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Abstract
Genetic regulation of gene expression, revealed by expression quantitative trait loci
(eQTLs), exhibits complex patterns of tissue-specific effects. Characterization of these
patterns may allow us to better understand mechanisms of gene regulation and
disease etiology. We develop a constrained matrix factorization model, sn-spMF, to
learn patterns of tissue-sharing and apply it to 49 human tissues from the
Genotype-Tissue Expression (GTEx) project. The learned factors reflect tissues with
known biological similarity and identify transcription factors that may mediate
tissue-specific effects. sn-spMF, available at https://github.com/heyuan7676/ts_eQTLs,
can be applied to learn biologically interpretable patterns of eQTL tissue-specificity and
generate testable mechanistic hypotheses.
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Background
Understanding the genetic effects on gene expression is essential to characterizing
the gene regulatory landscape and provides insights into the molecular basis of phe-
notypes. Expression quantitative trait locus (eQTL) studies using genotype and gene
expression data have demonstrated that the genetic regulation of gene expression is
pervasive ([1–5], the GTEx Consortium 2020, in submission). Additionally, numerous
studies have leveraged eQTLs to characterize the molecular basis of complex phenotypic
variation [6–10].
Tissues in the human body carry out universal cellular processes in addition to perform-

ing highly specialized functions, driven in large part by patterns of gene expression in
each cell type [11, 12]. Characterizing the tissue-sharing and tissue-specificity of genetic
effects on gene expression is therefore critical to understanding how genetic variation
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leads to phenotypic changes. Recent work has identified eQTLs across a broad range of
human tissues. The Genotype-Tissue Expression (GTEx) project has collected eQTL data
across 49 human tissues (Additional file 1: Figure S1), which provide an unprecedented
opportunity to uncover the ubiquitous and tissue-specific patterns of genetic regulation
of gene expression [1].
Several methods have been developed to capture the underlying tissue-specific archi-

tecture in eQTLs across tissues. The simplest suchmethod is based on the effect sizes or P
values of eQTLs to identify eQTLs specific to individual tissues or cell types [13, 14]. Such
heuristic methods are computationally efficient, but require manual selection of numer-
ous subjective thresholds that affect the interpretation of results. Statistical frameworks
have been developed to jointly analyze eQTLs from different datasets, such as eQTL-
BMA and Meta-Tissue [15, 16]. These methods are more computationally demanding
but potentially more accurate in their estimation of tissue-specificity. However, neither
class of methods addresses the underlying similarity of multiple tissues or conditions in
datasets such as GTEx, which may arise from shared mechanism.
Genetic effects on gene expression are often shared across some, but not all, tissues.

When defining tissue-specific patterns of eQTL effects, three issues need to be con-
sidered. First, patterns of shared effects across tissues are often not obvious a priori.
Manually identifying relevant groupings of tissues or contexts is not always obvious or
feasible. Second, these groupings are not necessarily mutually exclusive. A single tissue
may naturally belong to two or more groups based on shared biology with both. Third,
an eQTL may have effects in more than one group of tissues. For example, in GTEx, dif-
ferent regions of the brain often have shared eQTL effects. However, effects in cerebellar
tissues sometimes align with the other brain regions, but are sometimes quite distinct.
Similarly, while many eQTL effects are shared across a set of digestive tissues (esophagus,
stomach, and colon), many effects are specific to different subsets of these tissues, and it
is not obvious how they would be grouped manually.
Matrix factorization is a general method for automatically decomposing data into over-

lapping, learned patterns, and has been successfully applied in biological domains, such
as modeling gene expression for overlapping sets of co-functional genes. Matrix factor-
ization applied to eQTL statistics offers a flexible and natural approach for identifying
underlying patterns across eQTLs that may indeed better reflect biological mechanisms
which likewise act across related, non-mutually exclusive subsets of tissues, conditions,
or samples [17]. Recently, matrix factorization has been applied in a Bayesian setting to
capture the structure of genetic regulation in human tissues; however, specific modeling
choices for factorizing eQTL effects in various domains remain to be comprehensively
evaluated [18]. It is further unexploredwhat insights into regulatorymechanism and func-
tional consequences can be gained by evaluating these complex patterns of ubiquitous
and tissue-specific eQTL effects.
In this study, we propose a constrained matrix factorization model called weighted

semi-nonnegative sparse matrix factorization (sn-spMF) and apply it to analyze eQTLs
across 49 human tissues from the GTEx consortium. We learn a lower-dimensional
representation of eQTL effects across tissues, capturing both tissue-shared and tissue-
specific patterns of eQTL activity. We leverage this atlas of ubiquitous and tissue-specific
eQTLs to begin to characterize the regulatory mechanisms that underlie this specificity,
and compare this approach to standard methods of identifying tissue-specific eQTLs.
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We demonstrate that the ubiquitous and tissue-specific eQTLs exhibit distinct patterns
of cis-regulatory element enrichment and identify specific TFs that appear to drive
tissue-specific genetic effects.

Results
Matrix factorization of multi-tissue eQTL effects

The effect of eQTL variants on gene expression varies across tissues, as has been previ-
ously observed [1, 2, 19]. To better understand common patterns of genetic impact across
tissues and to characterize the mechanisms that underlie tissue-specificity, we developed
and applied a matrix factorization model called semi-nonnegative sparse matrix factor-
ization (sn-spMF). The model overall seeks to decompose an input matrix of eQTL effect
sizes in each tissue (regression parameters from a linear model for eQTL mapping) into
underlying patterns of tissue-sharing and tissue-specificity. This model assumes that the
effect size vector of one eQTL across tissues can be approximated as a linear combina-
tion (weighted sum) of learned “factors,” where every factor is a vector representing one
common pattern of eQTL effect sizes across tissues (Fig. 1a). When many entries in the
factor are small or zero, as our model will enforce, a factor points to a subset of tissues
that are commonly affected by the same eQTLs. Then, for a given eQTL, the loadings,
or “weights,” on each factor reflect how strongly that eQTL’s effects are explained by that
factor (and corresponding non-zero tissues). Given a multi-tissue dataset of eQTL asso-
ciation statistics as input, we identified a set of explanatory tissue factors by minimizing
an objective function combining two components: (1) a weighted squared error term that
captures how well the learned weights and factors reconstruct the observed eQTL effect
sizes and (2) a regularization term that encourages sparsity, or many zero entries, in both
factors and weights through an L1 penalty (Fig. 1b). Since it has previously been shown
that inconsistent directions of effect for eQTLs will often arise from allelic heterogeneity
rather than true sharing [20, 21], we constrained factors to be nonnegative.
By optimizing the objective function using alternating least squares applied to the

GTEx v8 data across 49 tissues, we learned a factor matrix F with 23 factors (see the
“Methods” section, Additional file 1: Figure S1, S2). These factors can be categorized into
twomajor types: a ubiquitous factor, which captures eQTLs with largely consistent effects
across all 49 tissues, and tissue-specific factors, which reflect effects only found among
subsets of individual tissues. Tissue-specific factors include two subtypes: 8 factors rep-
resenting combinations of tissues and 14 factors representing single tissues. Each of the
8 multi-tissue factors involves closely related tissues. For example, factor 2 represents
effects of eQTLs in 13 brain regions; factor 15 represents effects in transverse colon and
small intestine. For interpretability, each factor is named based on the tissues it represents
(Additional file 1: Figure S2). In total, 41 out of 49 tissues are represented by non-zero
values in at least one tissue-specific factor. The 8 tissues that do not appear in any tissue-
specific factor have significantly smaller sample sizes compared to the 41 tissues captured
by one or more factors (two-sided t test P value = 0.024, Additional file 2: Table S1), and
thus, fewer eQTLs are detected that are unique to those tissues.

