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Abstract

An important challenge in pre-processing data from droplet-based single-cell RNA
sequencing protocols is distinguishing barcodes associated with real cells from those
binding background reads. Existing methods test barcodes individually and
consequently do not leverage the strong cell-to-cell correlation present in most
datasets. To improve cell detection, we introduce CB2, a cluster-based approach for
distinguishing real cells from background barcodes. As demonstrated in simulated
and case study datasets, CB2 has increased power for identifying real cells which
allows for the identification of novel subpopulations and improves the precision of
downstream analyses.
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Background
Droplet-based single-cell RNA sequencing (scRNA-seq) [1] is a powerful and widely

used approach for profiling genome-wide gene expression in individual cells. Current

commercial droplet-based technologies utilize gel beads [2], each containing oligo-

nucleotide indexes made up of bead-specific barcodes combined with unique molecu-

lar identifiers (UMIs) [3] and oligo-dT tags to prime polyadenylated RNA. Single cells

of interest are combined with reagents in one channel of a microfluidic chip, and gel

beads in another, to form gel beads in emulsion, or GEMs. Oligonucleotide indexes

bind polyadenylated RNA within each GEM reaction vesicle before gel beads are dis-

solved releasing the bound oligos into solution for reverse transcription. By design,

each resulting cDNA molecule contains a UMI and a GEM-specific barcode. Indexed

cDNA is pooled for PCR amplification and sequencing resulting in a data matrix of

UMI counts for each barcode (Additional file 1: Figure S1).

Ideally, each barcode will tag mRNA from an individual cell, but this is often not the

case in practice. In most datasets, more than 90% of GEMs do not contain viable cells,

but rather contain ambient RNA excreted by cells in solution or as a product of

cell lysis [2]. As a result, an important challenge in pre-processing droplet-based
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scRNA-seq data is distinguishing those barcodes corresponding to real cells from

those binding ambient, or background, RNA.

Early methods to address this challenge defined real cells as those barcodes with total

read counts exceeding some threshold [1, 2]. Such methods are suboptimal as they dis-

card small cells as well as those expressing relatively few genes. To address this, Lun

et al. [4] developed EmptyDrops (ED), an approach to identify individual barcodes with

distributions varying from a background distribution. Similar to previous approaches

[1, 2], ED identifies an upper threshold and defines real cells as those barcodes with

counts above the threshold. As a second step, ED uses all barcodes with counts below a

lower threshold to estimate a background distribution of ambient RNA against which

remaining barcodes are tested. Those having expression profiles significantly different

from the background distribution are deemed real cells. The ED approach is current

state-of-the-art in the field. However, given that ED performs tests for each barcode in-

dividually, it does not leverage the strong correlation observed between cells and, con-

sequently, compromises power for identifying cells in many datasets.

To increase the power for identifying real cells, we propose CB2, a cluster-based ap-

proach for distinguishing real cells from background barcodes in droplet-based scRNA-

seq experiments. CB2 extends the ED framework by introducing a clustering step that

groups similar barcodes, then conducts a statistical test to identify groups with expres-

sion distributions that vary from the background (Fig. 1, Additional file 1: Figure S2).

CB2 is implemented in the R package scCB2.

Results
CB2 was evaluated and compared with ED on simulated and case study data. In SIM

IA, counts are generated as in Lun et al. [4]. Briefly, given an input dataset, an inflec-

tion point dividing low from high-count barcodes is determined. Low count barcodes

are pooled to estimate the background distribution. Background barcodes are sampled

from this distribution to match the total number and size of barcodes below the inflec-

tion point in the input dataset. Six thousand real cells are then generated as follows.

First, 2000 barcodes are randomly sampled from the high-count barcodes (referred to

as G1 cells [4]); a second set of 2000 high-count barcodes is sampled and then down-

sampled by 90% to give G2 cells; the third set (G1.5) is obtained by sampling 2000 bar-

codes from the high-count range and downsampling by 50%. We note that in Lun et al.

