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Abstract
Memory consumption of de Bruijn graphs is often prohibitive. Most de Bruijn
graph-based assemblers reduce the complexity by compacting paths into single
vertices, but this is challenging as it requires the uncompacted de Bruijn graph to be
available in memory. We present a parallel and memory-efficient algorithm enabling
the direct construction of the compacted de Bruijn graph without producing the
intermediate uncompacted graph. Bifrost features a broad range of functions, such as
indexing, editing, and querying the graph, and includes a graph coloring method that
maps each k-mer of the graph to the genomes it occurs in.

Availability: https://github.com/pmelsted/bifrost

Introduction
The de Bruijn graph is an abstract data structure with a rich history in computational
biology as a tool for genome assembly [1, 2]. With the advent of high throughput sequenc-
ing, the Overlap Layout Consensus (OLC) framework frequently used to assemble Sanger
sequencing data [3] was progressively replaced in favor of de Bruijn graph-based meth-
ods. Since 2008, a wide range of genome assemblers based on the de Bruijn graph have
been released [4–10]. Although single molecule sequencing technologies [11, 12] have re-
introduced the OLC framework as the method of choice to assemble long and erroneous
reads [13–16], de Bruijn graph-based methods are nonetheless used to assemble and cor-
rect long reads [17, 18]. Overall, de Bruijn graphs have found widespread use for a variety
of problems such as de novo transcriptome assembly [19], variant calling [20], short read
compression [21], short read correction [22], long read correction [17], and short read
mapping [23] to name a few. The colored de Bruijn graph is a variant of the de Bruijn
graph which keeps track of the source of each vertex in the graph [24]. The initial appli-
cation was for assembly and genotyping, but it has also found use in pan-genomics [25],
variant calling [26], and transcript quantification methods [27].
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Despite serving as a building block for many methods in computational biology, the
de Bruijn graph adoption is hindered by two factors. First, the memory usage and com-
putational requirements for building de Bruijn graphs from raw sequencing reads are
considerable compared to alignment to a reference genome, while only a handful of tools
have focused on de Bruijn graph compaction [28–33]. Second, de Bruijn graph construc-
tion usually requires tight integration with the code. In the best case, software libraries
for building and manipulating de Bruijn graphs are used [34, 35], but in most cases,
data structures to index the de Bruijn graph are re-implemented. Those downsides are
intensified in the colored de Bruijn graph for which the memory consumption of colors
rapidly overtakes the vertices and edges memory usage [36]. For this reason, a lot of atten-
tion has been given to succinct data structures for building the colored de Bruijn graph
[30, 31, 36–41] and data structures for multi-set k-mer indexing [42–47]. In the following,
we focus on tools for constructing compacted de Bruijn graphs (cdBGs) with or without
colors. We refer the reader to the survey of [48] for more details about k-mer-based data
structures as well as the reviews of [25] and [49] for data structures to index collections
of k-mer sets.
TwoPaCo [28] is a highly parallel construction tool for the cdBG. It builds progres-

sively the cdBG from assembled genomes by identifying junction k-mers which are either
branching or located at the extremities of unitigs. A Bloom filter is first used to approx-
imate the graph and a hash table is subsequently employed to remove false positives.
The approach taken by BCALM2 [29] is orthogonal to the one of TwoPaCo: rather than
identifying junction k-mers, BCALM2 incrementally assembles k-mers into unitigs until
junction k-mers are reached. K-mers are partitioned according to their minimizers, and
partitions are compacted independently in parallel. A final step glues the compaction of
different partitions together. Note that BCALM2 can process assembled genomes as well
as short read data. deGSM [50] performs an external sorting of the k-mers from the input
sequences and then constructs a Burrows-Wheeler transform (BWT) [51] of the unitigs
from which the final graph is extracted. SplitMEM [30] uses the suffix tree [52] to con-
struct a ccdBG. Unitigs of the graph are derived from the set of Maximum Exact Matches
in the input genomes, while colors are implicitly encoded in the suffix tree. SplitMEM is
not adapted to short read data input and splits the unitigs to ensure all k-mers of each
unitig share the same set of colors. Baier et al. [31] provided two algorithms improving
SplitMEM with a lower time complexity using a Compressed Suffix Tree and the BWT.
PanTools [33] creates first an uncompacted k-mer index from which are derived unitigs.
By iterating over the input assembled genomes, k-mers that have not been visited yet are
extended to form unitigs, possibly leading to the merging and splitting of previously cre-
ated unitigs. The graph index is maintained in a database providing edit operations such
as updating the graph with additional data. PanTools was specifically designed for pan-
genomic applications with assembled genomes in input and allows gene annotations in
the graph.
In this paper, we present Bifrost, a software for efficiently constructing, indexing, and

querying the colored and compacted de Bruijn graph (ccdBGs), both in terms of runtime
andmemory usage. The data structures and algorithms implemented in Bifrost are specif-
ically tailored for fast and lightweight construction, querying, and dynamic manipulation
of compacted de Bruijn graphs, both regular and colored. The software is designed to take
advantage of multiple cores and modern processors instruction sets (SIMD operations).
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Bifrost is also available as a C++11 software library with minimal external dependencies
and allows developers to build on top of an efficient de Bruijn graph engine by using
the Bifrost API. Bifrost has been successfully employed for alignment- and reference-free
phylogenomics [53] as well as bacterial genomes querying of genes linked to pathogenicity
islands and fluoroquinolone resistance [54].

