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Introduction

Linking high-dimensional, heterogeneous datasets

RNA sequencing (RNA-seq) has become a standard method of analyzing complex
communities. Depending on the sample type, these data can be very heterogeneous. A
key problem tackled in this paper is dealing with the heterogeneity and noise in RNA-
seq data in samples such as sputum. This can be appreciated by comparing sputum
RNA-seq to a more traditional experiment, e.g., blood RNA-seq, where the sample can
be collected consistently and that contains relatively well-defined cell types (Fig. 1). In
the blood, the vast majority of RNA-seq reads align to the human genome, and the
goal is often to relate the expression of the genes to a phenotype. By contrast, sputum
may be less consistently collected, its cell types are less well-defined, and it may
contain RNA from microbes and other organisms that act as cryptic indicators of the
environment. But within this complexity is an opportunity—the interactions between
immune cells and microbes may provide clinically meaningful information from a non-
invasive sample. Moreover, generating RNA-seq data from the sputum can be technic-
ally easier than other methods to study microbe and immune cell interactions, such as

by culturing sputum microbes or by flow sorting sputum immune cells. Here, we
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Fig. 1 Overview of the analysis approach. The RNA-seq alignment summary for control and asthmatic
sputum shows highly variable fractions of reads that aligned to different biotypes, relative to the blood.
Alignments to the protein-coding biotype were used to generate the gene expression table (G), which was
then deconvolved into a cell-type fraction (F) and cell-type signature (S) tables. The exogenous reads were
used to generate the microbe table (M). These matrices were then related to the clinical data table (C) and
to each other, e.g, correlation of a gene and microbe across all patients as R(G, g, M,). In addition, latent
Dirichlet allocation (LDA) was used to de-noise tables G and M, and then LDA-link was used to link genes

to microbes (L) using the LDA topic distributions (F(¢®.,g, ¢™.,m)

present a strategy for dealing with the complexity that uses a number of supervised and
unsupervised techniques such as cell-type signatures and latent Dirichlet allocation
(LDA). These techniques can produce a low-dimensional representation of common
groups of genes, microbes, or other features that tend to increase or decrease in abun-
dance together. Our approach is useful when the heterogeneity comes from the sample
type (e.g., sputum) and especially when the samples derive from a heterogeneous popu-
lation of individuals, such as patients with asthma.

Interactions between the host and microbes in the lung

Asthma is a disease of the airway that can present with diverse clinical phenotypes.
Much work has focused on identifying subgroups of the disease and how each
subgroup responds to treatment. For example, Yan et al. introduced transcriptional
endotypes of asthma, and the Severe Asthma Research Program defined five subtypes
of asthma [1, 2]. Some of these subgroups respond differently to environmental and mi-
crobial triggers, such as fungal spores. Some fungi have well-defined effects on asthma,
but the role of many microbes remains uncertain. A simplified model assigns microbes
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to one of three categories: pathogenic organisms that cause inflammation, beneficial or-
ganisms that reduce inflammation, and commensal organisms that have no effect on in-
flammation. The majority of the organisms in the lungs are expected to have no effect,
and severe asthmatics are expected to have more pathogenic and fewer beneficial mi-
crobes. However, the reality is more complex; organisms can interact with the lung in
myriad ways, such as through innate responses to pathogens, small-molecule interac-
tions, and others [3, 4].

Inferring immune cell fractions from RNA-seq data

The pathology of microbes is often inferred by the number and type of immune cells
observed in samples, such as sputum total leukocyte counts [5, 6]. A standard method
for counting immune cells in sputum samples uses microscopy, but the resolution is
limited to a few cell types [7]. Other cell-counting methods such as flow sorting can be
challenging because of the viscosity and highly variable cell numbers in sputum. An
alternative strategy uses cell type-specific expression patterns to deconvolve RNA-seq
reads from mixtures of cells into fractions of different immune cells [8]. This deconvo-
lution also effectively de-noises heterogeneous datasets by greatly reducing the number
of dimensions. Importantly, the RNA needed for this analysis can be purified without
poly-A enrichment—here, we use human ribosomal RNA depletion—which allows for
the simultaneous analysis of microbial and human transcripts.

Supervised deconvolution and the microbiome

While deconvolution to cell fractions effectively de-noises human RNA-seq data, an
equivalent supervised dimensionality reduction method does not exist for microbes.
One can reduce the dimensions by collapsing microbial strains to different taxonomic
ranks (e.g., genus or family); however, taxonomy is notoriously imprecise at defining
behavior. For example, many bacteria in the genus Escherichia are human commensals,
whereas Escherichia coli OH157:H7 causes hemorrhagic colitis. Alternatively, one can
group sequences by the metabolic pathways observed, although this requires high-
depth sequencing. Here, we propose a method to reduce the dimensionality of mi-
crobes by first linking the microbes to human genes and then applying supervised gene
dimensionality-reduction methods (e.g., deconvolution to cell types).