Identification of ubiquitous and tissue-specific eQTLs using sn-spMF

For each individual eQTL, we identified the relevant patterns of tissue-sharing and tissue-
specificity by estimating the contribution from each of our learned factors to the eQTL’s
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Fig. 1 Matrix factorization model to dissect eQTL effects across tissues. a Simplified examples of the
relationship between eQTL effect sizes and factors. eQTL1: the effect of an eQTL in the spleen can be
represented by a spleen-specific factor. eQTL2: the effect of an eQTL in all nine tissues can be summarized as
a ubiquitous effect across all tissues. eQTL3: the effect of an eQTL in four brain tissues and three skin tissues
can be summarized as the summation of brain-specific effect and skin-specific effect. b Learning factors
underlying eQTL effects from GTEx. X matrix represents the effect size of eQTLs across tissues (see the
“Methods” section). Patterns of tissue-sharing and tissue-specificity are observed in X. Matrix factorization is
implemented to learn the factor matrix F, where each factor captures a pattern of eQTL effect sizes across
tissues. cMatrixW represents the weights for each eQTL across tissues. Each weight is the reciprocal of the
standard error. d The objective function in sn-spMF, where α and λ are sparsity penalty parameters, and D is
the number of eQTLs

effect sizes, using a second pass of weighted linear regression (see the “Methods” section).
The observed patterns of tissue-sharing and tissue-specificity and how they are decom-
posed by matrix factorization are illustrated in the four following examples. First, an
eQTL for GLT1D1 is highly specific to the liver and loads only on the corresponding liver
factor (Fig. 2a). Second, an eQTL for AATF loads on the brain tissue factor and the tibial
nerve factor to explain its combined effect size profile (Fig. 2b). Although this eQTL
has small effects (or large variance) in some brain subregions, the model is able to iden-
tify a brain-wide effect as a likely explanatory factor for this eQTL. Third, an eQTL for
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Fig. 2 Assignment of eQTLs to factors. Effect sizes and 95% confidence intervals of four eQTLs across 49
tissues are illustrated. The fitted linear combination of factors for the eQTL is displayed in gray scale at the
right of each panel. Faded colors indicate factors with coefficients with FDR ≥ 0.05. Asterisk on the tissue
indicates that this eQTL was significant with FDR <0.05 in that tissue. a A liver-specific eQTL
(GLT1D1-rs1012994). b An eQTL (AATF-rs76014915) with activity in brain tissues and tibial nerve. c A
ubiquitous eQTL (U2AF1-rs234719). d An eQTL (CD14-rs2563249) with ubiquitous and testis-specific effects

U2AF1 with relatively consistent effects across tissues loads only on the ubiquitous factor
(Fig. 2c). Finally, an eQTL for CD14 has consistent effects across all tissues in addition to
a stronger effect specific to the testis (Fig. 2d).
In summary, 1,076,761 eQTLs (20% of tested eQTLs) load on the ubiquitous factor;

we refer to these eQTLs as “ubiquitous eQTLs” (u-eQTLs). For each tissue-specific fac-
tor, 76,976 to 431,585 eQTLs (1.5 to 8.1% of tested eQTLs) have significant loadings;
we call these eQTLs “tissue-specific eQTLs” (ts-eQTLs) (Fig. 3a, Additional file 2: Table
S2). Identified ts-eQTLs do not appear to result from genes with low levels of tissue-
specific gene expression (Figure S3). In total across factors, 2,821,650 eQTLs (53% of
tested eQTLs) are found to use at least one tissue-specific factor (Fig. 3b). There are
638,784 eQTLs that load on both the ubiquitous factor and tissue-specific factors (59%
of the u-eQTLs and 22% of the ts-eQTLs, Fig. 3c), indicating that in addition to a broad,
shared effect across tissues, these eQTLs have a much stronger effect on expression in a
particular subset of tissues. eQTLs tend to load on a small set of tissue-specific factors,
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Fig. 3 Identification of tissue-specific and ubiquitous eQTLs. a Fraction of tested eQTLs that load on each
factor. b Fraction of eQTLs that load on ubiquitous and tissue-specific factors. c The overlap of tested eQTLs
that loaded on the ubiquitous factor (u-eQTLs) and any tissue-specific factor (ts-eQTLs). d Fraction of eQTLs
that load on different numbers of tissue-specific factors. eQTLs that load with a specific number of ts-factors
can fall into one of two categories: those with the ubiquitous factor and those with only ts-factors. The figure
shows the fraction of tested eQTLs that load on each number of ts-factors with colors to show the
contribution for each category. e Fraction of eQTLs with activity in different numbers of tissues. The numbers
of unique tissues represented in the set of factors for each eQTL are summed

with 3,083,103 eQTLs (99% among the eQTLs loaded on at least one factor) using less
than six tissue-specific factors (Fig. 3d).
The number of factors an eQTL loads on should provide a more biologically inter-

pretable indication of the number of independent contexts in which an eQTL is active,
rather than simply counting individual significant tissues. Datasets often contain mul-
tiple similar or even duplicate tissues, such as the thirteen brain regions in GTEx, or
the two skin tissues that only differ by sun exposure. It may be misleading to count a
neuron-specific eQTL as active in thirteen tissues, not at all comparable to a very gen-
eral eQTL active in thirteen highly distinct tissues. Here, we demonstrate that eQTLs
tend to be active in just a few factors, tailing off rapidly, but these factors sometimes cor-
respond to numerous tissues (Fig. 3d, e), providing some interpretation for the familiar
“U-shape” curve that has been reported previously ([22], the GTEx Consortium 2020,
in submission). However, we note that 8 tissues are not significantly represented by any
tissue-specific factor and, therefore, cannot be captured in this analysis (Additional file 2:
Table S1).