Results
We benchmarked Bifrost against state-of-the-art software on publicly available dataset.
We focus on three representative use cases: cdBG construction, cdBG querying, and
cdBG coloring. All experiments were run of a server with an 16-core Intel Xeon E5-2650
processor and 256G of RAM. Running time was measured as wall clock time using the
time command, and peak memory was measured by ps.

cdBG construction

We constructed the cdBG of the NA12878 human genome short read dataset from
the Genome In A Bottle consortium [55]. The dataset is downsampled from 300-fold
to 30-fold coverage to reflect normal sequencing depth, resulting in about 696 million
150-bp paired-end sequences.
We compared Bifrost to BCALM2 because of its low computational requirements and

versatility as it can build a cdBG from short read data or assembled genomes. BCALM2
can be configured for different memory usage where a lower memory usage results in a
longer running time. In our experiments, it was configured with the maximum memory
usage of Bifrost for each k-mer size tested. Additionally, BCALM2 uses by default up to
5GB of disk space while Bifrost does not use any disk except for the final output. Results
are shown in Table 1, and summaries of the unitig N50, k-mer cardinality, and unitig
cardinality in each graph built are reported in Table 2.

Table 1 Time and memory comparison of Bifrost and BCALM2 for different k-mer sizes and number
of threads during graph construction

Tool k-mer size Number of threads

1 4 8 16

Time (h) Bifrost 31 20.81 8.53 6.10 5.55

63 14.38 4.20 2.40 2.00

95 12.51 3.88 2.25 1.58

127 9.56 2.96 1.81 1.41

BCALM2 31 44.25 14.11 8.48 6.33

63 N/A 25.6 13.96 8.71

95 N/A 39.91 21.45 12.56

127 N/A N/A 27.73 16.15

Memory (GB) Bifrost 31 39.59 39.58 39.59 39.60

63 37.77 37.77 37.77 37.78

95 44.33 44.30 44.30 44.32

127 55.88 55.86 55.86 55.86

BCALM2 31 36.00 35.66 35.61 35.58

63 N/A 29.83 29.73 29.64

95 N/A 33.47 33.51 33.66

127 N/A N/A 43.42 53.77

Best results are highlighted. N/A indicates the result is unavailable because the computation took more than 48 h
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Table 2 Unitig N50, k-mer, and unitig cardinalities in cdBGs built from NA12878 for different k-mer
sizes

k-mer size k-mer cardinality Unitig cardinality Unitig N50

31 2,675,559,250 80,478,269 421

63 2,991,703,769 28,262,463 950

95 3,058,681,425 16,691,669 1299

127 2,702,556,396 44,221,433 297

Bifrost was consistently faster than BCALM2, up to a factor 15.32, on all k-mer sizes
and number of threads tested. For increasing k-mer sizes, Bifrost construction time kept
decreasing while BCALM2 construction time increased. However, BCALM2 used up to
24.3% less memory than Bifrost. Memory usage for a fixed k-mer size was fairly constant
for both tools across different number of threads, except for BCALM2 using k = 127.

cdBG querying

We compared Bifrost to two tools for querying dBGs based on the k-mer composition
of the queries, namely Blight [56] and Mantis [45]. The dataset used for the graph index
was the NA12878 dataset from the Genome In A Bottle consortium described in the
“cdBG construction” section. For querying, Bifrost takes as input the graph it constructed
and builds an index for querying k-mers. Mantis requires processing the unitigs of the
graph with Squeakr [57] to produce a compressed table of all k-mers present. Mantis then
builds an index directly from the output of Squeakr for querying. Blight takes as input a
graph created by BCALM2. All indexes were created using k = 31 and 16 threads.
To query the graph, we used 30 million single-end reads from the NA12878 short read

dataset that was used to construct the reference graph.
Note that both Bifrost and Mantis return query hits for every query while Blight only

returns the total number of k-mers found in the graph from all input queries. Further-
more, Mantis and Blight cannot be configured to return the presence or absence of a
query based on different k-mer inclusion rates. Hence, Bifrost was queried initially with
parameter e = 1.0 to indicate that an input query is returned present in the graph only
if all of its composing k-mers are present. This is done to ensure that all methods query
the graph for all k-mers in the read. Results are shown in Table 3. Finally, Bifrost enables
graph querying based on k-mers with up to one substitution or indel. Table 4 shows the
performance of Bifrost with different k-mer inclusion rates, where e = θ requires at least
the presence of θ fraction of the k-mers in the graph, both using exact or inexact k-mers.
Querying for inexact k-mers, where an edit distance of 1 is allowed, increases the number
of hits but requires more running time. However, even in the case where all k-mers are
queried, the inexact version is still competitive with Blight and Mantis which only per-
form exact k-mer queries. Overall, the results show that Bifrost is the fastest at querying,
while using 26.8GB of memory, whereas Blight uses less memory at the expense of speed.
The low memory usage of Blight is partially explained by the fact that Blight maintains its
index in main memory but stores subsequences of the graph on disk.

cdBG coloring

We constructed ccdBGs with k = 31 for a maximum of 117,913 assembled genomes of
Salmonella. The input represents all publicly available Salmonella assemblies from the
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Table 3 Running time and memory usage for indexing and querying a de Bruijn graph for 30 million
short reads