[4], only G1 and G2 cells were considered. Here, G1.5 cells were added to better reflect

real data. Additional file 1: Figure S3 shows increased power of CB2 with well con-

trolled false discovery rate (FDR) for the 6 datasets considered in Lun et al. [4] as well

as 4 additional datasets. SIM IB, also considered by Lun et al. [4], is similar to SIM IA,

but in SIM IB 10% of the genes in the real cells are shuffled making the real cells more

different from the background and therefore easier to identify (Additional file 1: Figure

S4). Additional file 1: Figure S5 shows the increased power of CB2 is maintained.

To further evaluate CB2, we applied CB2 and ED to the ten case study datasets used

to generate the simulated data as well as one additional dataset considered in the ED

case study and compared the number of cells identified in common as well as those

uniquely identified by each approach. Additional file 2: Table S1 shows that CB2 finds

24% more cells on average (range 4–81%). Of the extra cells identified, 88% on average
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(range 44–100%) add to existing subpopulations. The remaining 12% (range 0–56%)

make up novel subpopulations.

As an example, Fig. 2 and Additional file 1: Figure S6 show results from the Alzhei-

mer data [5] where CB2 identifies 18% more cells. A detailed look at the unique CB2

identifications suggests that the extra cells identified are not false positives, but rather

they add to existing excitatory neuron and inhibitory neuron subpopulations, and also

reveal a novel subpopulation consisting of 209 cells. Specifically, Fig. 2 b and c show

distribution plots and an expression heatmap of the 100 genes having the highest aver-

age expression in Subpop1 (the largest subpopulation) for cells identified by both CB2

and ED as well as those identified uniquely by CB2. As shown, cells uniquely identified

by CB2 have a distribution similar to other cells, and they differ from the background.

Using the marker genes from Mathys et al. [5], Fig. 2d and Additional file 1: Figure

S6(b) suggest that cells identified uniquely by CB2 in Subpops 1–4 are neurons, as they

show relatively high expression of neuron marker genes SYT1, SNAP25, and GRIN1.

More specifically, the CB2 cells in Subpops 1–2 exhibit high expression of excitatory

neuronal markers whereas the cells in Subpops 3–4 appear to be inhibitory neurons

(Additional file 1: Figure S6(c) and (d)). The novel subpopulation (Subpop5) uniquely

shows high expression of both oligodendrocyte and astrocyte marker genes, suggesting

Fig. 1 Overview of CB2. a Projection of a hypothetical cell population containing three subpopulations (red,
green, and blue where intensity corresponds to read depth). CB2 takes as input a gene by barcode matrix
of UMI counts and returns a gene by cell matrix. b High-count barcodes with counts above a pre-specified
upper threshold are considered real cells; barcodes with counts below a lower threshold are used to
estimate a background distribution (Additional file 1: Figure S2). The remaining barcodes are clustered, and
tight clusters are tested as a group against the estimated background distribution; barcodes not in tight
clusters are tested individually (not shown). High-count barcodes and those identified by CB2 are retained
for downstream analysis
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that this group may be mixed phenotype glial cells [6] (Additional file 1: Figure S6(e)

and (f)).

By increasing the number of real cells identified, CB2 also improves the power to

differentiate Alzheimer’s patients from controls. Specifically, Mathys et al. [5] profiled

expression from the prefrontal cortex of 24 AD-pathology patients as well as 24 age-

matched controls, and they validated differentially expressed genes in different cell

types, including 9 genes in excitatory neurons and 9 in inhibitory neurons.

Additional file 1: Figure S7 shows that by identifying additional cells, CB2 improves

downstream differential expression analysis by resulting in more significant p values

and stronger fold changes.