Unsupervised decomposition including LDA

A number of algorithms have been developed to infer higher-order structures within
high-dimensional datasets. Latent Dirichlet allocation (LDA) was first used in text
mining applications to learn the set of topics in documents and has since been used in
a broad range of applications including marketing, genomics, drug-pathway relation-
ships, and others [9-12]. Unlike some other unsupervised decomposition methods (e.g.,
principal component analysis (PCA), non-negative matrix factorization (NMF)), the
result is not a linear decomposition. The topic distributions from LDA are governed by
a series of hyper-parameters that define distributions from which the “words” (in this
case, genes or microbes) are drawn. This non-linear character has advantages in
complex, sparse, or noisy datasets and RNA-seq such as sputum RNA-seq or single-cell
RNA-seq.
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In this paper, we use RNA-seq of sputum samples from asthmatic patients to demon-
strate dimensionality-reduction strategies and identify microbe-host relationships. We
map RNA-seq reads onto human or microbial genomes and relate the resulting abun-
dance matrices to each other and to clinical data. Further, we deconvolve the human
reads into fractions of the various cell types that make up the sputum. Finally, we relate
the human genes and microbes using a method we call the LDA-link, which identifies
relationships between genes, microbes, and cell types. These methods represent a gen-
eral strategy for dealing with heterogeneous RNA-seq data that is applicable to other
sample types beyond sputum.

Results

Sequencing and processing with the extracellular RNA processing toolkit (exceRpt)
pipeline

We collected induced sputum samples from 115 patients with heterogeneous asthma
phenotypes and sequenced these samples using RNA-seq. The median read depth per
sample was 47.5 million, which meets the depth recommendations for analyses of this
type [13]. We processed these reads through the exceRpt pipeline [14], which conserva-
tively matches reads to genomes in a sequential order designed to reduce experimental
artifacts. In brief, we first aligned the quality-filtered reads to the UniVec database of
common laboratory contaminants [3] and then aligned the remaining reads to human
ribosomal sequences before aligning them to the human genome. We excluded samples
with a low ratio of transcript alignments to intergenic sequence alignments and then
aligned the remaining reads to the comparably large sequence space of non-human ge-
nomes. We first aligned reads to the relatively well-curated ribosomal databases of bac-
teria, fungi, and archaea (e.g., Ribosomal Database Project [4]) and then to curated
genomes of bacteria, fungi, viruses, plants, and animals. The percent of reads mapping
to different biotypes was highly heterogeneous; a median of 60% of the reads aligned to
the human reference genome and 50% to annotated transcripts (Fig. 1, green bars). A
median of 0.7% of the input reads aligned to exogenous sources, with some samples
containing as much as 28.1% exogenous reads. As a control, we applied the same proto-
col to blood samples, which demonstrated more homogeneity than sputum (Fig. 1, top,
“blood”).

Overview of the analysis approach

The goal of the analysis was to infer meaningful relationships between the numbers
and origins of the RNA-seq reads and relate them to clinical phenotypes. We conceptu-
alized the clinical information and RNA-seq alignments as a series of tables (Fig. 1).
The clinical table includes patient data collected at the clinic, C, including age, weight,
and lung function tests, with rows indexed by patient (N, = 115) and roughly 200 clin-
ical variables (N,). Alignments to human protein-coding regions created the gene table,
G, with N, rows, as above, and roughly 20,000 genes (N,). Alignments to exogenous ge-
nomes created the microbe table (M) with N, rows and roughly 1000 microbes (N,,).
Given these three tables (C, G, and M), the basic analysis framework is to correlate col-
umns or rows within or between tables. We represent this by a matrix of correlations,
R(X.; Y. ;), where X ; is the ith column of table X and X; is the jth column of table Y.
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This correlation is summed over the other index, usually p. For example, we test the
relationship between age and the abundance of each microbe R(C. .ge, M.,,) across all
patients. Similarly, we correlate the expression of a gene (e.g., TLR4) with microbe (e.g.,
Candida) R(G. 1pras M.,candida)-

Individual correlations can be difficult to interpret, particularly in heterogeneous,
sparse, or noisy datasets. Organizing the genes into relevant pathways or cell types can
reduce the dimensionality and de-noise the analysis. To this end, we deconvolved the
gene table (G, N, by N,) into a cell-type fraction table (F, N, by Ny and a cell-type
signature table (S, Nr by Ng). However, an analogous supervised method does not exist
for the microbes. Therefore, we applied an unsupervised dimensionality-reduction ap-
proach, latent Dirichlet allocation (LDA), which provides topic distributions in patients
(69, N, by N}) across a smaller number (k = 10) of gene topic (¢C, Ny by Np). This can
also be done to the microbe table M and get ' and ¢, and the gene and microbe
topic can be correlated (e.g., R(Ofg, 6”,[” ) over all patients).