Tool Process Time (m) Memory (GB)

Bifrost Build 333 39.6

Index 11.1 26.8

Query 4.7 26.8

Query-total 16.4 26.8

BCALM2 Build 380 35.58

Blight Index 80 8.3

Query 13.6 8.3

Query-total 93.6 8.3

Squeakr Build 1147 80

Mantis Index 54 17

Query 38.8 168

Query-total 96.9 168

The total time of Bifrost and Blight is split into index and query as reported by the software, whereas query-total is the wall time
measurement. For Mantis, the index is a separate process and needs only to be run once

database Enterobase [58] as of August 2018. This is a 7.3× increase in the number of
colors compared to the work of [41] who reported the ccdBG construction for 16,000
Salmonella strains. We compared Bifrost to VARI-merge [41] as both tools can con-
struct the colored de Bruijn graph and update it without reconstructing the graph entirely.
The main differences between the two tools is that VARI-merge is mainly a disk-based
method that produces a non-compacted colored de Bruijn graph. We only benchmarked
VARI-merge as it is currently the state-of-the-art for colored de Bruijn graph construc-
tion. A comparison of VARI-merge to other colored de Bruijn graph construction tools is
given in [41]. Results are given in Table 5 for a variable number of strains. Note that the
reported VARI-merge time includes the time spent by KMC2 [59] to compute the k-mers
required in input of VARI-merge.
In [41], the authors process 16,000 strains in batches of 4000, merging the batches

to produce a colored de Bruijn graph of all strains. This required 254GB of memory
and 2.34TB of external disk, with a total running time of 69 h. In comparison, Bifrost
processed 117,913 strains using about 103GB of memory, no external disk usage and a
total running time of 93.35 h. While the running time is not directly comparable across
different machines due to different processors, this is in line with Bifrost being about

Table 4 Running time and fraction of queries found for different k-mer inclusion rates (θ ) using exact
and inexact k-mers

Query type θ Time (m) Queries found (%)

Exact k-mers 0.50 2.8 99.0

0.75 3.8 96.0

0.90 4.4 93.9

1.00 4.7 92.2

Inexact k-mers 0.50 7.2 99.6

0.75 14.8 99.0

0.90 17.7 98.1

1.00 21.2 97.3

Inexact k-mers allow for one substitution or indel in the k-mer search
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Table 5 Running time, memory usage, and external disk usage for constructing the colored de
Bruijn graphs of an increasing number of Salmonella strains

Number of strains Tool Time (h) Memory (GB) Disk (GB)

100 Bifrost 0.016 0.16 0

VARI-merge + KMC2 0.33 5.1 17

400 Bifrost 0.05 0.29 0

VARI-merge + KMC2 1.016 15.4 51

1600 Bifrost 0.38 2.4 0

VARI-merge + KMC2 4.86 56.9 228

4000 Bifrost 1.66 3.7 0

VARI-merge + KMC2 12.35 138 449

117,913 Bifrost 93.35 102.74 0

VARI-merge + KMC2 N/A N/A N/A

N/A indicates the result is unavailable

eight times faster than VARI-merge. The graph built from the 117,913 strains contains
413,658,482 k-mers: 39.19% of the k-mers have only one color (singleton), less than 0.01%
of the k-mers have all the colors (core), and 60.80% of the k-mers have more than one but
not all colors (dispensable). Among the 26,324,369 unitigs, 98.72% have a single set of
colors shared by all their k-mers.

Discussion
The de Bruijn graph has been widely used as a fundamental data structure in assemblers,
but thememory requirements and focus on speedmean that the implementation has been
tightly integrated into the project. Bifrost allows for the integration of the de Bruijn graph
as a data structure into projects that work with short read sequencing datasets or assem-
blies of several genomes. Reusing assemblers can often lead to suboptimal results, e.g.,
genome assemblers often have coverage assumptions that are not valid for transcriptome
assembly. By making minimal assumptions about the input, Bifrost enables researchers to
extend our work rather than having to reimplement it.

Conclusion
We present Bifrost, a method for constructing, indexing, and querying compacted de
Bruijn graphs, both regular and colored, with minimal computational requirements.
Bifrost is competitive with the state-of-the-art de Bruijn graph construction method
BCALM2 and the unitig indexing tool Blight with the advantage that Bifrost is dynamic.
For colored de Bruijn graphs, Bifrost is about eight times faster than VARI-merge and
uses about 20 times less memory with no external disk. The query capabilities of Bifrost
are for both identifying colors for a given k-mer and navigating the de Bruijn graph. The
software was developed with the intention of being usable as a tool or a library wherever
large de Bruijn graphs are needed with minimal external dependencies.

Methods
“Definitions” section details the concepts and data structures that will be used throughout
this paper. “Approximating the de Bruijn graph” section describes how an approxi-
mation of the uncompacted de Bruijn graph is built from a set of sequencing reads.
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“Constructing the compacted de Bruijn graph” section shows how the approximate com-
pacted de Bruijn graph is built from its uncompacted counterpart and subsequently
converted to an exact compacted de Bruijn graph. “Coloring” section presents how the
graph coloring is built efficiently on top of the compacted de Bruijn graph.