In a second case study (PBMC8K), CB2 increases the number of cells identified

across six subpopulations by over 80% (Additional file 2: Table S1). Results are shown

in Fig. 3 and Additional file 1: Figure S8. Similar to the Alzheimer’s data analysis,

Additional file 1: Figure S8(b) and (c) show that cells identified uniquely by CB2 in

Subpop1 have an expression profile that is similar to other cells and differs from

the background. Figure 3 provides a detailed look at marker gene expression for the

Fig. 2 Results from the Alzheimer dataset. a t-SNE plot of cells identified by CB2 and ED. High-count
barcodes exceeding an upper threshold are identified as real cells by both methods without a statistical
test (dark pink); barcodes identified as cells by both methods following statistical test are shown in pink.
Cells identified uniquely by CB2 (yellow) and ED (black) are also shown. CB2 identifies an increased number
of cells in existing subpopulations (Subpop1–Subpop4) and also identifies a novel subpopulation
(Subpop5). b Distribution plots of the 100 genes having highest average expression in Subpop1 are shown
for cells identified by both CB2 and ED (upper) and identified uniquely by CB2 (middle). The estimated
background distribution is also shown (lower). Cells uniquely identified by CB2 in Subpop1 have a
distribution similar to other Subpop1 cells and differ from the background. c Heatmap of log transformed
raw UMI counts for the same 100 genes for barcodes identified by CB2 and ED (left) and barcodes uniquely
identified by CB2 (right). d t-SNE plots of cells colored by neuron marker genes SYT1, SNAP25, and GRIN1 in
all cells (upper) and those identified uniquely by CB2 (lower)
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well-characterized PBMC8K cells using markers considered in Zheng et al. [2]. As shown

in Fig. 3b, CB2 identifies additional CD14+ monocytes, T cells, B cells, and megakaryo-

cytes. Results from two additional datasets are shown in Additional file 1: Figure S9–S10.

Discussion
Taken together, the results presented here demonstrate that CB2 provides a powerful

approach for distinguishing real cells from background barcodes which will increase

the number of cells identified in existing cell subpopulations in most datasets and may

facilitate the identification of novel subpopulations. While advantages are expected in

many settings, users will benefit from the following considerations. CB2 does not test

for doublets or multiplets, and consequently, some of the high-count identifications

may consist of two or more cells. Methods for identifying multiplets such as Scrublet

[7], DoubletDecon [8], or DoubletFinder [9] may prove useful after applying CB2. A

second important post-processing step is filtering based on mitochondrial expression.

As noted in Lun et al. [4], any method for distinguishing cells from background bar-

codes is technically correct in identifying low-quality cells given that damaged cells ex-

hibit expression profiles that differ from the background. Specifically, mitochondrial

gene expression is often high in damaged cells; an example is shown in Subpopulation

5 of the PBMC8K data (Fig. 3b). Such cells are typically not of interest in downstream

analysis and should therefore be removed. The GetCellMat function in R/scCB2 may

be used toward this end.

Conclusions
Droplet-based scRNA-seq technologies provide unprecedented opportunity to address

biological questions, but efficient pre-processing is required to maximize the informa-

tion obtained in an experiment. CB2 allows investigators to maximize the number of

cells retained and consequently to increase the power and precision of downstream

analysis.

Fig. 3 Results from the PBMC8K dataset. a t-SNE plot of cells identified by CB2 and ED. High-count
barcodes exceeding an upper threshold are identified as real cells by both methods without a statistical
test (dark pink); barcodes identified as cells by both methods following statistical test are shown in pink.
Cells identified uniquely by CB2 (yellow) and ED (black) are also shown. CB2 increases the number of cells
identified across the six subpopulations by over 80% (Additional file 2: Table S1). b Subpopulations 1–5
ordered by median normalized UMI count along with marker gene expression for each subpopulation.
Marker gene expression in cells uniquely identified by CB2 is similar to that in other groups, and differs
from the background. Subpopulation 5 contained no high-count common cells; subpopulation 6 contained
no unique CB2 identifications and is therefore not shown in panel b
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Methods
Versions

For cell identification with R/scCB2 0.99.12 and R/DropletUtils 1.5.4 [4, 10], the latest

version of R [11] was used: 3.7-devel (2019-07-17 r76847). Other packages are not yet

compatible or not stable with the R developers version, and so for scran 1.12.1 [12],

Seurat 3.1.0 [13, 14], and ggplot2 3.2.1 [15], R 3.6.0 (2019-04-24 r76423) was used.