Matrix factorization improves biological interpretation over heuristic methods of

determining tissue relevance

The method most commonly used to identify ts-eQTLs is simply to apply heuristic
thresholds based on effect sizes, P values, or meta-analysis results for individual tissues
[13, 14, 16, 19]. If an eQTL statistic exceeds the chosen threshold for a given tissue,
and remains below another threshold for other tissues, it is considered to be tissue-
specific. None of these approaches consider common patterns of tissue-sharing and may
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obscure eQTLmechanisms shared across a subset of tissues (such as the brain or endothe-
lium) unless they were manually predefined for investigation. Moreover, none of these
approaches handle complex patterns of tissue-specificity, where an eQTL influencesmore
than one tissue or predefined set, but is not universally shared.
Based on heuristic thresholds on individual tissue P values (heuristic1, see the

“Methods” section), we identified 312,502 u-eQTLs and between 1374 and 102,414 ts-
eQTLs per tissue—far fewer eQTLs are confidently assigned to each category compared
to results from sn-spMF (Additional file 1: Figure S4; Additional file 2: Table S2). This
difference is partly because standard heuristic methods allow only one pattern (a single
tissue or a ubiquitous effect) to be assigned to each eQTL, while matrix factorization
allows multiple factors and tissues to be involved in explaining the effect size of an eQTL
(Additional file 1: Figure S5). In addition, heuristic methods often miss small effects
from similar tissues, while matrix factorization is able to aggregate effects for similar
tissues (Fig. 2). We also tried manually grouping together tissues with clear shared biol-
ogy and applying heuristic thresholds based on these (heuristic2, see the “Methods”
section, Additional file 2: Table S3), resulting in 175,637 u-eQTLs and between 1460 and
201,584 ts-eQTLs (Additional file 1: Figure S6, S7). In subsequent sections, we show that
matrix factorization allows for the identification of more biologically coherent eQTLs
than heuristic approaches by comparing sn-spMF to the standard approach defined by
heuristic1. We also show that manually defined tissue sets as in heuristic2 offer only small
gains over heuristic1 and do not perform as well as matrix factorization either.

Tissue-specific eQTL gene function

To examine the functional relevance of ts-eQTL genes, we ran enrichment analysis using
biological processes from the Gene Ontology (GO) project [23]. We first evaluated genes
with ts-eQTLs and no u-eQTL. For sn-spMF, these eQTL genes are enriched for 546
unique GO terms at FDR < 0.05 (Additional file 1: Figure S8), and the top enriched GO
terms are relevant to the corresponding tissues (Additional file 1: Figure S9, S10, S11). The
ts-eQTL genes from heuristic methods, however, are less enriched in GO biological pro-
cesses (at FDR <0.05, 110 enriched for heuristic1, 421 enriched for heuristic2, Additional
file 1: Figure S12).
After initial enrichment analysis, we used a more stringent definition of tissue-

specificity to restrict the analysis to the genes most unique to each factor. For sn-spMF, we
selected genes appearing in less than 6 tissue-specific factors (on average 252 genes per
factor). A total of 64 unique GO terms are enriched at FDR<0.1. The enriched GO terms
are related to the matched tissue(s) of the eQTLs (Fig. 4). For example, five GO terms
are enriched among liver-specific genes including four metabolic processes (for steroid,
drug, uronic acid, and flavonoid) and response to xenobiotic stimulus, each relevant to
liver function. For heuristic1, we selected genes appearing in less than 7 tissues (on aver-
age 325 genes per tissue); for heuristic2, we selected genes appearing in less than 6 subsets
of tissues (on average 243 genes per subset), such that the gene sets are of comparable
sizes. No GO term is enriched among these gene sets for heuristic1, and one GO term is
enriched for heuristic2 (Additional file 1: Figure S12). These results indicate that sn-spMF
is able to identify eQTL genes with biological functions relevant in the corresponding tis-
sues more effectively than heuristic methods, even with comparably stringent definitions
of tissue-specific eQTL genes providing similar numbers of genes for analysis.
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Fig. 4 Enriched GO terms for eQTL genes from sn-spMF at FDR <0.1. Color represents the level of
enrichment (− log10 P value). The significantly enriched GO terms are annotated by numbers representing
the odds ratio. To compute the OR for each factor, background genes include all genes tested for the
represented tissues in the factor. GO terms and factors are ordered by hierarchical clustering. Examples of
relevant GO terms in related tissues are annotated

eQTL variant enrichment in cis-regulatory regions

eQTL variants are enriched in cis-regulatory elements, including cell type-specific pro-
moters and enhancers [1, 24, 25]. Consistent with prior observations, u-eQTL variants
identified by sn-spMF are more enriched in promoters (OR = 1.9, P value <2.2× 10−16)
than ts-eQTL variants (OR = 1.5, P value < 2.2 × 10−16), while ts-eQTL variants are
more strongly enriched in enhancers (OR = 1.3, P value = 8.5 × 10−12) than u-eQTL
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variants (OR = 1.0, P value = 0.40, Additional file 1: Figure S13) [1, 26, 27]. More-
over, ts-eQTL variants are more likely than u-eQTLs to overlap enhancers whose activity
is restricted to a small number of tissues (Additional file 1: Figure S14). Compared to
sn-spMF, heuristically defined ts-eQTLs exhibit comparable enrichment magnitude in
enhancers (for heuristic1, OR = 1.3, P value = 7.8 × 10−8; for heuristic2, OR = 1.4, P
value = 4.2× 10−5 ), but sn-spMF provides an order of magnitude more ts-eQTLs (Addi-
tional file 1: Figure S4, S6). While heuristic methods identify highly tissue-specific eQTLs
by selecting those with effects clearly limited to a single tissue or a subset of tissues, sn-
spMF identifies many more eQTLs relevant to each tissue-specific factor, each related to
a shared set of cis-regulatory elements.

eQTL enrichment in transcription factor binding sites

To systematically assess whether eQTLs for each factor are enriched in binding sites for
specific TFs, we performed enrichment analysis for each of the 579 TF motifs available in
the JASPAR database [28]. As a proxy for TF binding sites (TFBS) in individual tissues, we
identified TF motif instances overlapping predicted enhancers and promoters [29–32].
Enrichment analysis was performed separately for TFBS in promoters and TFBS

in enhancers (see the “Methods” section). In promoters, u-eQTLs and ts-eQTLs are
enriched for TFBS of 136 and 181 unique TFs (median = 21 across factors), respectively
(FDR < 0.05, Fig. 5a, b). In enhancers, u-eQTLs and ts-eQTLs are enriched for TFBS of
39 and 264 unique TFs (median = 41 across factors), respectively (FDR < 0.05, Fig. 5a,
b). Among these 264 TFs, 244 (92%) are enriched for fewer than six tissue-specific factors
(Fig. 5c). Zero to 23% (among factors, median 4%) of TFs are enriched in both promot-
ers and enhancers (Additional file 1: Figure S15). These results indicate that ts-eQTLs
are more enriched in binding sites of particular TFs in enhancers than promoters, while
u-eQTLs yield more enrichment in promoters than enhancers. The heuristic1 approach
for identifying ts-eQTLs yields only 5 TFs enriched in promoters and 47 TFs enriched
in enhancers. Similarly, there are fewer TFs enriched for heuristic u-eQTLs (59 in pro-
moters, and 8 in enhancers, Fig. 5a, Additional File 1: Figure S16). Heuristic2 yields 9
TFs enriched in promoters and 51 TFs enriched in enhancers for ts-eQTLs, and 97 TFs
enriched in promoters and 4 TFs enriched in enhancer for u-eQTLs. The relatively low
enrichment of TFBS from heuristically identified eQTLs is presumably due to the much
more limited number of eQTLs identified in each category.