The framework described above is useful for identifying linear relationships, but non-
linear relationships are also possible. For example, a microbe sensed by a human
immune cell could lead to the activation of a transcription factor and the expression of
several genes, each of which would have a non-linear relationship to microbe abun-
dance. To identify such relationships, we applied a non-linear ensemble learning algo-
rithm [15, 16], using the de-noised inputs for each gene and microbe (¢ and ¢™). We
call this method the LDA-link. Further, we relate the gene and microbe links identified
to cell fractions and thereby relate how the host is responding to microbes with regard
to immune cell type response with a particular gene.

Analysis of human-aligned reads

Working toward the hypothesis that we can conceptualize human-aligned sputum
RNA-seq reads as a mixture of immune cell types, each with a distinct expression
profile, we deconvolved the gene table (G) into a table of fractions of component cells
type (F) and cognate cell-type signatures (S) by solving the formula G=FS. This
method relies on knowing the signature gene set in each cell type, for which we used
high-quality reference sets from experimentally isolated and sequenced circulating im-
mune cells [8]. To validate that these circulating immune cells behaved similarly to
those in sputum, we generated additional datasets including single-cell RNA-seq
(scRNA-seq) and microscopy, and then compared the results to the deconvolution table
F and to unsupervised decomposition (Fig. 2a, schema).

Evaluation of deconvolution results by scRNA-seq

First, we performed scRNA-seq on the sputum of a cohort of similar patients (five
control and five asthmatics). The single-cell sequences clustered into four groups
(Fig. 2b, first and second panels). In order to identify the clusters, we co-clustered the
reference cell types with the scRNA-seq data (Fig. 2b, third panel); the reference cells
grouped by lineage each with a different scRNA-cluster. For example, the reference
cells of lymphoid origin (e.g., T cells, NK cells) clustered together with one of the
scRNA-seq clusters, and the reference cells of myeloblast origin (e.g., neutrophils,
eosinophils, macrophages) clustered together and with another scRNA-seq cluster. In
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Fig. 2 Deconvolution of RNA-seq human reads into cell-type fractions using cell-type signatures. a Schematic
showing the estimation of a cell-type fraction table and validation steps. b Cell-type fractions were validated
using single-cell RNA-seq. Sputum from asthmatics and controls were clustered with reference cell-type
expression to label clusters. ¢ The abundances of scRNA-seq cell-type fractions are highly variable between
individuals. d Correlation between the deconvolved cell-type fraction table and cell counts by microscopy. e
Pearson correlation of the cell-type fraction table, F, and the LDA topic components. Only significant
correlations after FDR correction are shown. f Correlation between the cell-type fraction table and the clinical
table, C. Only significant correlations after FDR correction are shown. ACT, asthma control test score; Age.DX,
age of asthma diagnosis; Age.SX.Onset, age of symptom onset; BDR, bronchodilator response, BMI, body mass
index; FENO, forced expiratory nitric oxide; FEV1.FVC.postBD, the ratio of forced expiratory volume in 1 s to the

forced vital capacity after treatment with a bronchodilator; FEV1.FVCpreBD, the ratio of forced expiratory
volume in 1 s to the forced vital capacity before treatment with a bronchodilator; HIL, hospitalizations in
lifetime; HPY, hospitalizations per year; ICS, average daily inhaled corticosteroid use; Number.of OCS, average
number of oral corticosteroids used; OCS.Total, lifetime total oral corticosteroid use

aggregate, the asthmatic group had fewer B cells and more myeloid cells (Fisher’s exact
test, p values 2e-8 and 7e-7 for B cells and myeloid cells, respectively). However, the
number of cells in each cluster was highly variable between individuals; for example,
nearly all of the B cell cluster was found in one individual (Fig. 2¢, control B cell out-
lier). For these five patients, the number of cells in the myeloid lineage cluster showed
the most distinct separation between asthmatics and controls but was not significant
(Mann-Whitney-Wilcoxon signed-rank test, p value = 0.09) (Fig. 2c). From this analysis,
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we concluded that (1) the blood-derived cell profiles appropriately fit the sputum cell
types, (2) no additional cell types were needed to deconvolve the sputum bulk RNA-
seq data, and (3) the high variability would require larger sample sizes to detect differ-
ences between asthmatics and controls.