CB2

As CB2 relies on ED, we briefly review the ED approach before detailing the

clustering test introduced in CB2. ED expects as input a G × B feature-by-barcode

matrix with G features (for simplicity, we refer to features as genes) and B bar-

codes. Barcodes having zero counts for all genes are filtered out, and the

remaining barcodes are divided into three groups based on the sum of gene ex-

pression (UMI) counts within a barcode. The background group, B0, contains all

barcodes with counts less than or equal to a pre-defined lower threshold (defaults

to 100); the high-count barcodes, B2, contain barcodes with counts exceeding an

upper threshold (defaults to knee point); the remaining barcodes (B1) are tested

(Additional file 1: Figure S2).

ED assumes that counts from a background barcode are distributed as Dirichlet-

Multinomial with probability vector pB0
estimated by averaging the counts in B0 and

applying the Good-Turing algorithm [16] to ensure that all probabilities are non-zero,

denoted as p̂B0
. For a barcode b ∈ B1, ED tests pb ¼ pB0

against the alternative pb≠pB0

using the log-likelihood under p̂B0
as the test statistic. A Monte-Carlo p value is

calculated via simulating Dirichlet-Multinomial barcodes of size ∣b∣ under p̂B0
and cal-

culating the proportion of simulated barcodes having a test statistic more extreme than

(or equal to) b’s. The false discovery rate is controlled using the Benjamini-Hochberg

procedure [17].

CB2 follows ED by filtering out genes with zero counts and dividing the remaining

barcodes into three groups. However, instead of testing all barcodes from B1 individu-

ally, CB2 first clusters barcodes and then tests tight clusters to identify those that differ

from the background. As in methods for genome-wide association studies (Mieth et al.

2016 [18]), gene co-expression network analysis (Botía et al., 2017 [19]), and de novo

transcriptome analysis (Malik et al., 2018 [20]), clustering prior to testing increases

power by reducing the total number of tests and increasing the signal to noise ratio.

CB2 proceeds as follows:

1. Barcodes grouped by size. CB2 orders barcodes in B1 by total counts

B1 ¼ b1;…; bjB1j
� ��g s:t: Xbij j≤ j Xbiþ1 j

where Xb denotes the count vector of barcode b, ∣Xb∣ denotes the total UMI

count of barcode b, and |B1| denotes the number of barcodes in B1. Groups of size

S (defaults to 1000 in R/scCB2) are constructed consisting of barcodes ranging in

size from smallest to largest:
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B11 ¼ b1;…; bSf g;B12 ¼ bSþ1;…; b2Sf g;⋯;B1K ¼ b K−1ð ÞSþ1;…; bjB1j
� �

where K ¼ jB1j
S is rounded up if not an integer. If jB1K j < S

2, barcodes in B1K are

merged with those in B1(K − 1). Sorting barcodes by size reduces bias in the

clustering and testing steps that follow.

2. Barcodes clustered within group: Barcodes within each group B1j are clustered using

hierarchical clustering with pairwise Pearson correlation as the similarity metric. A

cluster is considered tight if the average within-cluster pairwise Pearson correlation

exceeds a data-driven threshold. Tight clusters are retained for further analysis as de-

scribed in step 3, below. To determine thresholds, ten tight clusters of varying size

are simulated by generating 100 samples from a multinomial distribution with param-

eters (N, p) where N ranges from 100 to 1000 in increments of size 100. This range is

chosen as we found little variation in thresholds for barcode sizes exceeding 1000; p is

set to either p̂B0
or p̂B2

, whichever has larger Shannon entropy [21] as the distribu-

tion with larger entropy is less affected by outliers. For each simulated cluster C, the

threshold κC is defined by its average pairwise Pearson correlation. A cluster is con-

sidered tight if the average within-cluster pairwise Pearson correlation exceeds κC for

the simulated cluster of closest size.

