
SHORT REPORT Open Access

Sampling time-dependent artifacts in
single-cell genomics studies
Ramon Massoni-Badosa1, Giovanni Iacono1, Catia Moutinho1, Marta Kulis2, Núria Palau3, Domenica Marchese1,
Javier Rodríguez-Ubreva4, Esteban Ballestar5, Gustavo Rodriguez-Esteban1, Sara Marsal3, Marta Aymerich5,
Dolors Colomer2,5,6,7, Elias Campo2,6,7, Antonio Julià3, José Ignacio Martín-Subero2,6,7,8 and Holger Heyn1,9*

* Correspondence: holger.heyn@
cnag.crg.eu
1CNAG-CRG, Centre for Genomic
Regulation (CRG), Barcelona Institute
of Science and Technology (BIST),
Barcelona, Spain
9Universitat Pompeu Fabra (UPF),
Barcelona, Spain
Full list of author information is
available at the end of the article

Abstract

Robust protocols and automation now enable large-scale single-cell RNA and ATAC
sequencing experiments and their application on biobank and clinical cohorts.
However, technical biases introduced during sample acquisition can hinder solid,
reproducible results, and a systematic benchmarking is required before entering
large-scale data production. Here, we report the existence and extent of gene
expression and chromatin accessibility artifacts introduced during sampling and
identify experimental and computational solutions for their prevention.
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Background
Blood cells are an attractive source to systematically identify disease mechanisms and

biomarkers, due to its availability in biobanks and large clinical collections. However,

although blood samples are generally archived with standardized procedures, upfront

sample processing can vary profoundly even within cohorts [1]. In particular, the time

between sample extraction and cryopreservation, ranging from hours (local) to days

(central) [2], might distort gene expression and epigenetic profiles and could lead to

false or biased reporting. Although we have previously demonstrated that cryopreser-

vation is a viable option for single-cell studies [3], the effect of the sampling time on

single-cell RNA (scRNA-seq) and ATAC (scATAC-seq) sequencing datasets has not

been addressed. However, standardizing sampling conditions is of crucial importance

when designing single-cell genomics experiments to avoid technical artifacts in data-

sets and the misinterpretation of the results. Especially, large-scale consortia with

multi-center sampling strategies, such as the Human Cell Atlas project [4] or the

single-cell eQTLGen consortium [5], require dedicated standardization efforts to allow

an informed decision-making process for guidelines and standards towards high-

quality data production. Previous work to determine sampling artifacts in scRNA-seq
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datasets identified profound alterations of gene expression signatures during sample

preparation, storage, and processing, strongly underlining the importance of specific

benchmarking efforts [6–9].

In this work, we designed benchmarking experiments to systematically test the effect

of varying processing times on single-cell transcriptome and epigenome profiles from

healthy and diseased donors, while controlling for technical variability (e.g., batch

effects; see the “Methods” section). We isolated peripheral blood mononuclear cells

from healthy donors (PBMC) and from patients affected with chronic lymphocytic

leukemia (CLL), the most common adult leukemia in the Western world [10]. Samples

were either preserved immediately (0 h) or after 2, 4, 6, 8, 24, and 48 h, simulating

common scenarios in biobank and clinical routines. Single-cell 3′-transcript counting,

full-length transcriptome, and scATAC-seq were performed to monitor gene expres-

sion, RNA integrity, and open chromatin variance across preservation time points.

Results and discussion
We generated transcriptome and epigenome profiles for 71,064 and 76,146 high-quality

cells, respectively. To evaluate the effect of sampling time on single-cell gene expression

profiles, we initially obtained fresh PBMC from 2 healthy donors and 3 CLL patients.

To simulate local processing, we stored cells prior to cryopreservation at room

temperature (RT) for various time intervals up to 8 h. Additionally, we stored cells for

24 h and 48 h, common sampling times for central sample processing. Following

scRNA-seq, we detected a marked effect of the sampling time on single-cell transcrip-

tome profiles, initiating after 2 h and increasing in a time-dependent manner (Fig. 1a).