Evaluation of deconvolution results by microscopy

Second, we evaluated a random subset (~50%) of the samples by microscopy and
manually counted the number of neutrophils, eosinophils, lymphocytes, and macro-
phages. We found good agreement with F, when cell counts could be directly com-
pared, i.e., neutrophils and eosinophils were both present in F and counted by
microscopy (F test p values = 8e-5 and 1.8e-7 for neutrophils and eosinophils, respect-
ively). In cases where the deconvolution method gave higher resolution (e.g., MO, M1,
and M2 macrophages versus one type of macrophage by microscopy), the aggregation
of the relevant columns in F correlated well with the microscopy counts (F test p
values = 0.012 and 0.021 for macrophages and lymphocytes, respectively) (Fig. 2d).

Association of cell fractions with clinical features

Having validated the deconvolution of sputum samples (table F), we then correlated
the cell fractions with clinical features (R(F.5 C..) for all patients). We found that the
changes in fractions of several cell types were highly correlated with clinical features
(Fig. 2e). For example, the fraction of T-regulatory cells negatively correlated with the
number of hospitalizations per year (p value = 0.002, all correlations false discovery rate
corrected, see the “Methods” section).

Evaluation of deconvolution results by unsupervised decomposition

We compared the signal captured by cell-type deconvolution to an unsupervised
decomposition method: LDA. Using LDA, we factored the gene expression table into
ten topics that conceptually represent gene expression programs. This resulted in a
gene-topic-fraction-in-patient table (0, N, by Ni) with Ny =10 topics, as well as the
corresponding gene-topic table (¢G [Nr by N]), that is analogous to the supervised
deconvolution tables F and S. We correlated the cell-type fraction table with the gene
topics fraction table (R(F.5 0. ;) for all patients and found agreement between LDA
and the cell signature-based deconvolution for the most prominent cell type, neutro-
phils (p value = 1.7e-34) (Fig. 2d, topic 4). Gene set enrichment analysis of the genes in
this topic showed enrichment in the neutrophil chemotaxis pathway (Additional file 1:
Fig. S8 B). The top genes in each topic can be found in Additional file 1: Fig. S7 and
the complete membership in Additional file 2: Table S1.

However, the remaining topics comprised multiple cell types. This suggests that LDA
can identify distinct but partially overlapping features in G. According to the clustering
of 8%, a subgroup of severely asthmatic patients associated with topic 4 (Additional file 1:
Fig. S8A). The top-weighted genes in topic 4 were enriched for the pathways “neutro-
phil chemotaxis” and “asthma-related genes” (Additional file 1: Fig. S8B). These
pathways were not enriched in the analogous cell-type signature table S, suggesting that
LDA topics are distinct from the cell-type signatures, but are also clinically relevant.
Moreover, the top-weighted genes in topic 1 of the gene topic component table were
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mitochondrial genes, and topic 1 was strongly correlated with age. This link shows
strong support in the literature, as reactive oxygen species produced by the mitochon-
dria reduce their function over time [17]; however, we did not observe this relationship
for any cells in the cell-type fraction table (F). Another method using a very different
algorithm than LDA, non-negative matrix factorization (NMF), showed strong agree-
ment with LDA (p value <2.2e-16) (Additional file 1: Fig. S2, Nmf.1). This supports
the use of supervised deconvolution methods for identifying signals that are different
than those from unsupervised methods. Unsupervised decomposition should be consid-
ered a distinct set of features from those found through deconvolution.

Analysis of exogenous reads

After filtering out contaminants and human reads, we assembled the set of reads that
aligned to exogenous genomes into a microbe table (M). The exogenous sequences
aligned to mostly bacteria and fungi, although we also observed a few arthropod and
helminth reads. The dominant phyla observed were from the bacterial kingdom: Pro-
teobacteria, Firmicutes, and then Bacteroidetes. The abundance of Proteobacteria is in
contrast to observations from the gut where Bacteroidetes predominate [18]. Also
notable was the presence of two phyla of fungi among the eight most abundant overall,
although this was in lower abundance than many of the bacterial phyla.

Microbe correlations with clinical information and cell fractions

We correlated the microbe abundances to clinical information (R(M.,,,, C..) for all pa-
tients) (Fig. 3a). Klebsiella was associated with increased total white blood cell counts
(p value =0.001), as has been described previously [19]. Candida was associated with
worse lung function test results (e.g., forced expiratory volume and forced vital capacity
(p value = 0.02)).

