GH 39,566 56.82 40,140 55.14 235,001 53.09

GT 17,473 25.09 19,722 27.09 120,494 27.22

PL 1052 1.51 1121 1.54 6834 1.54

CE 9060 13.01 9119 12.53 55,523 12.54

AA 111 0.16 154 0.21 907 0.20

CBM 2366 3.40 2545 3.50 23,928 5.41

Counts of enzymes identified in each CAZyme module within the entire MAG and RUG datasets. GH glycoside hydrolase,
GT glycosyl transferase, PL polysaccharide lyases, CE carbohydrate esterases, AA auxiliary activities, CBM carbohydrate
binding modules
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highlighted that the same 30 MAGs were differentially abundant when contrasting 40%

and 80% MER diet and when contrasting the 60 to 80% MER diets. Of the 30 differen-

tially abundant MAGS, 5 were identified as Clostridiales, 4 as Clostridium, 1 as Bacter-

oides, 7 as Bacteroidales, 3 as Prevotella and 2 as Ruminococcus (Table S6).

Principal coordinate analysis (PCoA) of Euclidean distances between samples calculated from

Hellinger transformed MAG abundance estimates that were batch corrected for animal and

period effects indicates highly distinct clustering of samples associated with each diet. The first

principal coordinate (Axis.1 in Fig. 8) accounts for 26.7% of the variance between samples and

shows the greatest distinction between clusters of samples representing the 40% and 80% diets.

The second principal coordinate (Axis.2 in Fig. 8) accounts for 20% of the variance and distin-

guishes samples representing the 60% diet from all other samples. After 9999 permutations,

Adonis2 (PERMANOVA) analysis on the same Hellinger transformed and batch corrected data

indicates that rumen community structure is highly significant (P=0.0001) with regard to the

diet, as well as significant (P< 0.05) in all pairwise comparison between each diet.

Table 4 Distribution of CAZy modules across the different MAG taxa

Phylum GH % GT % PL % CE % AA % CBM %

Bacteroidetes 60.44 20.61 2.49 13.12 0.00 3.34

Firmicutes 54.41 26.65 0.51 14.19 0.23 4.01

Lentisphaerae 65.04 18.89 1.08 11.98 0.30 2.72

Bacteria 36.05 52.36 0.13 9.55 0.04 1.88

Proteobacteria 37.27 50.76 0.46 8.44 0.51 2.55

Planctomycetes 56.76 21.04 1.16 14.48 0.39 6.18

Elusimicrobia 23.33 68.33 0.24 7.14 0.71 0.24

Tenericutes 22.31 63.08 0.00 11.54 0.00 3.08

Spirochaetes 44.22 36.18 1.01 15.08 2.01 1.51

Fusobacteria 34.81 56.33 1.27 5.06 2.53 0.00

Fibrobacteres 42.96 38.52 0.00 11.85 0.00 6.67

Euryarchaeota 5.68 84.09 0.00 5.68 4.55 0.00

Verrucomicrobia 56.25 10.94 0.00 21.88 1.56 9.38

Actinobacteria 30.23 46.51 0.00 20.93 0.00 2.33

Ignavibacteriae 22.58 74.19 0.00 3.23 0.00 0.00

Synergistetes 18.18 72.73 0.00 0.00 9.09 0.00

Proportions of CAZymes assigned to each CAZy module within MAGs classified as each of the rumen phyla

Fig. 6 Total counts of enzymes in each CAZy module as assigned by dbCAN. Counts have been
aggregated to represent the representation of each module in each of the major (a) and minor (b) phyla of
the rumen
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To assess the effect of diet on the functional potential of the rumen microbiome of African

cattle, KO counts per MAG (Table S3) were multiplied by the abundance of each MAG per

sample (Table S5) to generate a KO per sample matrix to represent the functional potential of

the rumen microbiome of each sample (Table S7). Comparison of KOs associated with the

40% MER diet and 60% MER diet against the 80% MER diet revealed significant differential

abundances of 147 (91 LFC> 0, 56 LFC < 0, Table S8 – 40vs80) and 147 (78 LFC > 0, 69

LFC < 0, Table S8 – 60vs80) KOs, respectively. Classification of the differentially abundant

KOs indicated that the same 147 KOs were differentially abundant between the 40% and 80%

diets and between the 60% and 80% diets. Of the 147, 54 (36.7%) are directly involved in me-

tabolism pathways. The fold changes of significantly differentially abundant KOs associated

with the amino acid metabolism, carbohydrate metabolism, energy metabolism and nucleo-

tide metabolism pathway modules are highlighted in Fig. 9.

Interplay of significantly differential abundant genomes with significant change in

functional potential

To highlight the power of our genome-centric approach in the analysis of the rumen

metagenome, significant changes in the overall functional potential of the microbiome

Fig. 7 Heatmaps displaying counts of enzymes belonging to each CAZy family, in each MAG. Clusters of
CAZyme families involved in the breakdown of selected polysaccharides are highlighted by coloured boxes.
Heatmaps generated from CAZymes present in African MAGs (a) or Scottish RUGs (b)