Impact of matrix factorization methodological choices

In addition to our sn-spMF model, there are a variety of matrix factorization approaches
available. Methodological choices include the selection of priors on loading and factor
entries, which may encourage sparsity or other properties, nonnegativity constraints, and
hyper-parameter selection.
We compared our method to several matrix factorization methods using simulated

data (see the “Methods” section). We ran singular value decomposition (SVD) and
nonnegative matrix factorization (NMF) as they are commonly used in matrix factor-
ization. We also implemented matrix factorization with various constraints, including
sparse SVD (SSVD), penalized matrix decomposition (PMD), softImpute, and non-
parametric Bayesian sparse factor analysis (NBSPA) [33–36]. PMD penalizes the two
decomposed matrices using either one penalty parameter scaled by the dimensions for
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Fig. 5 Enrichment of TFBS for u-eQTLs and ts-eQTLs. a Number of TFs whose binding sites are enriched for
eQTLs across factors at FDR <0.05 for sn-spMF, flashrbf , and heuristic1 methods. Enh, enhancers; TssA, active
transcription start sites. b Total number of TFs with binding sites enriched for either only u-eQTLs, or only
ts-eQTLs, or both. c Distribution of the number of tissue-specific factors each TF is enriched in. d–f
Enrichment for example TFs among eQTLs across each factor (− log10(P value) ) where the TF was expressed
in corresponding tissues for d FOSL2, e GATA4, and f HNF4A. Black bars represent that the BH-corrected P
value is <0.05

each decomposed matrix (PMDCV1) or two separate penalty parameters (PMDCV2).
Finally, we applied flashr, a recent method which uses a Bayesian framework to automat-
ically learn the sparse structure of effects across tissues [18]. Flashr was run with default
setting (flashrdefault), greedily adding factors followed by backfitting (flashrbf ) and with
nonnegative priors (flashrNN ).To evaluate the performance of thesemethods on simulated
data, we computed the correlation between the learned loadings and the true loadings,
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and the correlation between the learned factors and the true factors, as well as the preci-
sion and recall for true u-eQTLs and ts-eQTLs. We observed that sn-spMF and flashrNN
achieve the most accurate loading matrix and factor matrix, and the highest precision and
recall for correctly identifying u-eQLTs and ts-eQTLs (Additional file 1: Figure S17, S18),
followed by other flashr approaches, NBSPA, and softImpute. Sparsity appears to confer
some benefit in accuracy and interpretability of factors.
Based on strong performance in simulation, we also applied flashrmethods to the GTEx

data, each capturing both ubiquitous and sparse factors (Additional file 1: Figure S19).We
first discuss flashrbf , which displayed the strongest performance of the flashr methods
on GTEx, in detail. Each flashrbf factor is somewhat more dense (more non-zero entries)
than sn-spMF factors (Additional file 1: Figure S20, S21). We then identified flashrbf fac-
tors relevant to each eQTL using the same second pass linear regression pipeline as in
sn-spMF. We thus identified 1,929,939 u-eQTLs and 69,594 to 929,009 ts-eQTLs.
Flashrbf ts-eQTL genes are comparably enriched for GO biological processes as sn-

spMF factors, far exceeding heuristic ts-eQTL genes, with 593 enriched pathways (FDR
< 0.05). However, flashrbf eQTL variants are not strongly enriched in enhancers (OR
= 1.1, Additional file 1: Figure S22). This appears to be due to the denser flashrbf fac-
tors not isolating tissue-specific effects from ubiquitous effects as strongly. Assessing TF
enrichment, however, because analysis is restricted to variants within enhancers identi-
fied in relevant tissues, is still able to identify enrichment for 197 TFBS across flashrbf
factors (Fig. 5a). While regulatory element enrichment appears sensitive to matrix fac-
torization methodological choices, both versions of matrix factorization show advantages
over heuristic approaches for identifying tissue-relevant eQTL genes and for identifying
particular transcription factors whose binding sites are impacted by ts-eQTL variants.
Finally flashrbf , does not include nonnegativity constraints on the factors, thus compli-
cating interpretation of latent patterns and tissue-specificity. For example, we found that
factors that contain tissues with different signs do not correspond well to patterns in the
actual eQTL effect sizes—only 19–35% of eQTLs that mapped to such mixed sign factors
actually display opposite sign eQTL effects in the corresponding tissues (Additional file 1:
Figure S23).
For thorough comparison, we also applied other matrix factorization methods includ-

ing flashr with default parameter setting (flashrdefault), flashr with nonnegative prior
(flashrNN ), softImpute, and PMD to the GTEx dataset (see the “Methods” section, Addi-
tional file 1: Figure S24 - S29). These methods did not offer performance gains over
flashrbf or sn-spMF (Additional file 1: Figure S20, S21, S22, S30; Additional file 2: Table
S4, S5, S6, S7). In particular, flashrNN provided sparse, interpretable tissue factors but
suffered from multicollinearity making it difficult to distinguish ts-eQTLs from u-eQTLs
(Additional file 1: Figure 25, [37, 38]). Overall, we conclude that the sparsity constraint on
decomposed matrices is crucial to distinguish ts-eQTLs from u-eQTLs, and that depend-
ing on optimization approach, a nonnegativity constraint on factors can be helpful in
interpreting the identified patterns of tissue-specificity.