We next correlated microbe abundances to human immune cell fractions (R(M., ,,,
F, p for all patients) (Fig. 3b). Several correlations demonstrated results with strong
literature precedence. For example, studies have previously shown that Haemophilus
associates with eosinophilia [20], and we observed a significant correlation between
Haemophilus and the fraction of eosinophils (p value =0.005). We also observed a
significant correlation between Haemophilus and activated mast cells (p value = 9e-12),
suggesting an alternative route to Haemophilus-induced inflammation [21]. Moreover,
the fungal genus Candida was also significantly correlated with eosinophils (p value =
le-8), even more strongly than Haemophilus.

Dimensionality reduction for microbes: clustering and networks

We attempted to de-noise the microbe table (M) with a variety of dimensionality-
reduction techniques. First, we collapsed the microbes by taxonomy, grouping them to
the rank of phylum (MP"™"™™), and then hierarchically cluster the patients based on
their phylum abundance (Fig. 3c, HierClust(MP™"™)). The hierarchical clustering
showed that the phylum distributions formed three clusters of patients. We related
these clusters to the clinical variable “asthma severity,” defined by the amount of fluti-
casone or equivalent per day used to control symptoms (mild, <200 pg; moderate,
200-800 pg; severe, > 800 ug). We observed that one of the clusters was enriched for
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Fig. 3 Exogenous RNA-seq analysis. a Correlations between microbe relative abundances and the cell-type
fraction table. b Correlation between microbe abundance and clinical information. Only significant
correlations after FDR correction are shown. ACT, asthma control test score; Age.DX, age of asthma
diagnosis; Age.SX.Onset, age of symptom onset; BDR, bronchodilator response; BMI, body mass index; FENO,
forced expiratory nitric oxide; FEV1.FVC.postBD, the ratio of forced expiratory volume in 1 s to the forced
vital capacity after treatment with a bronchodilator; FEV1.FVCpreBD, the ratio of forced expiratory volume in
1 s to the forced vital capacity before treatment with a bronchodilator; HIL, hospitalizations in lifetime; HPY,
hospitalizations per year; ICS, average daily inhaled corticosteroid use; Number.of OCS, average number of
oral corticosteroids used; OCS.Total, lifetime total oral corticosteroid use. ¢ Hierarchical clustering by phylum
relative abundances shows a cluster enriched in severe asthmatics, driven by high abundances of
Proteobacteria. d A co-abundance network of microbes with an overlay of LDA when network modules
correlate with topic membership

patients identified as having moderate or severe asthma (Fisher’s exact test, p value =
0.005). This cluster was characterized by the highest relative abundance of the phylum
Proteobacteria (Fig. 3c). Notably, the genus Haemophilus belongs to this phylum,
consistent with the correlations observed at the genus rank (Fig. 3a, b).



Spakowicz et al. Genome Biology (2020) 21:150 Page 10 of 22

Similarly, we could de-noise the microbe table using a co-abundance network, by cor-
relating the genus-level abundances (R(M. ,,,, M. ,,,) and identifying significant modules
(Additional file 1: Fig. S5). An interpretation of these modules is that they define meta-
bolic niches, where microbes either directly compete for metabolites or there is inter-
dependency in metabolite production. Such networks could be created from other
tables, such as the topic distribution of microbes (R(p."‘;’", (p”{n) for all the topics
(Fig. 3d). These modules represent another unit that could be related to the clinical in-
formation (C) and the cell-type fractions (F).

LDA-link for the identification of links between genes and microbes

How much cross-talk exists between the airway microbes and human cells remains
contentious [22]. We feel this is partly due to the heterogeneous and noisy data from
airway samples, where it is often challenging to find strong correlations using standard
algorithms. We therefore sought to link genes to microbes via a method we dubbed the
LDA-link.

As is often the case, these RNA-seq data lack a gold standard set of labels for the
links between genes and microbes that can train a machine learning algorithm. There-
fore, the LDA-link uses a strategy similar to self-supervised methods, which create a
pseudo-gold standard, train a supervised model using the pseudo-gold standard, and
then apply the model to the remainder of the data [23-30]. In this case, the training set
was defined by a small number of very strong linear correlations and an equal number
of very low correlations.

Specifically, we first related columns between the gene and microbe tables (R(G, g M. ,,)),
yielding many low-scoring correlations. A relatively small number of the correlations were
strong (R>04) and highly significant (p < le-5 and FDR <0.016) (Fig. 4a). We selected
these strong correlations as true-positive links between genes and m