Table 5 Novelty of CAZyme proteins

Protein set PID (% protein identity) thresholds

100% 99% 95% 90% 85% 80%

nr 9 93 402 960 2020 3653

env_nr 1 1 11 33 210 661

M5nr 1 2 96 532 1764 4073

UniProt/TrEMBL 2 8 83 415 1169 2468

Hess 839 1553 5404 10,947 17,597 24,151

RUG1 116 665 3058 7173 12,489 18,590

RUG2 338 2028 8243 17,342 26,825 35,159

Total unique 1286 4172 15,012 28,561 40,458 49,323

Counts of hits at distinct minimum percentages of protein identity (PID) thresholds (100%, 99%, 95%, 90%, 85% and
80%) of all 68,850 carbohydrate active proteins from African MAGs against nr, env_nr, M5nr and UniProt/TrEMBL
databases and the Hess et al. (Hess), original RUG (RUG1) and RUG 2.0 (RUG2) predicted proteins. The total unique
number represents the number of proteins from the African MAGs that have a hit in at least one database
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were contrasted with differences accounted for by the significantly differentially abun-

dant genomes. To achieve this, counts of the KOs that were shown to be differentially

abundant between the more restrictive 40% and 60% diets and the 80% diet were ex-

tracted. Additionally, KO counts were scaled only by the abundances of the subset of

genomes shown to be differentially abundant between the same 40 to 80% and 60 to

80% diet contrasts (30 MAGs in total). All counts were then aggregated into the KEGG

BRITE pathway modules for amino acid metabolism, carbohydrate metabolism, energy

metabolism and nucleotide metabolism and grouped according to their taxonomic

Table 6 Estimated relative abundance of MAGs classified at phylum level across diet treatments

Phylum Average relative abundance (%)

40% MER 60% MER 80% MER

Bacteroidetes 53.15 57.80 55.31

Firmicutes 24.28 21.54 24.12

Proteobacteria 3.41 2.52 2.93

Fibrobacteres 0.08 0.24 0.10

Actinobacteria 0.02 0.01 0.01

Lentisphaerae 12.03 12.78 12.74

Spirochaetes 0.51 0.34 0.24

Tenericutes 1.02 0.57 1.41

Planctomycetes 1.33 0.47 0.28

Fusobacteria 0.43 0.07 0.33

Verrucomicrobia 0.003 0.010 0.043

Elusimicrobia 2.93 3.23 1.87

Synergistetes 0.0240 0.0016 0.0004

Ignavibacteriae 0.21 0.10 0.25

Euryarchaeota 0.12 0.08 0.10

Bacteria 0.46 0.23 0.26

Estimated relative abundance of MAGs classified by MAGpy (DIAMOND) as members of rumen phyla. Values represent
average abundance of each phylum associated with each diet treatment (40%, 60% and 80% MER)

Fig. 8 Principal coordinate analysis (PCoA) ordination based on Euclidean distance between samples.
Distance between samples was calculated from estimated MAG abundance. PCoA shows distinct clustering
based on association with each diet treatment
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classification (Fig. 10, Table S7). The overall amino acid metabolism, carbohydrate me-

tabolism and energy metabolism all show a greater change in abundance to the 80% diet

when comparing the 60% and 40% diets (Fig. 9), whereas KOs associated with the nucleo-

tide metabolism pathway show no overall change when comparing either the 40% or 60%

diets to the 80% MER diet. The change in total contribution of differentially abundant

MAGs to metabolic pathway modules between 40% and 80% and 60% and 80% diets is in-

creased for amino acid metabolism, carbohydrate metabolism, energy metabolism and nu-

cleotide metabolism, and this increase is greater when comparing 60 to 80% than when

comparing 40 to 80% (Fig. 10). The contribution of individual taxonomic groups is more

varied, with genomes identified as Prevotella and Clostridiales contributing an average of

1.56 and 3.11 LFC, respectively, across all pathways in the 40% diet when compared to the

80% diet, but contributing an average of − 3.39 and − 2.46 LFC to all pathways in the 60%

vs the 80% diet (Fig. 10, Table S9). Furthermore, despite some small changes in contribu-

tion by other taxonomic groups, the larger increase associated with the 60% compared to

the 80% diet can almost all be attributed to genomes classified as members of the Bacter-

oides and Bacteroidales (Fig. 10, Table S9).

Discussion
Here, we present 1200 high-quality metagenomic assembled genomes from the rumen

of African Zebu exposed to a restricted feeding regime representing the food-scarce cir-

cumstances faced by many smallholder farmers in sub-Saharan Africa. Although not a

direct estimation of abundance, the distribution of MAGs classified in each of the

major rumen phyla, Bacteroidetes (29.76%), Firmicutes (44.35%) and Proteobacteria

(7.65%), is comparable to the abundance of these phyla in other cattle rumen commu-

nities [23] and those of indicine or cross breed cattle origin, whether using a 16S ampli-

con sequencing approach [8, 24, 25] or metagenomic read classification [26]. The

proportion of MAGs classified to each of the major rumen phyla is also comparable to

Fig. 9 Fold changes of significantly differentially abundant KOs. Contrasting functional potential in the
rumen metagenomes associated with 40% vs 80% MER diets in blue, and 60% vs 80% MER diets in orange.
Bars represent log2 fold changes (LFC) of significantly differentially abundant KOs associated with amino
acid metabolism, carbohydrate metabolism, energy metabolism and nucleotide metabolism

Wilkinson et al. Genome Biology          (2020) 21:229 Page 12 of 25



those recovered from Scottish cattle [11]. There were 50 MAGs (5.88%) in the derepli-

cated ‘winning’ genome set classified as members of the Lentisphaerae, and considering

all 1200 genomes that passed filtering, this number rises to 76 (6.33%). Furthermore,

estimation of MAG abundances highlighted that, on average, the Lentisphaerae consti-

tute 12.5% of the rumen microbiome in these samples. Lentisphaerae generally consti-

tute less than 1% of the rumen microbiome, but have been previously shown to be

linked to feed efficiency in steers, and in particular in steers with a higher daily gain in

bodyweight [25]. This could indicate that their role in the rumen during periods of

starvation may be more important when it is required for feed to undergo a greater de-

gree of digestion to maximise energy conversion.