Transcription factors enriched in u-eQTLs and ts-eQTLs

Given the limited systematic research on the consequences of genetic variation within
tissue-specific TFBS, we examined the characteristics of TFBS enriched in ts-eQTLs for
each factor and in u-eQTLs. We focused on the TFBS found within enhancers because
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of their generally increased tissue-specific functions (Additional file 1: Figure S13,
S14). Binding sites for TFs with broad activity are enriched for u-eQTLs, such as
CCAAT/enhancer-binding proteins (CEBPB, CEBPD, CEBPG), T-box 1 (TBX1), and AP-
1 Transcription Factor Subunit FOSL2 [39–42] (Fig. 5d). The enrichment of these TFBS in
u-eQTLs reflects their participation in a wide range of regulatory processes across tissues.
The enrichment of binding sites for 264 TFs in ts-eQTLs demonstrates their role in

regulating gene expression in particular subsets of tissues corresponding to each factor.
Among these, binding sites for 172 TFs display enrichment in ts-eQTLs for multiple fac-
tors with biologically plausible patterns across tissue groups. For example, hepatic nuclear
factor HNF1A, known to be crucial for the development and function of the liver, pan-
creas, and gut epithelium, are enriched for the liver-specific eQTLs, pancreas-specific
eQTLs, and ts-eQTLs for a factor reflecting the colon and small intestine [43, 44]. Fur-
thermore, 92 TFBS are enriched in ts-eQTLs for one tissue-specific factor. Examples
include binding sites for the well-characterized cardiac TF GATA4, which are enriched
for heart-specific eQTLs [45, 46] (Fig. 5e); hepatocyte nuclear factor HNF4A, which are
enriched for liver-specific eQTLs [47, 48] (Fig. 5f ); and myogenic factor 4 MYOG, which
are enriched for skeletal muscle-specific eQTLs [49] (Additional file 1: Figure S31). We
continue to explore two TFs in more detail in the following sections. More examples
of enriched TFs with previously characterized tissue-specific functions can be found in
Additional file 1: Figure S31 and Additional file 2: Table S8.

Heart-specific eQTLs are enriched in GATA4 binding sites

Previous studies have demonstrated the essential roles of GATA4 in heart morphogene-
sis [50]. In mouse studies, GATA4 has been shown to recruit the histone acetyltransferase
p300 in a tissue-specific manner in the heart [45]. This GATA4-p300 complex deposits
H3K27ac at cardiac enhancers, thus stimulating transcription of genes necessary for heart
development. In human,missensemutations in GATA4 are associated withmultiple heart
diseases such as cardiac septal defects and cardiomyopathy [51, 52]. However, common
genetic variants affecting GATA4 TFBS have not previously been shown to be enriched
for effects on expression in cardiac tissues. Binding sites of GATA4 in heart enhancers
are enriched for heart-specific eQTLs (OR = 1.7, P value = 0.004, Fig. 5e), highlight-
ing the importance of GATA4 in normal physiological conditions of the heart. Among
the 48 genes loading on the heart-specific eQTL factor with variants located in TFBS of
GATA4, we note that STAT3 has been reported to exhibit a crucial role in cardiomyocyte
resistance to physiological stress stimuli [53].

Liver-specific eQTLs are enriched in HNF4A binding sites

Variants in liver-specific HNF4A binding sites are enriched for eQTLs loading on the
liver-specific factor (OR = 2.9, P value = 3.3× 10−5, Fig. 5f ). The enrichment of HN4FA
binding sites has not been previously identified among liver eQTLs. HNF4A is an essen-
tial TF during liver organogenesis and development [47, 48] and harbors a missense
mutation (rs1800961) strongly associated with liver relevant traits including high-density
lipoprotein levels and total cholesterol [55–57] (Additional file 1: Figure S32).
With the availability of Chromatin Immunoprecipitation followed by high-throughput

Sequencing (ChIP-seq) data for HNF4A in human liver tissues in ENCODE, we are able
to directly map the genome-wide binding sites of HNF4A. Replicating the motif-based
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enrichment described above, liver-specific eQTLs are strongly enriched in HNF4A ChIP-
seq peaks (OR = 3.6, P value <2.2×10−16). The enrichment is not as strong in ts-eQTLs
for other tissues (OR = 1.8 in the testis to 2.6 in the pancreas). Also, liver-specific eQTLs
are significantly more enriched in HNF4A binding sites than are u-eQTLs (OR = 1.7, P
value < 2.2 × 10−16).
We hypothesized that variants in HNF4A binding sites lead to liver-specific eQTLs via

differential binding of HNF4A. We quantified allele-specific binding (ASB) of HNF4A
and, as a tissue-shared control, CTCF (see the “Methods” section). Liver-specific eQTLs
are indeed significantly enriched for ASB of HNF4A (OR = 1.4, P value = 0.003), but not
CTCF (OR= 0.8, P value= 0.4). This finding supports the possibility that the enrichment
of liver-specific eQTLs in HNF4A motifs reflects altered binding affinity of HNF4A at
these eQTL variants, providing a testable hypothesis for experimental validation.

Example eQTL variant in HNF4A binding site relevant to liver phenotypes

Among the liver-specific eQTLs identified by sn-spMF, rs9987289 exhibits significant
ASB for HNF4A (Fig. 6a,b, Additional file 1: Figure S33). The A allele is associated with
increased HNF4A binding (ChIP-seq read ratio = 7.7, two-tailed binomial test P value
= 8.8 × 10−5) and with significantly lower expression of the eGene TNKS (Fig. 6b, c).
HNF4A may act as a repressor of TNKS, and these data suggest that the A allele of
rs9987289 may act by increasing binding of HNF4A and therefore reducing expression
levels of TNKS. Though HNF4A has been widely reported as a transcriptional activator,
it has also been associated with transcriptional repression [58–62] (Fig. 6d). Rs9987289
is located in a flanking active promoter (TssAFlank) region surrounded by enhancers in
liver, while it is found in quiescent or heterochromatin regions in all 13 non-liver tissues
where HNF4A is expressed (Additional file 1: Figure S34, S35).

Fig. 6 Example liver-specific eQTL, TNKS-rs9987289, in a TFBS of HNF4A that co-localizes with liver-specific
phenotypes. a Effect size and 95% confidence interval of TNKS-rs9987289 across 49 tissues in GTEx. b
Allele-specific HNF4A ChIP-seq reads over rs9987289 in the liver (see the “Methods” section, two-sided
binomial test P value = 8.8 × 10−5 ). c Normalized expression levels of TNKS in the liver among individuals
with different genotypes at rs9987289. P value = 3.4 × 10−4 from GTEx eQTL analysis. d Schematic
illustration of hypothesized mechanism: allele-specific binding of HNF4A at rs9987289 and altered levels of
expression of TNKS. eManhattan plot (LocusZoom v0.4.8) [54] of TNKS expression levels in the liver around
rs9987289. fManhattan plot for LDL GWAS around rs9987289
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Furthermore, rs9987289 is significantly associated with several liver-related phe-
notypes, including low-density lipoprotein (LDL) cholesterol levels and high-density
lipoprotein (HDL) cholesterol levels [REF GTEx GWAS companion] [55] (Additional
file 1: Figure S36). The liver eQTL of TNKS and the association statistics for LDL are
strongly co-localized (posterior probability of shared causal signal between LDL and the
eQTL= 0.94, with rs9987289 having the highest posterior of being the shared causal vari-
ant) [63] (Fig. 6e, f ). Though TNKS has been widely recognized for its role in controlling
telomere length, there is emerging evidence of TNKS participating in liver metabolism
[64, 65].
Together, these results support the hypothesis that the tissue-specific regulatory effect

of ts-eQTL variant rs9987289 in the liver may have phenotypic consequences: an active
cis-regulatory element unique to the liver, allele-specific binding of liver TF HNF4A in
hepatocytes, and finally co-localization of the eQTL effect with lipid GWAS hit. Such
examples can provide testable hypotheses regarding multiple steps of the mechanism
through which genetic variation may affect a high-level phenotype.