Definitions

A string s is a sequence of symbols drawn from an alphabetA. The length of s is denoted
by |s|. A substring of s is a string occurring in s: it has a starting position i and a length l
and is denoted by s(i, l). A substring of length l is also denoted an l-mer. In the following,
we assume A is the DNA alphabet A = {A,C,G,T} for which symbols have comple-
ments: (A,T) and (C,G) are the complementing pairs. The reverse-complemented string
s is the reverse sequence of complemented symbols in s. The canonical string ŝ is the lex-
icographically smallest of s and its reverse-complement s. The minimizer [60, 61] of an
l-mer x is a g-mer y occurring in x such that g < l and y is the lexicographically smallest
of all the g-mers in x. The lexicographical order can be cumbersome to use since poly-A
g-mers naturally occur in sequencing data and is often replaced by a random order. The
simplest way to obtain a random order is to compute a hash-value for each g-mer in x and
select the g-mer with the smallest hash-value as the minimizer. In this work, we will only
consider minimizers generated by random orderings.
A de Bruijn graph (dBG) is a directed graph G = (V ,E) in which each vertex v ∈ V

represents a k-mer. A directed edge e ∈ E from vertex v to vertex v′ representing k-
mers x and x′, respectively, exists if and only if x(2, k − 1) = x′(1, k − 1). Each k-mer x
has |A| possible successors x(2, k − 1) � a and |A| possible predecessors a � x(1, k − 1)
in G with a ∈ A and � as the concatenation operator. Note that in the original combi-
natorial definition of the dBG, all possible k-mers for an alphabet A are present in the
graph, whereas in computational biology, the definition is restricted to a subset of the de
Bruijn graph representing the k-mers in the input. A path in the graph is a sequence of
distinct and connected vertices p = (v1, ..., vm). We say that the path p is non-branching
if all its vertices have an in- and out-degree of one with exception of the head vertex v1
which can have more than one incoming edge and the tail vertex vm which can have more
than one outgoing edge. A non-branching path is maximal if it cannot be extended in the
graph without being branching. A compacted de Bruijn graph (cdBG) merges all maximal
non-branching paths of η vertices from the dBG into single vertices, called unitigs, rep-
resenting words of length k + η − 1. Minimal examples of dBG and cdBG are provided
in Fig. 1a and b respectively. A colored de Bruijn graph is a graph G = (V ,E,C) in which
(V ,E) is a dBG and C is a set of colors such that each vertex v ∈ V maps to a subset of
C; we extend the definition of a cdBG to a colored compacted de Bruijn Graph (ccdBG)
to be a graph G = (V ,E,C), where (V ,E) is a cdBG, so the vertices represent unitigs, and
each k-mer of a unitig maps to a subset of C.
Introduced by [62], the Bloom filter (BF) is a space- and time-efficient data structure

that records the approximate membership of elements in a set. The BF is represented as
a bitmap B of m bits initialized with 0s, coupled with a set of f hash functions h1, ..., hf .
Inserting and querying an element e into B is performed with the functions

Insert(e,B) : B[ hi(e)]← 1 for alli = 1, ..., f

and
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Fig. 1 A de Bruijn graph in a and its compacted counterpart in b using 3-mers. For simplicity,
reverse-complements are not considered

MayContain(e,B) :
f∧

i=1
B[ hi(e)] ,

respectively, in which
∧

is the logical conjunction operator. Those functions requireO(1)
time. The function MayContain may report false positives when querying for elements
which were never inserted but are present in B as a result of independent insertions. Given
n elements to insert, the optimal number of hash functions to use [63] is f = m

n ln(2), for
an approximate false positive rate of

ϕ ≈
(
1 − e

−fn
m

)f
≈ 0.7

m
n

Hence, the BF trades off memory usage and time complexity with a decreased false
positive rate.
In order to accelerate BFs, [63] demonstrated that two hash functions combined in a

double hashing technique can be applied in order to simulate more than two hash func-
tions and obtain similar hashing performance. One main drawback of BFs is their poor
data locality as bits corresponding to one element are scattered over B, resulting in several
CPU cache misses when inserting and querying. This issue was addressed in [64], which
presented the Blocked Bloom Filter (BBF), an array of smaller BFs individually fitting into
one or multiple cache lines. To insert or look-up an element, a supplementary hash func-
tion is used to determine which BF to load. While BBFs are fast, their false positive ratios
are usually higher than regular BFs due to the unbalanced load of each BF in the array.
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As minimizers are used extensively throughout Bifrost, we use an efficient rolling hash
function based on the work of [65] to select a g-mer as the minimizer within a single
k-mer. Since overlapping k-mers are likely to share minimizers, we use an ascending min-
ima approach [66] to recompute minimizers with amortized O(1) costs, so that iterating
over minimizers of adjacent k-mers in a sequence is linear in the length of the sequence.
Another optimization is to restrict the computation of minimizers to a subset of g-mers
of a k-mer, namely, we exclude the first and last g-mer as a candidate for being a min-
imizer. This ensures that for a given k-mer, all of its forward, respectively backward,
adjacent k-mers necessarily share the same minimizer. While it is likely that a k-mer x
and its neighbor x′ share a minimizer, this neighbor hashing trick [38] guarantees that
when searching all forward, respectively backward, neighbors of x, they will all have the
same minimizer and will be stored within the same block of a BBF, thus minimizing cache
misses.