In 16S marker gene studies of microbiomes in general, the move from operational

taxonomic unit (OTU)-based methods to amplicon sequence variant (ASV) approaches

[27] strives to capture more of the true diversity within a microbial ecosystem. How-

ever, the greater resolution provided by whole genome sequencing and further more in

MAG reconstruction-based studies will only serve to enhance the understanding of

complex microbiomes such as the rumen. Thus, the idea of the rumen ecosystem being

subdivided into core and variable communities across localities and host species [8]

may only be true in the context of inherently lower resolution 16S marker gene studies.

In particular, what is considered the core community more likely represents an under-

estimation of the true level of diversity in the genomes of rumen organisms. While the

African MAGs show taxonomic similarity to taxa commonly found in the rumen, com-

parison of the genomes using both Mash distance and average nucleotide identity by

pairwise alignment indicated that no MAG showed greater than 99% similarity to ge-

nomes from the RUGs assembled from Scottish cattle or the Hungate collection. In a

4-Mb genome, this can still represent differences in 40,000 bases between two genomes

that have been taxonomically classified as the same species or strain. Rumen bacteria

show higher non-synonymous to synonymous polymorphism ratios (pN/pS),

Fig. 10 Contribution to metabolic pathways by differentially abundant MAGs. Counts of KOs associated
with amino acid metabolism, carbohydrate metabolism, energy metabolism and nucleotide metabolism,
encoded by the 10 classified groups of differentially abundant MAGs between 40%, 60% and 80%
MER diets
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representing greater genic diversity, than closely related taxa from other environments

[28]. High genic diversity may indicate niche specialisation during the degradation of

fibre in the rumen [28]. Comparing the distribution of minimum Mash distance of

MAGs vs the Hungate genomes with RUGs vs the Hungate genomes, MAGs show an

overall greater minimum distance distribution than RUGs with only 4 MAGs (4/850;

0.05%) showing less than 10% distance from a Hungate genome compared to 54 RUGs

(54/913; 6%) and 305 RUG 2.0 (305/4941; 6.17%) showing this level of similarity (Fig. 4).

These results indicate that the African MAGs show greater genetic diversity than Scot-

tish RUGs to genomes from the Hungate collection. Comparing MAGs to all other ge-

nomes, 96.6% (821/850) show less than 90% similarity, clearly highlighting the level of

divergence from public rumen genomes, and the novelty of the data presented here

(Figs. 4 and 5a). The distribution of minimum Mash distance within a dataset, i.e. any

MAG vs the rest of the MAGs or any RUG vs any other RUG genome, also indicates

that there is greater genetic diversity within the MAG dataset than in the RUG, RUG

2.0 or Hungate genomes, suggesting that organisms represented by the MAGs may be

under greater selective pressure than organisms from other rumen environments and

that they may show a greater degree of niche specialisation [28]. As none of the 1200

high-quality MAGs showed 100% identity to another MAG, we have provided all 1200

genomes as a resource to maximise the genomic information used in future studies. To

investigate whether the increase in genetic diversity within the MAGs has an effect on

the functional potential of the rumen microbiome, the 850 African MAGs were func-

tionally annotated using the dbCAN database to reveal the full suite of carbohydrate ac-

tive enzymes associated with each genome. While the representation of the six CAZy

modules within the dataset as a whole, and associated with the major rumen phyla such

as Bacteroidetes and Firmicutes, shows similarity in terms of abundance and distribu-

tion, the representation of individual CAZy families was more variable, with MAGs

containing more CAZy families in total and more unique families than the RUGs. In-

vestigation into the unique families indicated that those present in the RUG dataset are

all related to fibre or cell wall carbohydrate breakdown. Similarly, in the MAGs, the

majority of the unique CAZy families are related to plant cell wall and structural carbo-

hydrates, with the differences in specificity between the unique families likely to repre-

sent difference in forage chemistry in the different diets consumed [29]. Additionally,

cluster analyses of the CAZyme abundances highlighted differences in the clusters of en-

zymes associated with cellulose and hemicellulose and xylans [9]. The overrepresentation

of Lentisphaerae within the African rumen MAGs also highlighted the portion of the

CAZyome that this phylum contributes to, with an abundance of enzymes involved in the

metabolism of certain simple sugars (raffinose, stachyose, maltose), likely to be linked to

the use of molasses supplementation within the diet of the African cattle. This phylum

also contains a higher abundance of GH129 (α-N-acetylgalactosaminidase, EC 3.2.1.49),

an enzyme that shows activity against animal mucins. Mucin production and dynamics

have been shown to be altered by starvation [30] and become a source of nutrition to

dietary-fibre starved gut microbiomes [31, 32].

Estimations of MAG abundance further supported that the broad phylum-level taxo-

nomic representation of organisms within the rumen of African Zebu fits what has

been seen previously in 16S analyses, with the Bacteroidetes, Firmicutes and Proteobac-

teria representing 55.42%, 23.31% and 2.95%, respectively [8, 23]. While the
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Proteobacteria were, on average, higher in the most severely restricted 40% MER diet,

3.41% vs 2.52% and 2.93% in the 60% and 80% MER diet treatments, respectively, dif-

ferential abundance analysis at the phylum level indicated that this was non-significant.

An elevated ratio of Proteobacteria to Bacteroidetes + Firmicutes, greater than 1.9, has

been shown to represent a dysbiosis in the rumen [33]; however, the levels here fall

within the normal ranges seen within the rumen [8, 23]. Further analyses at the MAG

level highlighted the same 30 MAGs were significantly differentially abundant (adjusted

P value < 0.05) when comparing the more restrictive 40% and 60% diets to the higher

80% diet treatment. Comparing the abundances between diet treatments at the MAG

level highlights differentially abundant MAGs that are the main drivers underlying dis-

crimination between diets in PCoA ordination analysis (Table S6).