Discussion and conclusions
In this study, we explored the genomic context and potential mechanisms underlying
tissue-specific effects of genetic variation by applying a constrained matrix factorization
model (sn-spMF) to multi-tissue eQTL data from the GTEx project. Using sn-spMF, we
learned factors representing the common patterns of eQTL sharing across tissues, such
as factors corresponding to ubiquitous effects across all tissues and effects shared among
only brain tissues or among muscle tissues. This allowed us to explore eQTL effects
shared across overlapping subsets of tissues that share cis-regulatory mechanisms due to
shared cell types or developmental origin, without having to manually prespecify each
such pattern. These learned factors enabled us to evaluate potential mechanisms relevant
to genetic effects following these patterns of tissue-sharing.
sn-spMF identified much larger sets of tissue-specific eQTLs than did heuristic meth-

ods. The ts-eQTLs from sn-spMF were also equally or more enriched for GO biological
processes, transcription factor binding sites, and tissue-specific cis-regulatory elements
than the heuristic ts-eQTLs. These results suggest that sn-spMF identifies larger num-
bers of ts-eQTLs that remain biologically coherent, offering an opportunity for novel
mechanistic insights. Other versions of matrix factorization, such as flashr, also provide
meaningful views of tissue-specificity. In particular, we note the flashr has the advantage
of learning the parameters with less computational burden, compared to sn-spMF where
a grid search is needed for tuning parameters.
There can be other definitions of the manually selected subsets of tissues. How-

ever, it is not clear how to choose the relevant tissues and the thresholds before we
have learned the latent patterns. For example, it is not clear whether whole blood and
spleen should be grouped into one factor, or used as two separate factors. Also, heuris-
tic methods can be hard to implement in situations where we have little knowledge
about the feature (in contrast to our knowledge of tissue similarity). For example, in a
time-series data, it is typically unknown, a priori, how patterns change during the time
course.
The large set of ts-eQTLs provided by sn-spMF enabled a detailed evaluation of eQTLs

in transcription factor binding sites that was not possible from heuristic approaches.
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We evaluated 76,976 to 431,585 ts-eQTLs for enrichment in promoter and enhancer
elements, and were able to identify 181 and 264 TFs enriched among these, respec-
tively. This list of 264 TFs enriched in ts-eQTL enhancers provides experimentally
testable hypotheses about specific genetic variants within TFBS that alter expression in a
tissue-specific fashion.
Matrix factorization is inherently limited by the eQTL data used as input to the

method—any tissue that is underpowered or not well represented in the original eQTL
dataset is unlikely to be captured strongly by a ts-eQTL factor with sn-spMF. Fur-
ther, sn-spMF does not explicitly model linkage disequilibrium (LD) or consider allelic
heterogeneity, rather it relies on the user to pre-select candidate causal variants using fine-
mapping tools or other approaches. Additionally, many matrix factorization approaches,
priors, and constraints remain to be explored that may capture different properties
of the eQTL data than represented here. Different applications, such as time series
or perturbation-response eQTL data, may ultimately benefit from specialized matrix
factorization formulations [17].
In conclusion, we have developed a constrained matrix factorization model to learn

patterns of eQTL tissue-specificity across 49 human tissues using data from GTEx v8. We
observed improved enrichment of biologically relevant genes and cis-regulatory elements
compared to heuristic methods. Matrix factorization also revealed the potential impact
of ubiquitous TFs on ubiquitous eQTLs and provided a list of candidate TFs relevant to
each tissue-specific set of eQTLs.

Methods
GTEx data

GTEx Release v8 project has collected both genotype data from whole genome sequenc-
ing (WGS) and RNA sequence (RNA-seq) from 838 people. Here, we analyze GTEx data
from 15,253 samples, consisting of 47 tissues and two cell lines (the GTEx Consortium
2020, in submission). GTEx v8 data release includes cis-eQTL analyses that test for asso-
ciation between gene expression and variants within 1 MB of the genes’ transcription
start sites (TSS). Effect sizes of the eQTLs are represented by coefficients estimated in the
linear model association tests.

Preprocessing and input data

To restrict the analysis to potential casual variants, we used cis-eQTLs that are in the
95% credible set for at least one tissue [66]. Specifically, for each eQTL gene, the credi-
ble set consists of eQTL variants that include the causal variant with 95% probability. In
total, 5,301,827 eQTLs with 17,480 unique protein coding eQTL genes are included in
the analysis. For these 5,301,827 eQTLs, we collected the effect size and standard error
from univariate cis-eQTL analysis across tissues, based on the linear model association
test results from GTEx (the GTEx Consortium 2020, in submission). Missing entries, cor-
responding to tissues where an eQTL variant-gene pair was not tested, were assigned
weights of 0 and thus do not contribute to the objective function of sn-spMF. This avoids
biasing towards shared eQTLs caused by removing data points with any missing data.
Finally, the lead variants, within credible sets, with the most extreme geometric mean P
values across tissues for the 17,480 eQTL genes were used as input (rows in matrix X and
W ) to learn the factor matrix (matrix F). Ultimately, only 17,480 of the original 5,301,827
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eQTLs are used to learn the factor matrix. However, the learned sn-spMF representation
can then be used to analyze any tested eQTL variant.
sn-spMF is able to learn the underlying patterns from a subset of representative eQTL

summary statistics. In our case, we restricted to credible set variants with the strongest
signals across tissues, as described above. Other users may choose another representative
subset of variants of interest based on their preferred methods for selecting likely causal
variants or lead variants, but regardless, sn-spMF does not require summary statistics for
every tested variant to learn relevant factors.

Lower-dimensional representation of eQTL effects

eQTL effects across tissues can be represented by a matrix XD×T where D is the number
of eQTLs and T is the number of tissues. Each entry is the regression parameter obtained
from eQTL association testing of one variant/gene pair in one tissue, in the case of GTEx
based on a standard linear model. Each row is then the effect of one eQTL across all
tissues, and each column is the effect of all eQTLs for one tissue. The effect values are
real-valued and can be positive or negative. A lower-dimensional representation of the
effect matrix X can be written based on a factor matrix FT×K and a loading matrix LD×K
such that X ≈ LFT (Fig. 1).