Approximating the de Bruijn graph

The k-mers extracted from the reads will be inserted into two BBFs: BBF1 will contain all
k-mers occurring at least once in the input read sets while BBF2 will contain all k-mers
occurring twice or more often. This separation allows us to filter out unique k-mers which
are likely to be sequencing errors [67]. Algorithm 1 starts by iterating over the reads and
extracts all the canonical k-mers. BBF1 is queried for the presence of each such k-mer,
and k-mers already present in BBF1 are inserted into BBF2. Finally, BBF1 is discarded as
the cdBG will be built from the k-mers of BBF2.

Algorithm 1 Construct Blocked Bloom Filters
Input: Read set F
1: function FILTER(F)
2: BBF1,BBF2 ← empty Blocked Bloom filters
3: for each read r ∈ F do
4: for each canonical k-mer x ∈ r do
5: b ← MayContain(x,BBF1)
6: if b is true then Insert(x,BBF2)
7: else Insert(x,BBF1)
8: return BBF2

In order to accelerate the insertions into the BBFs, the minimizer hash-value of each k-
mer is used to determine the BBF block in which the k-mer is inserted. This guarantees
that overlapping k-mers sharing the same minimizer position within a read are inserted
into the same BBF block, thus improving the cache efficiency of BBFs. Furthermore,
the neighbor hashing of the minimizers guarantees that all predecessors and successors
of a k-mer are hashing to the same block, thus improving graph traversal for the exact
cdBG construction step. Finally, the BBFs in Bifrost use 2-choice hashing [68] to balance
the number of insertions per block and reduce the number of false positives. Instead of
selecting a single BBF block when inserting a k-mer, two blocks are selected. If none of
the two blocks already contains the k-mer, it is inserted into the block which has the
fewest number of bits set. To enable parallel insertions, each BBF block is equipped with
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a spinlock to avoid multiple threads inserting at the same time within the same block.
Algorithm 2 refines the insertion function introduced in the “Definitions” section to
enable 2-choice hashing and spinlocks usage with BBFs. Bifrost can make use of mod-
ern processors instruction sets to query simultaneously up to 16 bits within a block using
AVX instructions.

Algorithm 2 Insert a k-mer into a BBF
Input: k-mer x, Blocked Bloom Filter BBF
1: function INSERT(x, BBF)
2: y ← x.getMinimizer() � Minimizer of x
3: b ← |BBF| � Number of blocks
4: b1 ← BBF .h1(y) mod b � First block ID
5: b2 ← BBF .h2(y) mod b � Second block ID
6: if b2 < b1 then swap(b1, b2) � Avoid deadlock
7: BBF[ b1] .lock() � Lock the first block
8: ifMayContain(x,BBF[ b1] ) is false then
9: BBF[ b2] .lock() � Lock the second block

10: ifMayContain(x,BBF[ b2] ) is false then
11: w1 ← HammingWeight(BBF[ b1] )
12: w2 ← HammingWeight(BBF[ b2] )
13: if w1 < w2 then Insert(x,BBF[ b1] )
14: else Insert(x,BBF[ b2] )
15: BBF[ b2] .unlock() � Unlock the second block
16: BBF[ b1] .unlock() � Unlock the first block

Constructing the compacted de Bruijn graph

The following sectiondescribes the data structure indexing the unitigs. The “Unitig extraction”
section details the unitig extraction procedure from the BBF and the insertion of unitigs
into the cdBG data structure.

Data structure

The cdBG data structure D = (U ,M) is composed of a unitig array U and a hash table of
minimizersM. A unitig u is first inserted intoU and gets a unique identifier idu. Unitig u is
then decomposed into its set of constituent k-mers from which minimizers are extracted.
Each minimizer is identified by a position pm in u. While there can be as many minimizer
positions as there are k-mers in the unitig, it is likely that multiple overlapping k-mers
share the same minimizer position. The canonical g-mers corresponding to the minimiz-
ers are inserted into M and associated with their position pm in u and the identifier idu.
Note that a minimizer might have multiple occurrences, either within a unitig or in dif-
ferent unitigs of the graph. The cdBG data structure D is illustrated in Fig. 2. Algorithm 3
details the insertion of a unitig u in the cdBG data structure. Note that removing a unitig
from the graph can be done in a reversed-fashion to Algorithm 3: The tuples associated
with unitig u are removed fromM and unitig u is removed from U.
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Fig. 2 Data structure of a cdBG composed of a hash tableM and a unitig array U. Unitigs are composed of
3-mers and are indexed using minimizers of length 1. For simplicity, a lexicographic ordering of minimizers is
here used and only one minimizer is shown

Algorithm 3 Insert a Unitig into a cdBG
Input: Unitig u, cdBG data structure D
1: function INSERT(u, D = (U ,M))
2: idu ← Insert(u,U) � Unitig u is inserted and gets an identifier
3: p′

m ← −1 � Initialize position of previous minimizer
4: i ← 1
5: while i ≤ |u| − k + 1 do � Iterate over k-mer positions of u
6: x ← u(i, k) � k-mer at position i in u
7: for eachminimizer positions pm ∈ x do
8: if pm + i > p′

m then � New minimizer
9: y ← x(pm, g) � Minimizer of x

10: T ← Find(ŷ,M) � Find occurrences of ŷ in U
11: if T = ∅ then Insert({ŷ, 〈idu, pm + i