Analysis of the full, overall functional potential of the rumen microbiome and its re-

sponse to diet restriction showed that overall there are an equal number of MAGs signifi-

cantly differentially abundant but more with a positive differential abundance (LFC > 0)

between 40% and 80% MER diets than 60% and 80% MER diets, with 20 and 16 MAGs,

respectively. Similarly, looking at the effect of diet at KO level, i.e. based on the total set of

KOs present in all MAGs across all samples, again the total number of differentially abun-

dant KOs when comparing the 40 to 80% diet is the same as when contrasting the 60%

and 80% (147), but that a greater number show positive differential abundance (LFC > 0)

in the 40% vs 80% than the 60% vs 80% contrast, with 91 and 78, respectively. These dif-

ferentially abundant sets of KOs represent the overall change in functional potential be-

tween the more severely restricted diets and the 80% diet. Furthermore, out of the 7469

pathway modules associated with KOs identified within the MAGs, 2847 (38.1%) are re-

lated to metabolic pathways. Within the 147 KOs differentially abundant between the 40%

and 80% diets, 54 (36.7%) are associated with metabolic function.

To investigate whether the differentially abundant MAGs are the main drivers of the

overall change in functional potential in the rumen, we looked at the functions attribut-

able to the subset of differentially abundant MAGs and compared it with the overall

change in functional potential identified in the KO-level analysis (i.e. 147 KOs for 40%

vs 80% and 60% vs 80%). By doing so, we highlight three different scenarios when fo-

cusing on metabolic pathways.

A first scenario consists in an agreement between the overall change in representa-

tion of KOs associated with a given pathway and the functional change attributable to

differentially abundant MAGs for that same pathway. For example, the differential

abundance of KOs from the amino acid metabolism pathway module is significantly

more represented in the metagenomes associated with the 60% MER diet than those on

the 80% (Fig. 9; LFC 0.72). If we consider the KOs encoded by the MAGs showing dif-

ferential abundance between those same diets, there is also an increase (LFC 1.67) in

abundance of KOs associated with amino acid metabolism (Fig. 10, Table S9). Looking

at the taxonomic classification of the differentially abundant MAGs, 2 were identified

as members of the Ruminococcus, 4 as Clostridium and 1 as unknown member of the

Bacteroides. The respective contribution of these genomes represents a 3.02 LFC, 3.04

LFC and 7.78 LFC increase in abundance of KOs associated with amino acid metabol-

ism. In contrast, contribution from the 5 Clostridiales and 3 Prevotella genomes de-

creases by a − 2.43 LFC and − 3.39 LFC, respectively (Fig. 10, Table S9). While the total

effect from the differentially abundant MAGs is in agreement with the overall observed
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functional change, these findings highlight that not all taxonomic groups within the dif-

ferentially abundant MAGs contribute to the LFC of 1.67 increase in abundance of

KOs associated with amino acid metabolism, but nearly all of the total increase associ-

ated with the differentially abundant MAGs can be attributed to the 1 genome identi-

fied as unknown member of the Bacteroides (Fig. 10, Table S9).

The second scenario highlights a disconnect between overall change in functional po-

tential and the change attributable to the significantly differentially abundant MAGs.

For example, when comparing the metagenomes associated with the 40% diet to that of

the 80% diet, we see small negative changes in representation of the carbohydrate me-

tabolism (LFC of − 0.13) pathway (Fig. 9), but larger, positive changes in this pathway

when considering only the 30 significantly differentially abundant MAGs, with LFC of

1.34, respectively (Fig. 10, Table S9). Looking further at the contribution of individual

taxa to the pathways, positive changes are seen in the contribution of Ruminococcus,

Clostridium, Clostridiales, Prevotella and Bacteroides genomes to the carbohydrate me-

tabolism pathway (LFCs of 4.89, 1.21, 3.07, 1.61 and 1.09, respectively). As observed in

the first scenario, not all taxonomic groups within the differentially abundant MAGs

contribute to the increase in abundance of KOs associated with this metabolic pathway.

Finally, the third example highlights a scenario where no significant change can be seen

in the overall functional potential, but significant change would be concluded when con-

sidering only the differentially abundant MAGs. When comparing the metagenomes asso-

ciated with the 40% and 60% diet to that of the 80% diet, no significant change is seen in

any KO associated with nucleotide metabolism (Fig. 9). However, according to the change

attributable to the differentially abundant MAGs, with a LFC of 1.07 for the 40% vs 80%

diet and 1.16 for the 60% vs 80% diet, this pathway shows greater representation in the

lower MER diet samples (Fig. 10, Table S9). In the 40% vs 80% diet contrast, the largest

contribution comes from the 2 genomes identified as Ruminococcus with a LFC of 5.02,

whereas in the 60% vs 80% contrast, the largest contributor of change in this pathway is

the 1 Bacteroides genome (LFC of 7.78) (Fig. 10, Table S9).

These three scenarios highlight that significant observations of change in rumen

functionality may not always be associated with a large change in an individual

taxon or group of taxa, and could instead be associated with a shift in the rumen

microbiome as a whole, made up of many small-scale differences, considered insig-

nificant on their own.