Weighted semi-nonnegative sparsematrix factorization algorithm sn-spMF

In order to describe the eQTL effects, we designed a matrix factorization objective func-
tion with several features: (1)A penalty on a weighted sum of residuals: in order to account
for uncertainty in effect size estimates, the residual for each data point was weighted by
the reciprocal of its standard error. In this way, data points with more certain eQTL effect
sizes have more influence over optimal parameter estimates. Missing values in the input
data were assigned a weight of zero and thus do not influence the value of the objective.
(2) Sparsity: to alleviate over-fitting, an l1 penalty was applied to the decomposed matri-
ces. (3) Semi-nonnegativity of the decomposed matrices: the factors capture the pattern of
effects across tissues, and thus, it was a natural constraint to make the factors nonneg-
ative for ease of interpretation. At the same time, because the input matrix has mixed
signs, there was no such constraint on the loading matrix. The objective function was
formulated as below:

min
F ,L

1
2D

||(X − LFT ) � W ||2F + α||L||1 + λ||F||1

where F is nonnegative, W is the element-wise reciprocal of the standard error of the
eQTLs, D is the number of data points (in this case the number of eQTLs), and α and λ

are the penalty parameters.
This objective function is biconvex, that is, convex only in F or in only L given the other,

but not convex in both jointly. We used alternating least squares (ALS) with gradient
descent to optimize the objective (Algorithm 1, implemented in R version 3.5.1,
[67, 68]). At each iteration, we fixed F and updated L, and then fixed L and updated F. The
update was finished when the Frobenius norm of difference in F between two iterations
was < 0.01. In each update step, the optimization problem was a linear regression with
constraints. Since the solution to linear regression was guaranteed to minimize the sum
of mean squared error and penalty, the cost function monotonically decreased.
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Algorithm 1 Weighted semi-nonnegative sparse matrix factorization algorithm (sn-
spMF)
1: Input: XD×T
2: Output: LD×K , FT×K
3: Randomly Initialize nonnegative F
4: while not converged do
5: for i = 1 . . .D do
6: li ← minli ||

(
xi − liFT) � wi||2F + α||li||1

7: which is equivalent to
8: li ← minli ||xi � wi − li

(
FTdiag(wi)

) ||2F + α||li||1
9: end for

10: for j = 1 . . .T do
11: fj ← minfj ||

(
xj − fjLT

) � wj||2F + λ||fj||1, ||fj|| ≥ 0
12: which is equivalent to
13: fj ← minfj ||

(
xj � wj − fj

(
LTdiag(wj)

)) ||2F + λ||fj||1, ||fj|| ≥ 0
14: end for
15: end while

Model selection

In the sn-spMFmodel, we need to set hyper-parameters including the rank of the decom-
position (K) and the sparsity penalty (α, λ). We evaluated K within [ 20, 25, 30, 35, 40],
and α and λ within [ 4.9, 24.5, 49, 245, 490]. These ranges were chosen by considering the
number of tissues in GTEx to define plausible values for K and by manual inspection of
solutions for widely varying α and λ to avoid high-resolution search for ranges of these
hyper-parameters that resulted in clearly implausible solutions, such as lack of sparsity or
large numbers of empty, un-utilized factors.
Within these chosen search spaces, we evaluated sn-spMF models for all combinations

of K, α, and λ using (1) a previously defined criterion of matrix factorization stability and
(2) independence of the learned factors, which represents adequate sparsity. Considering
the stochastic nature of matrix factorization, Brunet et al. proposed a method looking for
the most stable factorization result, and this method has been applied in various studies
[69, 70]. We obtained the consensus matrix C after 30 runs with random initialization for
each model. The values in C are between 0 and 1, representing the proportion of runs in
which a pair of tissues are assigned to the same factor. Using the C matrix, we computed
the cophenetic correlation which is used to measure the degree of dispersion for the C
matrix. Higher cophenetic correlation indicates a more stable factor matrix.
Evaluating the runs for all combinations of hyper-parameter settings, we first elimi-

nated some settings of K. Here, for each observed mean number of learned, non-empty
factors K ′ (which may be less than the input K), we aggregated across the different
settings of λ and α and computed the median cophenetic correlation [69]. We elim-
inated from consideration any settings of K corresponding to a K ′ with a median
cophenetic correlation < 0.9. Next, among the remaining individual settings, we elim-
inated any cophenetic correlation < 0.9. Last, among these apparently stable settings,
we selected the final hyper-parameters based on the minimum Pearson correlation
between pairs of factors, to encourage independent factors and a level of sparsity that
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matches independent signals in the data. Here, we computed the Pearson correlation
for each pair of factors, took the Frobenius norm of the pairwise correlation matrix,
and averaged this across the 30 randomly initialized runs for the same setting. Doc-
umented code and examples of the model-selection process are available on Github
(https://github.com/heyuan7676/ts_eQTLs)

Assignment of eQTLs to factors

After we have learned the factors, we identify a set of relevant factors for each eQTL
using weighted linear regression. Specifically, for each eQTL, a weighted linear regres-
sion of the form x = FL is fit, where x is the vector of eQTL effect sizes across tissues,
F is the factors learned from sn-spMF, and L are the regression coefficients. Weights w
are incorporated, where wt is the reciprocal of the standard error for the eQTL effect size
xt in tissue t. Weighted linear regression using standard error in this manner is a com-
mon approach allowing data points with high uncertainty to have less influence on the
regression parameter estimates [71]. Statistical significance of each factor for the eQTL is
determined according to P values based on the standard t test from this linear regression.
To alleviate the multiple testing burden, we removed the eQTLs for which the variants
were in perfect LD (R2 = 1) with variants from another eQTL before running regression
for the remaining 3,601,800 eQTLs [72]. We applied the Benjamini-Hochberg correc-
tion to get the q value for every factor for each eQTL [73]. We then mapped the q value
back to all 5,301,827 eQTLs where the SNPs are in an LD block with the tested SNPs
for the same gene. We observed that occasionally, there were factors assigned negative
regression coefficients when the actual observed effect sizes in the corresponding tis-
sues were positive, or vice versa. This discrepancy arose due to collinearity between the
factors, and in such cases, the discrepant factors were not included for downstream anal-
ysis. We also removed those factors that caused one tissue to have an oppositely signed
small effect (absolute Z-score < 3, or P value > 0.00135) when compared to the factor
where this eQTL has the strongest effect; such discrepancies may often reflect allelic het-
erogeneity or LD contamination rather than true opposite effects from the same causal
variant [20, 21]

Background SNP-gene pairs

For enrichment analyses, random SNP-gene pairs were sampled from all SNP-gene pairs
to match for eQTLs by three criteria: (1) SNP MAF was matched to the eQTL variants’
MAF, (2) distance from the SNP to transcription start sites (TSS) of the gene was matched
to eQTL, and (3) a number of SNPs per gene were matched as in eQTLs.