〉},M)

12: elseT ← T ∪ 〈
idu, pm + i

〉

13: p′
m = pm + i

14: i ← i + 1

Looking-up a k-mer x in the cdBG data structure is similar to inserting a unitig. The
canonical g-mer corresponding to the minimizer of x is extracted and used to queryM. If
the g-mer is not in M, x does not occur in a unitig of the cdBG. However, if the g-mer is
present, the identifiers of the unitigs containing the g-mer and the g-mer positions within
those unitigs are returned. K-mer x and its reverse-complement x are then anchored in
those unitigs at the given minimizer positions and compared. If the comparison is pos-
itive, a tuple with the unitig identifier and the k-mer position in the unitig is returned.
Algorithm 4 shows how to look-up D for a k-mer.
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Algorithm 4 Find a k-mer in a Unitig in a cdBG
Input: k-mer x, cdBG data structure D
1: function FIND(x, D = (U ,M))
2: for eachminimizer positions pm ∈ x do
3: y ← x(pm, g)
4: T ← Find(ŷ,M)

5: if T 
= ∅ then
6: for each tuple

〈
p′
m, id

〉 ∈ T do
7: u ← U[ id]
8: pk ← p′

m − pm + 1 � Possible position of x on u
9: if 1 ≤ pk ≤ |u| − k + 1andu(pk , k) = x then

10: return
〈
pk , id

〉

11: pk ← p′
m − k + g + pm � Possible position of x on u

12: if 1 ≤ pk ≤ |u| − k + 1andu(pk , k) = x then
13: return

〈
pk , id

〉

14: return 〈−1,−1〉 � No matches found

Unitig extraction

The BBF returned by Algorithm 1 represents an approximation of the dBG: It contains
the true positive k-mers, namely all the k-mers present in the unitigs of the cdBG, but
also false positive k-mers, which do not belong to the cdBG. The false positive k-mers are
either artifacts of BBF2 or single occurrence k-mers that should have been filtered out by
Algorithm 1 but were inserted into BBF2 as a result of their false occurrences in BBF1.
Although BBFs are efficient data structures, they do not allow to iterate over the contents.
To get around this limitation, we iterate over the original set of reads and query BBF2 to
identify k-mers that are present.
Given a k-mer x, Algorithm 5 extracts from the BBF the unitig from which x is a

substring, conditioned upon the presence of x in the BBF. K-mer x is extended for-
ward, respectively backward, by reconstructing iteratively the prefix, respectively suffix,
of the unitig using function Extend. Note that a backward extension is performed by
extending forward from the reverse-complement of x and the extracted suffix is reverse-
complemented to obtain the unitig prefix. Forward extensions are made with function
ExtendForward which iteratively concatenate the last character from the next k-mer in
the extension until no more k-mer is found or the extracted k-mer creates a cycle. Finally,
k-mer x is extended with x′ using function ExtendKmer if the two k-mers belong to the
same maximal non-branching path, i.e, if x′ is the only successor of x in the BBF and x is
the only predecessor of x′ in the BBF,
Given the read set, the BBF containing the filtered k-mers, and an empty cdBG data

structure, Algorithm 6 extracts the unitigs from the BBF and inserts them into the cdBG
data structure. The algorithm iterates over the k-mers of the reads and queries the BBF
for their presence. A missing k-mer in the BBF indicates the k-mer was filtered out by
Algorithm 1 and will not be part of a unitig, in which case the next k-mer in the read is
queried. However, in case of the k-mer presence in the BBF, the cdBG is searched for the
unitig containing this k-mer using Algorithm 4. If the k-mer is missing from the unitigs
present in the cdBG data structure, it means its unitig has not been extracted yet from
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Algorithm 5 Unitig extraction from a BBF
Input: k-mer x, Blocked Bloom Filter BBF
1: function EXTEND(x, BBF)
2: sf ← ExtendForward(x,BBF) � Forward extension
3: sb ← ExtendForward(x,BBF) � Backward extension
4: s ← sb � x � sf � Unitig
5: return s

Input: k-mer x, Blocked Bloom Filter BBF
1: function EXTENDFORWARD(x, BBF)
2: s ← ε � String for extension
3: xe ← x � Previous extended k-mer
4: x′

e ← ExtendKmer(xe,BBF) � New extended k-mer
5: while x′

e 
= ε do � While extending is possible
6: if x′

e = x then x′
e ← ε � Cycle

7: else if x′
e = xe then x′

e ← ε � Self-loop k-mer
8: else if x′

e = xe then x′
e ← ε � Self-loop k-mer

9: else
10: s ← s � x′

e(k, 1) � Extend string
11: xe ← x′

e
12: x′

e ← ExtendKmer(xe,BBF) � Extend previous k-mer

13: return sf

Input: k-mer x, Blocked Bloom Filter BBF
1: function EXTENDKMER(x, BBF)
2: i ← 0
3: x′ ← x(2, k − 1) � Prefix of all successors of x
4: xe ← ε � Extended k-mer
5: for each a ∈ A do
6: ifMayContain(x′ � a) is true then � BBF has successor of x
7: i ← i + 1 � Increment count of successors
8: xe ← x′ � a � Save last successor found
9: if i = 1 then � If x has only one successor

10: i ← 0
11: x′ ← xe(1, k − 1) � Suffix of all predecessors of xe
12: for each a ∈ A do
13: ifMayContain(a � x′) is true then i ← i + 1
14: if i 
= 1 then xe ← ε

15: return xe

the BBF. The extraction using Algorithm 5 takes place, and the extracted unitig is inserted
into the cdBG data structure with Algorithm 3.