In the study of the rumen, the more common 16S marker gene-based studies are in-

herently limited by their lack of functional data, and although steps have been taken to

use tools to infer functional potential [10, 34], this genome-centric MAG-based meth-

odology provides a more direct connection between taxa and function. Analysis based

on MAG abundance also provides a further level of resolution than previous

metagenome-wide functional analyses, where changes in function may be seen, but it is

then difficult to associate them with your taxa of interest, as the change could be a re-

sult of a shift in the entire rumen microbiome. As such, any future effort in targeting

interventions to impact ruminant production and efficiency should take careful consid-

eration of both whole-rumen function and taxon-level changes in community structure.

We suggest that use of MAG discovery and abundance-based analyses currently repre-

sents a key tool to investigate the responses of the rumen microbiome and its involve-

ment in feed efficiency in ruminant production.
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Conclusions
We characterised the rumen microbial composition of Boran cattle living in sub-

Saharan Africa. This indigenous cattle breed is known to be well adapted to harsh trop-

ical environments with low-quality food and feed scarcity. The de novo assembly of

metagenome-assembled genomes revealed 1200 high-quality African rumen-specific

MAGs, 850 of which were unique on the basis of 99% ANI. Furthermore, when we in-

vestigated diet restriction in indigenous African cattle and its effect on rumen-wide

shifts in community structure and functional potential, the extra resolution provided by

MAG-based analysis highlighted three distinct scenarios, two of which show a discon-

nect between significant taxonomic changes and changes in the overall rumen func-

tional potential. Such observations cannot be made with 16S marker gene analysis and

have been overlooked in previous metagenomic studies. These novel MAGs represent a

fundamental resource that further helps in deciphering the rumen microbiome and its

contribution to functionality, efficiency and production in indigenous Zebu cattle in an

African smallholder-specific context.

As demand for animal products in this region increases, so too does the necessity for

efficiency in the livestock production chain. The rumen microbiome has long been

studied in the context of improving animal production through fibre degradability for

feed efficiency or nutrient availability and utilisation and its effects on meat and dairy

products. Despite this, these studies often only address the challenges in the context of

the commercial farm. Rural, smallholder farms in Africa hold the key to providing

local-scale food security, and investigation into the improvement of these systems will

protect these vital resources as demand increases. The African MAG data will also pro-

vide a vital resource in future studies looking to manipulate the rumen to increase effi-

ciency and production in the unique system of rural farming in Africa with the goal of

addressing food security in developing countries.

Additionally, the development of metagenomic-driven culture studies, the so-called

culturomics, will add to the study of microbiomes as a whole [35], and MAGs will pro-

vide an invaluable ‘stepping stone’ to the cultivation, isolation and sequencing of previ-

ously unculturable taxa [36].

Methods
Sample collection and sequencing

All animal procedures were carried out adhering to international standards for animal

care and use for scientific purposes, reviewed by the Institutional Animal Use and Care

Committee of the International Livestock Research Institute (ILRI) permit no: IACUC-

RC2016-11.

Six Boran yearling steers, matched for age and live weight, were sourced from a com-

mercial ranch in Lakipia Province (Nth Kenya). Cattle were fed three sub-optimal diet

treatments, i.e. 40%, 60% and 80% maintenance energy requirements (MER), as well as

a 100% diet treatment, over 4 periods in a crossover design (Table 7). Experimental di-

ets were based on an allocation chaffed Rhodes grass (Chloris gayana cv. Boma DM;

875 g/kg; DE:8.4 MJ/kgDM; CP:73.1 g/kgDM) late-cut hay, plus the addition of a small

amount of cottonseed meal (DM; 947 g/kg; DE:12.7MJ/kgDM; CP:324.4 g/kgDM) and

molasses (DM; 728 g/kg; DE:14.2MJ/kgDM; CP:46 g/kgDM) to the ration of animals
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being fed at 100% MER, in order to achieve required intake, a process recommended to

African smallholder farmers [37] and common in East Africa [38, 39]; with DM, DE

and CP referring to dry matter, digestible energy, and crude protein respectively. The

experimental design and diet treatments used are based on the study by Goopy et al.

(personal communication). Briefly, treatment periods outlined in Table 7 were 35 days

in length, including 21 days of adaptation. Prior to each treatment period, animals

underwent a 14-day feed-up period, fed at 100% MER to minimise carry-over effect of

the treatment period. Rumen digesta was sampled by stomach tubing from each animal

during the fourth week of each period of the trial at the same time as other measure-

ments were taken [40, 41], for a total of 24 samples.

Samples taken during period 1 were frozen until required for DNA isolation, and samples

from periods 2–4 were stored frozen in 50% glycerol until required for DNA isolation. Previ-

ous studies have shown that while inclusion of a cryoprotectant does not affect the presence/

absence of rumen micro-organisms detected in a sample, minor effects on abundance of taxo-

nomic groups have been observed [42, 43]. Therefore, all 24 samples were processed through

the MAG discovery pipeline outlined in Fig. 1, and to reduce bias in the abundance calcula-

tions, samples from period 1 were not included in the downstream analysis investigating the

impact of diet restriction. As has been shown previously, diet is the main driver of microbial

change within the rumen [8]. The 100% MER diet consisted of additional cottonseed and mo-

lasses, which represents a different dietary composition and carbohydrate profile of this treat-

ment. Due to the confounding nature of this compositional difference with our investigation

into the effect of dietary amount through % MER treatments, samples associated with the

100% MER diet were not included in downstream taxonomic and functional comparisons.

DNA extraction was carried out following the protocol of Yu and Morrison [44] and based

on repeated bead beating plus column filtration. Illumina TruSeq libraries were prepared from

genomic DNA and sequenced on an Illumina HiSeq 4000 by Edinburgh Genomics.

MAG assembly

In order to reconstruct metagenome-assembled genomes (MAGs) from all samples, we

followed the bioinformatics workflow as shown in Fig. 1, and described below.