3. Tight clusters tested: For each tight cluster C, we conduct a Monte-Carlo test to

assess dissimilarity from the background. Pairwise Pearson correlations are calcu-

lated between every barcode in C and p̂B0
; the test statistic for cluster C, Tc, is de-

fined to be the median of these correlations. Similar to ED, to simulate background

barcodes, we sample barcodes X�
1;…;X�

M from a multinomial (N; p̂B0
) where N is

the size of the barcode giving Tc. The Monte-Carlo p value is:

pC ¼
PM

i¼1 corX�
i ;0≤TC

� �þ 1

M þ 1

where corX�
i ;0 is the Pearson correlation between X�

i and p̂B0
(M defaults to 1000 in

R/scCB2). Monte-Carlo p values are calculated for each cluster followed by

Benjamini-Hochberg [17] to control the FDR. All barcodes within a significant

cluster are identified as real cells.

4. Individual barcodes tested: Barcodes that were not included in a tight cluster in

Step 2 as well as those in a tight cluster that were not found to be significant in

Step 3 are tested individually using ED. It is important to note that some of the

barcodes identified in this step do not overlap with identifications made when ED

is applied to the full set of barcodes given differences in the rates of real cells to

background barcodes and differences in error rate control.

Simulations

Counts are generated as in Lun et al. [4]. As detailed there, each simulation requires an

input dataset. We constructed simulations from 10 datasets: Alzheimer [5], PBMC8K,

PBMC33K, mbrain1K, mbrain9K, PanT4K, MALT, PBMC4K, jurkat, and T293 (Add-

itional file 2: Table S2). For each input dataset, the inflection point of the UMI count

by sorted barcode plot is used to divide lower count from higher count barcodes. The

barcodes in the lower count range are considered background. In SIM IA, two sets of
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2000 barcodes randomly sampled from the higher count range are considered real cells.

The first set of 2000 is referred to as large ( G1) cells; the second set is downsampled

by 90% to give small (G2) cells. We added a third set of medium (G1.5) cells by sampling

2000 cells from the higher count range and downsampling by 50%. The process for

simulating data in SIM IB is identical to SIM IA except that in SIM IB, 10% of the

genes in each simulated real cell are shuffled making the real cells more different from

the background barcodes and, consequently, making real cells easier to identify. SIM

IA is a more realistic simulation (Additional file 1: Figure S4).

Case studies

We evaluated the 10 datasets used in the simulation and also the placenta data

evaluated in Lun et al. [4]. These datasets vary in sequencing depth as well as in

the extent of differences between the real cell and background distributions (Add-

itional file 1: Figure S4). CB2 and ED were applied to each dataset using default

settings. For plots that compare identifications between CB2 and ED, cells identi-

fied by either approach (or both) were combined and UMI counts were normalized

via scran. The Seurat pipeline was used to generate t-SNE plots from the top 4000

most highly variable genes and top 50 principal components. Expression heatmaps

show log transformed raw UMI counts. For heatmaps and distribution plots, mito-

chondrial and ribosomal genes were removed.

Differential expression analysis in Alzheimer data

Cells identified by CB2, ED, or both were combined into a single matrix and filtered

similar to Mathys et al. [5]. Specifically, cells with mitochondrial gene expression mak-

ing up 40% or more of the total UMI counts were removed; genes detected in fewer

than two cells were also excluded giving a matrix of 28,208 genes and 74,579 barcodes.

Normalization was performed using scran. Cell types were annotated using marker

genes as in Mathys et al. [5] Differential expression (DE) tests between cells from Alz-

heimer’s cases and controls were conducted using Wilcoxon rank-sum tests as in

Mathys et al. [5]. Results were compared for known DE genes extracted from Mathys

et al. [5].

Implementation of CB2 and ED

For all simulation and case study analyses, CB2 and ED were implemented using de-

fault parameters. A target FDR was set at 1%.

Existing subpopulations vs. novel subpopulations

The FindNeighbors and FindClusters functions in Seurat were used with default settings

to assign each cell to a cluster, referred to here as a subpopulation. For each subpopula-

tion, we calculated the percentage of cells identified by both CB2 and ED as well as

those identified uniquely by CB2. Subpopulations for which over 80% of the cells are

uniquely identified by CB2 are referred to as novel subpopulations (Additional file 2:

Table S3 shows the number of novel subpopulations identified using 70%, 80%, or 90%

as thresholds).
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