Eliminating the false positive k-mers

The cdBG constructed by Algorithm 6 is not exact as it contains false positive k-mers of
BBF2. Those false positive k-mers create two types of errors in the graph:
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Algorithm 6 Initial cdBG Construction
Input: Read set F, Blocked Bloom Filter BBF, cdBG data structure D
1: function INSERT(F, BBF, D = (U ,M))
2: for each read r ∈ F do
3: i ← 1
4: while i ≤ |r| − k + 1 do � For all k-mer positions in r
5: x ← r(i, k) � Get k-mer
6: ifMayContain(x,BBF) is true then � If x in BBF
7: t ← Find(x,D) � Search unitig associated to x
8: if t = 〈−1,−1〉 then � If unitig not found
9: u ← Extend(x,BBF) � Extract unitig from BBF

10: Insert(u,D) � Insert unitig in data structure
11: t ← Find(x,D)

12: p, id ← t
13: rs ← r(i + k, |r| − i − k) � Suffix of r starting at x
14: us ← u(p + k, |u| − p − k) � Suffix of u starting at x
15: l ← Lcp(rs,us) � Longest Common Prefix of us and rs
16: i ← i + |l| � Move iterator forward of |l| positions
17: else i ← i + 1

• False connection: A false positive k-mer connects a unitig with no successors to a
unitig with no predecessors. Hence, one unitig is extracted from the BBF instead of
two.

• False branching: A false positive k-mer connects as a successor, respectively
predecessor, to a true positive k-mer which already has a successor, respectively
predecessor. Hence, three unitigs are extracted from the BBF instead of one.

An example of a cdBG containing the two types of errors is illustrated in Fig. 3:
K-mer “CCG” creates a false branching and “ACT” creates a false connection.
In order to distinguish false positive from true positive k-mers, a counter is maintained

on each k-mer of the unitigs and Algorithm 6 is modified to increment the counters of
the k-mers occurring in the reads. Hence, false positive k-mers with no or one single
occurrence are deleted from the graph. In the case of a false connection k-mer, deleting

Fig. 3 A compacted de Bruijn graph containing false positive 3-mers. Errors are represented in red dashed
line vertices: K-mer “CCG” creates a false branching and “ACT” creates a false connection. K-mers that are
compacted in a unitig are grouped in a gray line box
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the k-mer splits a unitig. In case of a false branching, deleting the k-mer joins one or
multiple unitigs.

Algorithm 7 Removal of False Positives
Input: cdBG data structure D
1: function REMOVEFP(D = (U ,M))
2: X ← ∅

3: for each unitig u ∈ U do
4: i ← 1
5: while i ≤ |u| − k + 1 do � For all k-mer positions in u
6: if getCounter(i,u) < 2 then � k-mer is a false positive
7: X ← X ∪ u(i, k)
8: i ← i + 1
9: for each k-mer x ∈ X do � For all false positive k-mers

10: p, id ← Find(x,D) � Find unitig containing FP
11: u ← U[ id] � Unitig containing FP
12: Remove(u,D) � Remove u from graph
13: if p = 1 then Join(u(1, k),D) � Fix false connection
14: else Insert(u(1, p + k − 2),D) � Insert prefix of u
15: if p = |u| − k + 1 then Join(u(|u| − k + 1, k),D)

16: else Insert(u(p + 1, |u| − p),D) � Insert suffix of u

Input: k-mer x, cdBG data structure D
function JOIN(x, D = (U ,G))

for each a ∈ A do
xs ← x(2, k − 1) � a � Possible successor of x
ps, ids ← Find(xs,D) � Find possible successor
if ps 
= −1 then � Successor xs is found

xp ← ExtendKmer(xs,D)

if xp 
= ε then � Unitigs of xs and xp can be joined
pp, idp ← Find(xp,D)

up ← U[ idp] � Unitigs of xp
us ← U[ ids] � Unitigs of xs
if xp 
= u(|u| − k + 1, k) then up ← up
if xs 
= us(1, k) then us ← us
u ← up � us(k, |us| − k + 1)
Remove(up,D) � Remove up
Remove(us,D) � Remove us
Insert(u,D) � Insert joined unitig u

Ghost k-mers

The false positive rate of the BBF will affect the length of the unitigs extracted by
Algorithm 5. Consider a unitig of length k + η − 1 in the true cdBG, consisting of η k-
mers. For each internal k-mer, the algorithm makes 8 queries to the BBF, two of which
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will return true and 6 of which should return false. If the BBF has a false positive rate of
p, the algorithm will advance to the next k-mer with probability (1 − p)6 ≈ 1 − 6p and
stop prematurely with probability ≈ 6p. The number of k-mers in the extracted unitig
will then be limited by η on one hand and a geometric distribution with probability 6p,
whose expected value is 1

6p . When p = 10−3, this would lead to an average unitig length
of 167. While these errors are fixed with Algorithm 7, this leads to an increased memory
usage. One way to increase the length would be to use more memory in the BBF which
would reduce the false positive rate. However, we observe that the most likely configura-
tion is that a single false positive k-mer x′, adjacent to a real k-mer x in the unitig, causes a
premature halt to the extraction of the true unitig. When x′ has no other neighbor in the
BBF except for x, we call it a ghost k-mer, insert it into a hash table to keep track of it in
case we observe it later but do not stop the extraction of the unitig. In the rare case that
x′ turns out to belong to the true cdBG, we identify the unitig containing x′ and fix the
mistake. The probability that we halt can now be approximated as 42p2, since this would
require two adjacent false positive k-mers to occur in the BBF. The use of ghost k-mers
greatly reduces fragmentation which improves memory usage and running time.