Adapters were trimmed from the Illumina data using Trimmomatic [15] and the sub-

sequent trimmed reads used as input for MEGAHIT [17]. A 24-metagenome co-

Table 7 Experimental design, animals were fed 4 diet treatments over 4 periods in a crossover
design

Animal
ID

% MER diet

Period 1 Period 2 Period 3 Period 4

41 80 60 40 100

43 60 40 100 80

46 100 80 60 40

47 40 100 80 60

49 40 100 80 60

52 100 80 60 40

Based on live weight determined at the beginning of each period, 6 animals were fed at 40%, 60%, 80% or 100% of their
maintenance energy requirements (MER) over 4 periods in a crossover design. Treatment periods were 35 days and were
preceded by a 14-day feed-up (100% MER) to minimise any carry-over effect. Sampling was carried out in the fourth
week of each treatment period
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assembly was carried out using options --kmin-1pass, -m 60e + 10, --k-list 21,31,41,51,

61,71,81, --min-contig-len 300, -t 16. In addition, 24 single-sample assemblies were per-

formed using IDBA-UD [16] with the options --num_threads 16 --pre_correction

--min_contig 300. BowTie2 [45] was used to map reads back to the filtered assembly,

and SAMtools [46] was used to convert to BAM format. Script jgi_summarize_bam_

contig_depths from the MetaBAT2 [47] package was used to calculate coverage from

the resulting BAM files.

Metagenomic binning was applied to both single-sample assemblies and the co-

assembly using MetaBAT2 [47], with options --minContigLength 2000, --minContig-

Depth 2. Coverage values across the 24-sample dataset were considered.

To determine whether the same genome has been reconstructed via the different as-

sembly approaches, all bins were aggregated and then dereplicated using dRep [19].

The dRep dereplication workflow was used with options dereplicate_wf -p 16 -comp 80

-con 10 -str 100. dRep utilises CheckM [18] to first remove genomes with a complete-

ness score of less than 80% and contamination higher than 10%. These high-quality

MAGs are then subjected to fast pairwise comparison via a Mash [21] algorithm and

grouped into primary clusters at 90% average nucleotide identity (ANI). Members of

each primary cluster then undergo more stringent pairwise comparison to group MAGs

into secondary clusters at 99% ANI using ANIm algorithm [48] in combination with

MUMmer (V 3.0 [49]). Genomes are scored on the basis of completeness, contamin-

ation, genome size and contig N50, with only the highest scoring MAG from each sec-

ondary cluster being retained as the winning genome in the dereplicated set.

Taxonomic classification of MAGs

For taxonomic classification of the 850 dereplicated MAGs, the Snakemake pipeline

MAGpy was employed [20]. This pipeline utilises a number of underlying tools to at-

tempt to taxonomically classify MAGs based on a set of core genes (via CheckM) or

protein families (via DIAMOND BLAST and PhyloPhlAn). Pearson’s and Spearman’s

rank correlations were calculated for counts of genomes classified as members of each

rumen phylum to classifications of the original Scottish RUG and RUG 2.0 genomes.

Uniqueness/divergence

To assess uniqueness to the rumen microbiome of African cattle, the 850 MAGs

were then further dereplicated with the 913 rumen MAGs produced by Stewart

et al. [11] from Scottish cattle. At 90% ANI, only 21 of the primary clusters in the

dRep workflow contained both an African MAG and a Scottish RUG. Secondary

pairwise comparison at 99% average nucleotide identity indicated no overlap in

African MAGs and Scottish RUGs, with all 850 African rumen MAGs being

retained in the winning set. To further investigate the genetic divergence of the Af-

rican MAGs from other publicly available genomes of rumen organisms, MAGs

were further compared to the original 913 Scottish RUGs, the 4941 RUG 2.0 [12]

and the 460 publicly available genomes from the Hungate collection [9], using

Mash to calculate Jaccard distances for every pairwise comparison of the rumen

genomes, based on number of shared 21-mers out of a possible total of 100,000.
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The minimum distance for each genome to any genome from one of the other

datasets was plotted to represent the distribution of genetic divergence (Fig. 4).

Functional classification of MAGs

As the greater level of genetic diversity shown in the African MAGs is not a function

of greater taxonomic diversity, it is likely to impact the functional genetic content of

the genomes. To assess the contribution of the constructed MAGs to the functional po-

tential of the rumen microbiome, the 1,613,102 predicted proteins extracted by Prod-

igal during the CheckM pipeline were compared to the KEGG database using

DIAMOND BLAST; hits were filtered to only those with a minimum identity of 50%

and an E value of less than 1e−5; resulting KEGG orthologs (KOs) were further com-

pared to the KEGG BRITE database to identify involvement in functional pathways.

Additionally, annotation of carbohydrate active enzyme (CAZymes) in the MAG pro-

teins was performed using dbCAN [22] database, a collection of HMM profiles built

based on the carbohydrate active enzyme (CAZy) database. Hits were filtered for a

minimum coverage of 35% and an E value less than 1e−18.

To assess the novelty, the 68,850 filtered proteins identified as having carbohydrate activ-

ity were compared to the nr, env_nr, M5nr [50] and UniProt/TrEMBL [51] databases. The

proteins were also compared to the predicted proteins from the Hess [52] dataset and the

predicted proteins from the original Scottish RUGs [11] and RUG 2.0 [12] genomes.

To investigate substrate specificity of carbohydrate degrading taxa, heatmaps repre-

senting log counts of enzymes belonging to each CAZy family, in each MAG, were con-

structed using pheatmap package (V1.0.10, [53]). Hierarchical clustering was performed

with Spearman’s rank correlation as distance and pairwise average-linkage as clustering

method. Columns were clustered by unpaired group means of Spearman’s correlation,

and rows were arranged taxonomically [9].