Enrichment analysis of chromatin states

For each 5 bpwindow centered on each SNP, we identified overlapping (1) chromatin state
predictions from the Roadmap Epigenomics project and (2) regions of open chromatin
identified by DNAse-seq from ENCODE [29, 30, 74–76]. In Roadmap, chromatin states
are predicted for each tissue or cell type that include enhancers, promoters, and tran-
scribed regions. We used the standard 15-state Roadmap segmentations independently
for each of the samples that werematched to GTEx tissues (Additional file 2: Table S9, S4).
If a tissue had more than one dataset available, we merged the datasets using BEDTools
[77]. For the datasets using genome assembly hg19, we used liftOver to map the peaks

https://github.com/heyuan7676/ts_eQTLs
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to GRCh38 [78]. We built the 2 × 2 contingency table for eQTLs from each factor and
across the 15 chromatin states. In the table, the first row includes eQTL variants in the
factor, and the second row includes randomly matched SNPs. The columns indicate the
number of SNPs that are located in the tested chromatin state in the tested tissues. Both
tissues matched for the factor and tissues not matched for the factor were tested. We then
ran a one-sided Fisher’s exact test for each contingency table and corrected the P values
using BH-correction. To summarize the results across tissues and across factors, we used
a random-effects model (rma() in R) to obtain the combined odds ratio and combined
standard error [79].

Heuristic thresholding methods to derive u-eQTLs and ts-eQTLs

heuristic1: We defined ts-eQTLs in one tissue as those with P value > 0.001 in at least
44 other tissues, and with P value < 100× the most extreme P value of the eGene in the
tissue of interest, and within the credible set for that tissue. The thresholds were chosen
such that we have a reasonable number of ts-eQTLs, and at the same time only eQTLs
with a strong effect in the tissue of interest. u-eQTLs were restricted to those found in the
credible sets for at least 5 tissues.
heuristic2: Here, we defined ts-eQTLs in manually defined subsets of similar tissues

(Additional file 2: Table S3). For each subset of Nk tissues, the ts-eQTLs were defined as
those with P value >0.001 in at least 49 − Nk − 5 other tissues, and with P value <100×
the most extreme P value of the eGene in ≥ 50% of the tissues in the subset. U-eQTLs
were restricted to those found in at least 5 different subsets of tissues.

Simulation

We simulated data with N = 100 eQTLs, T = 10 tissues, and K = 5 factors with sparse
loadings and nonnegative factors including a dense factor and four sparse factors. Non-
zero values in the loadings were randomly drawn from a standard normal distribution. An
error matrix E added noise to the input matrix such that X = LFT + E. Values in E were
randomly drawn from normal distribution with mean 0 and different levels of variance
σ 2 (σ 2 = 0.001, 0.01, 0.05, 0.1). To evaluate the performance of multiple methods, we
computed the correlation between the learned loadings/factors and the true simulated
loadings/factors (factor orderings were permuted to reach the highest correlation for each

method), and the relative root mean squared error: RRMSE(X̂,X) =
√∑

i,j(X̂i,j−Xi,j)2
∑

i,j X2
i,j

[18].

Other matrix factorization methods

We ran singular value decomposition (SVD) using the R function prcomp, and nonnega-
tivematrix factorization (NMF) using the R package NMF [80].We ran sparse SVD (SSVD)
using the R package ssvd [33, 81], penalized matrix decomposition (PMD) using the R
package PMA [34, 82], and softImpute using the R package softImpute [35, 83]. We ran
flashr using the R package flashr [18, 84].
SSVD is reported to be robust to tuning parameters, so we ran SSVD with the default

settings [18, 33]. PMD penalizes the two decomposed matrices using either one penalty
parameter scaled by the dimensions for each decomposed matrix (PMDCV1) or two sep-
arate penalty parameters (PMDCV2). We chose the tuning parameter by cross-validation,
in both PMDCV1 and PMDCV2 [34]. softImpute has one parameter λ, and we chose it
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such that the factor matrix reaches the highest sparsity while preserving the rank [35]. To
run default flashr, we ran flashr. To run flashrbf , we initialized the rank 1 factor and load-
ing using flashr ::: udvsi where the initial decomposition was done using softImpute (with
penalty parameter λ = 0, [18, 83]).We then did a two-round fitting by first greedily adding
factors (flash_greedy_workhorse) and then applying backfit (flash_backfit_workhorse). In
flashrNN , initialization was also done using flashr ::: udvsi, and nonnegative priors were
imposed by setting ebnmparam = list(l = list(mixcompdist = “normal′′, optmethod =
“mixSQP′′), f = list(mixcompdist = “normal′′, optmethod = “mixSQP′′)) [18].

Enrichment analysis of transcription factor binding sites

To examine the enrichment of TF binding sites in u-eQTLs and in ts-eQTLs, we con-
structed the 2 × 2 contingency tables across factors for each TF. For each TF, we first
annotated its binding sites by overlapping tissue-specific enhancer predictions from
Roadmap Epigenomics and its TFBS predictions on the genome from JASPAR [28–30].
We then restricted analysis to genes with at least one variant located in TFBS to avoid
genes intrinsically lacking variants in TFBS. In the contingency table for each TF, the first
row includes eQTLs, and the second row includes randomlymatched SNP-gene pairs. For
u-eQTLs, the columns indicate the number of genes with or without ubiquitous variants
in the TFBS. For ts-eQTLs, first column indicates the number of genes with or without
tissue-specific variants in the TFBS. One thing to note is that the TFBS were annotated
using matched tissues for each factor. Fisher’s exact test was performed for each of these
contingency tables, and the P values were corrected using Benjamini-Hochberg [73].
For eQTLs from each factor, the analysis was done for TFs with median TPM > 1 in

at least half of the corresponding tissues with available data. TFs with a total number of
genes in TFBS < 10 were removed. The tissue-specificity of the enriched TFs is unlikely
to result from filtering TFs based on expression level and the number of hits (Additional
file 1: Figure S37, S38).

Identification of allele-specific binding sites using ChIP-seq data

FASTQ files from human liver samples of HNF4A and CTCF were downloaded from
ENCODE web portal and aligned to the GRCh38 genome assembly using STAR [85]
(Additional file 2: Table S11). Reads that mapped to variants in GTEx and passed WASP
filters were extracted [86]. BAM files of the samples and controls from the same ENCODE
repository were downloaded, and peak-calling was performed using MACS2 [87]. Only
reads that mapped to peaks at q value < 0.1 were included, and ASB was computed for
each variant with more than 10 reads by examining if the numbers of reads at each allele
were significantly different, using a two-tailed binomial test. Variants with significant ASB
events were called at FDR <0.05 using Benjamini-Hochberg [73].
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