Recurrentminimizers

Even in the case of a minimizer random ordering as described in the “Definitions” section,
some minimizers are expected to occur more often in unitigs than others, due to indels
occurring in homopolymer and tandem repeat sequences. Those minimizers are likely
to increase the running time as their lists of tuples in the minimizer hash table M will
be much longer than for the other minimizers. We define a minimizer as recurrent if it
occurs t times or more in the unitigs of the cdBG. In order to limit the impact of recurrent
minimizers on the graph construction, lists of tuples in M have a maximum length t.
When a k-mer x and its corresponding minimizer y must be inserted into the cdBG data
structure, the length of the list associated with y in M is verified first. If the length is
greater or equals to t, y is a recurrent minimizer. In such case, a non-recurrent minimizer
y′ > y is extracted from x and inserted into M. If x does not contain a non-recurrent
minimizer y′, the recurrent minimizer y is inserted into M instead. Whenever k-mer x is
searched, the list of tuples associated with its minimizer y is traversed and x is anchored
on the instances of y in the unitigs of the graph until a match is found, as described in
Algorithm 4. However, if no match is found for x and the list of tuples associated with
y contains t or more tuples, the non-recurrent minimizer y′ is extracted from x and the
search continues using minimizer y′.

Coloring

We denote as D′ the data structure of a ccdBG: It is composed of a unitig array U, a
minimizer hash tableM, an arrayO of color containers, an arrayH of hash functions, and
a hash table K of k-mers.

Container representation

In Bifrost, a color is represented by an integer from 1 to |C|. A unitig u composed of
η = |u| − k + 1 k-mers is associated with a binary matrix of size η × |C|: rows represent
the different k-mer positions in u and columns represent the colors from C. A bit set at
row 1 ≤ i ≤ η and column 1 ≤ j ≤ |C| indicates that k-mer u(i, k) occurs in dataset j. In
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order to limit the memory usage of colors, multiple compressed index is used to represent
these binary matrices depending on their sparsity:

• A 64-bit word that can be either a tuple
〈
positioni, colorj

〉
or a binary matrix of size

η × |C| ≤ 62 (2 bits are reserved for the meta-data)
• A compressed bitmap adapted from a Roaring bitmap container [69]. This

compressed bitmap stores up to 65488 tuples
〈
positioni, colorj

〉
and uses a maximum

of 8 KB of memory. This container has 3 representations of the tuples it indexes: bit
vector, sorted list of tuples, and run-length encoded list of sorted tuples. Compared
to a Roaring bitmap, this compressed bitmap uses less memory for its meta-data and
incurs fewer cache misses to access the tuples.

• A Roaring bitmap [69] to store more than 65488 tuples. Roaring bitmaps are SIMD
accelerated and propose numerous functions to manipulate bitmaps such as set
intersection and union.

Those representations have a logarithmic worst-case time look-up and insertion.

Algorithm 8 ccdBG Construction
Input: ccdBG data structure D′, set of hash functionsH
1: function ASSOCIATECOLORS(D′ = (U ,M,O,H ,K),H)
2: B ← binary array of length|U| initialized with 0s
3: O ← array of empty color containers of length|U|
4: he ← empty hash functionf : A → ∅

5: H ← array of hash functions of length|U| initialized with he
6: idu ← 1
7: iB ← 1
8: while idu ≤ |U| do � For each unitig
9: x ← U[ idu] (1, k) � First k-mer of unitig

10: for each hash function h ∈ H do
11: v ← h(x) mod |U|
12: if B[ v]= 0 then � Color container in C[ v] is free
13: B[ v]← 1 � Color container in C[ v] is linked to idu
14: H[ idu]← h � Unitig idu must be hashed with h
15: break
16: if H[ idu]= he then � No color container was free for idu
17: while iB ≤ |U| do � Search next free color container
18: if B[ iB]= 0 then
19: break � Color container at pos. iB is free
20: iB ← iB + 1
21: B[ iB]= 1 � Color container at pos. iB is reserved
22: Insert({x, iB},K)

23: idu ← idu + 1

Container indexing

Color containers can become substantially large, and in order to avoid costly data transfer
operations when the ccdBG data structureD′ is modified, color containers are not associ-
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ated directly to unitigs inD′. Instead, a solution derived from theMPHF (Minimal Perfect
Hash Function) library BBHash [70] is used to link unitigs of array U to color containers
of arrayO. The benefit of such a method is that operations which affect only the structure
of the graph do not move the color containers in memory. Algorithm 8 describes how
color containers are associated to their respective unitigs.
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