Effect of diet

To investigate the effect of the different sub-optimal diet treatments (80%, 60% and

40% MER) on the rumen microbiome, the abundance of each MAG within each sample

was estimated. The original, trimmed reads were mapped to each contig associated

with each MAG using BowTie2 [45]. Reads contributing to each contig were counted

on a MAG per sample basis using SAMtools [46] to create a contig coverage matrix for

all samples. Using the Bioconductor [54] package EDAseq [55], coverage estimates were

corrected for contig length and GC content bias, to produce a MAG count per sample

matrix. This count matrix, the metadata (Table S10) and taxonomy table (formatted to

retain taxonomic information across ranks; Table S11) were used as input to the Bio-

conductor package phyloseq [56]. For all population and community analyses (PERM

ANOVA, PCoA), the MAG count per sample matrix was also Hellinger transformed

and batch corrected for animal and period effects using the R package limma [57, 58],

and the Euclidean distances between samples calculated [59]. The Hellinger transform-

ation represents the square root of the relative abundance. This transformation ac-

counts for variations in library size and for the sparse matrices associated with

microbiome studies. The Adonis2 function in the vegan package [60] was used to per-

form PERMANOVA on the transformed and batch corrected data, to analyse difference
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in community structure between sample groups using 9999 permutations and corrected

for multiple testing using the Benjamini-Hochberg [61] method. Principal coordinate

analysis (PCoA) analyses were performed using Euclidean distance matrices.

To investigate differential abundance of taxa between diet treatments, the Bioconduc-

tor package DESeq2 [62] was used in R (with the samples grouped by diet, and the

more restrictive 60% and 40% diets compared to the 80%). Here, the MAG count

matrix that was corrected for GC content and contig length using EDAseq (Table S5)

was used (with no Hellinger transformation, and no batch effect correction), as the

DESeq2 model internally corrects for library size [63], along with metadata and tax-

onomy tables (Tables S6 and S7). A full model design including period, animal and diet

effects (~ Period + Animal + Diet) was tested against a reduced model including only

period and animal effects (~ Period + Animal) using the likelihood ratio test (LRT) in

DESeq2, to determine taxa that show significant differential abundance between the

diet treatments. An R script (Additional file 15) is included to perform the DESeq2 ana-

lysis as described above.

To assess the effect of diet on the functional potential of the rumen microbiome of

African cattle, the KO counts per MAG (Table S3) were multiplied by the abundance

of each MAG per sample (Table S5) to generate a KO per sample matrix (Table S7) to

represent the functional potential of the rumen microbiome of each sample. The result-

ing count matrix representing functional potential was then used as input, along with a

metadata table (Table S10) for the Bioconductor package DESeq2 [62] in R (with the

samples grouped by diet, and the more restrictive 60% and 40% diets compared to the

80%), and assessed using LRT with the same design (full model vs reduced model) as

mentioned previously (analysis also included in Additional file 15). The KEGG BRITE

pathway modules, amino acid metabolism, carbohydrate metabolism, energy metabol-

ism and nucleotide metabolism were selected for highlight and visual representation of

differential abundances as of all of the metabolism-associated modules these are made

up of the highest number of representative KOs.

Power calculation analyses

Power calculation analyses use the relationship between power, sample size, effect size

and significance value (P value). PERMANOVA analyses (using Adonis2 from the R

package vegan) included in the ‘Effect of diet restriction on rumen microbiome struc-

ture and functional potential’ section used the diet as the grouping factor to test signifi-

cance. The experimental design of 4, 5 and 5 samples representing 40%, 60% and 80%

MER (4:5:5 experimental design), respectively, was associated with effect sizes of 44.6%

(R2 = 0.446) and 45.9% (R2 = 0.459) for MAG and KO relative abundance data, respect-

ively. Using the R package micropower [64], power calculation analyses were conducted

to assess the variation in statistical power in different experimental designs. Using a

random sampling with replacement approach on the Hellinger transformed count

matrices that had been batch corrected for animal and period effects, we generated

1000 Euclidean distance matrices for a range of sample size groupings (3:3:3, 4:4:4, 4:5:

5 and 5:5:5 samples), selected to investigate variation in statistical power with groupings

including both lower and higher sample sizes per treatment. The bootstrapped PERM

ANOVA power function within micropower estimated statistical power for each matrix
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based on 10,000 bootstrap permutations, for a total of 10 million estimates for each

sample size grouping. This analysis was conducted for P values of 0.05, 0.01 and 0.001

and indicated that even at 0.001 (highly significant threshold), the median power across

10 million permutations was 0.99 for the 4:5:5 design and 0.99 for the 5:5:5, but only

0.84 for the 4:4:4 design and no statistical power for the 3:3:3 design (0.03). Analyses at

P values of 0.05 and 0.01 indicated powers of 1 for the 4:5:5 and 5:5:5 designs at both

significance P values (Fig. S3). These results clearly indicate a strong statistical power

(0.99 at a P value 0.001) associated with the sample size groupings (4:5:5) in the experi-

mental design used in this study.

Interplay of significantly differential abundant genomes with significant change in

functional potential

To highlight the power of our genome-centric approach in the analysis of the rumen

metagenome, significant changes in the overall functional potential of the microbiome

were contrasted with differences accounted for by the significantly differentially abun-

dant genomes. To achieve this, counts of the KOs that were shown to be differentially

abundant between the more restrictive 40% and 60% diets and the 80% diet were ex-

tracted. Additionally, KO counts were scaled only by the abundances of the subset of

genomes shown to be differentially abundant between the same 40 to 80% and 60 to

80% diet contrasts (30 MAGs in total). All counts were then aggregated into the KEGG

BRITE pathway modules for amino acid metabolism, carbohydrate metabolism, energy

metabolism and nucleotide metabolism and grouped according to their taxonomic clas-

sification (Fig. 10, Table S9).
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Additional file 1: Fig. S1. Heatmaps displaying counts of enzymes belonging to each CAZyme family, in each
MAG. Clusters of CAZyme families involved in the breakdown of selected polysaccharides (highlighted by coloured
boxes). Heatmaps generated from CAZymes present in African MAGs. Figure 7a in high resolution.

Additional file 2: Fig. S2. Heatmaps displaying counts of enzymes belonging to each CAZyme family, in each
MAG. Clusters of CAZyme families involved in the breakdown of selected polysaccharides (highlighted by coloured
boxes). Heatmaps generated from CAZymes present in Scottish RUGs. Figure 7b in high resolution.

Additional file 3: Fig. S3. Distribution of estimated statistical power. Sampling with replacement generated 1000
Euclidean distance matrices based on our MAG abundance data for a range of sample size groupings (3:3:3, 4:4:4,
4:5:5 and 5:5:5) representing 40%:60%:80% MER diet treatments respectively. The bootstrap PERMANOVA function
estimated statistical power for each matrix based on 10,000 bootstrap permutations. Distribution of the power
estimates is shown for each experimental design and at P = 0.05 (panel A), P = 0.01 (panel B) and P = 0.001 (panel
C).

Additional file 4: Table S1. Taxonomic classifications of 850 winning African MAGs. Taxonomic classifications
reported for each of the three following methods: CheckM, DIAMOND and PhyloPhlAn.

Additional file 5: Table S2. Minimum Jaccard distances. Minimum Jaccard distance between all genomes within
a single dataset from either African MAGs (MAG), Scottish RUGs (RUG1), RUG 2.0 (RUG2) or Hungate collection
(HUN); between two datasets (MAGvRUG1, MAGvRUG2, MAGvHUN, RUG1vRUG2, RUG1vHUN, RUG1vMAG,
HUNvRUG1, HUNvRUG2, HUNvMAG, RUG2vRUG1, RUG2vHUN, RUG2vMAG); between a given dataset and all other
datasets combined (MAGvAll, RUGvAll, RUG2vAll, HUNvAll).

Additional file 6: Table S3. KEGG Functional Annotations of MAGs. Counts of proteins in each MAG with a hit in
the KEGG database for a KEGG ortholog (KO_Counts).

Additional file 7: Table S4. CAZyme Functional Annotations of MAGs. Counts of proteins in each MAG with a hit
in the dbCAN CAZyme database (CAZy_Counts).

Additional file 8: Table S5. Matrix of read counts per MAG. Read counts per MAG were calculated based on
reads mapped to all contigs of a MAG, corrected for contig length and GC content bias. Used as input for
phyloseq and DESeq2 analyses.
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Additional file 9: Table S6. Significantly differentially abundant MAGs. Significantly differentially abundant MAGs
comparing 40% (40vs80) and 60% (60vs80) MER diet treatments versus the 80% treatment. Differential abundance
was calculated using the likelihood ratio test (LRT) in DESeq2 and was considered statistically significant at FDR
(adjusted p-value) < 0.05 threshold.

Additional file 10: Table S7. Matrix of KO counts per Sample. KO counts per MAG (Table S3) were multiplied by
the abundance of each MAG per sample (Table S5) to generate a KO per sample matrix representing the
functional potential of the microbiome associated with each sample to be used as input for phyloseq and DESeq2
analyses.

Additional file 11: Table S8. Overall significantly differentially abundant KOs. Significantly differentially abundant
KOs associated with metabolically important pathways in the rumen when comparing 40% (40vs80) and 60%
(60vs80) MER diet treatments versus the 80% treatment. Differential abundance was calculated using the likelihood
ratio test (LRT) in DESeq2 and was considered statistically significant at FDR (adjusted p-value) < 0.05 threshold.

Additional file 12: Table S9. Contribution of differentially abundant MAGs to metabolic pathways. Absolute
counts of KOs associated with significantly differentially abundant MAGs comparing 40% and 60% MER diet
treatments versus the 80% treatment. Counts for each taxonomic group in each diet treatment are aggregated
into metabolically important pathways within the rumen (KO counts). Using the absolute counts, the log 2 fold
change (LFC) of the counts in the 40% and 60% diet treatments has been calculated to give proportional change
in contribution of each taxonomic group to each metabolic pathway when compared to the 80% diet treatment
(LFC vs 80%).

Additional file 13: Table S10. Metadata Table for Metagenome Samples. Metadata table containing Sample ID,
Period, Animal and Diet treatment information for each sample adapted from Table 7 to be used as input for
phyloseq and DESeq2 analyses.

Additional file 14: Table S11. Taxonomy Table of MAGs. Complete taxonomy table adapted from Table S1 to be
used as input for phyloseq and DESeq2 analyses.

Additional file 15: R Script for DESeq2 and phyloseq analyses. R script to perform MAG and KO level using the
likelihood ratio test (LRT) in DESeq2. Analyses identify significantly differentially abundant MAGs and KOs when the
more restrictive 40% and 60% MER diet treatments are contrasted against the 80% MER diet treatment. Statistical
analysis of the ruminal community structure is performed using the Adonis2 PERMANOVA analysis. Principal
coordinate analysis (PCoA) and canonical analysis of principal coordinates (CAP) ordination plots are generated
using phyloseq and ggplot2.
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