This effect was reproducible across all blood cell subtypes from healthy donors and

neoplastic cells from CLL patient samples (Fig. 1a,b, Additional file 1: Fig. S1a) and

across scRNA-seq technologies (Additional file 1: Fig. S1b). Sampling time correlated

with the first principal component (PC1) for all cell subtypes (Fig. 1c), explaining be-

tween 15.3% (T cells) and 8.4% (B cells) of the variance contained in the first 50 PC

(Additional file 1: Fig. S2a). Moreover, sampling time followed cell type and patient

variability as the greatest driver of variance in the PBMC and CLL datasets, respectively

(Additional file 1: Fig. S2b-d), and surpassing batch and donor for different cell types

(Additional file 1: Fig. S2d-f). Although gene expression profiles varied notably,

viable cells did not show signs of reduced RNA integrity across the time points

(Additional file 1: Fig. S3).

Contrary to gene expression, prolonged storage at RT did not cause global effects on

open chromatin profiles that could be consistently detected across healthy and CLL

samples (Fig. 1d, Additional file 1: Fig. S4). However, integrative analysis of scRNA-seq

and scATAC-seq data pointed to a deregulation of specific genes through concerted

changes at open chromatin sites. Specifically, we detected reduced expression for genes

that lose open chromatin sites both at enhancers and promoter sites (Fig. 1e, Additional

file 1: Fig. S5).

Next, we aimed to determine the gene signature associated with sampling time inter-

val to characterize, predict, and correct the bias. Therefore, we conducted a differential

expression analysis between affected (> 2 h) and unaffected conditions (< 2 h). We

detected 1185 differentially expressed genes for PBMC (DEG, 318 up- and 867 down-

regulated; Fig. 1f,g and Additional file 2: Table 1) and 1868 for CLL samples (378 up-
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Fig. 1 The impact of sampling time on single-cell transcriptional and open chromatin profiles. a, b scRNA-seq-
based tSNE or UMAP embeddings of 7378 PBMC (a, male donor) and 22,443 CLL cells (b, 3 donors) color-
coded by sampling time. c Distribution of the first principal component (PC1) across processing times
computed for each PBMC subtype independently. d scATAC-seq-based UMAP embedding color-coded by
sampling time and highlighting major PBMC cell types. Unlabeled cluster corresponds to cells of unknown
type. e Violin plot showing changes in RNA expression for the 50 genes associated with the top 50 distal
(enhancer) peaks changing in accessibility (down: closing sites; up: opening sites); p value in Z score scale,
Wilcoxon test *p < 0.05, **p < 0.01, ***p < 0.001. f Dot plot representing the time-dependent expression
changes of the top up- and downregulated genes with a minimum log (expression) of 0.5, a minimum
absolute log fold-change of 0.2 and an adjusted p value < 0.001. The arrows highlight the cold-inducible
response binding protein (CIRBP) and the RNA Binding Motif Protein 3 (RBM3) genes. g M (log ratio)-A (mean
average) plot showing the log2 fold-change between biased (> 2 h) and unbiased (≤ 2 h) PBMC as a function of
the log average expression (Scran normalized expression values). Significant genes are colored in green
(adjusted p value < 0.001), and a locally estimated scatterplot smoothing (LOESS) line is drawn in blue. h Motif
enrichment analysis performed over the DNA sequences of the top 50 distal peaks with a change in
accessibility (same peaks as e). i Time score distribution across processing times (female donor) calculated with
the sampling time signature defined in the male PBMC donor. j Receiver operating characteristic (ROC) curve
displaying the performance of a logistic regression model in classifying “biased” and “unbiased” PBMC
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and 1490 downregulated; Additional file 1: Fig. S6a and Additional file 2: Table 1). In

addition, we observed a time-dependent decrease in the number of detected genes in

both datasets (Additional file 1: Fig. S6b; p < 0.001) and a global downregulation of gene

expression (Fig. 1g, Additional file 1: Fig. S6a). This global effect has been reported

previously in bulk transcriptomics studies [11], pointing to a reduction of the transcrip-

tional rate when cells are removed from their physiological niche (37 °C) and stored at

RT (21 °C).

Consistently, Gene Ontology (GO) enrichment analysis revealed a significant increase

in the terms “negative regulation of translation” (PBMC) and “negative regulation of

transcription by RNA polymerase II” (CLL) as well as a decrease in housekeeping func-

tions such as actin nucleation (Additional file 1: Fig. S6c,d and Additional file 3: Table 2;

p < 0.001). In line, we detected a pronounced downregulation of immune cell type-

specific genes (Fig. 1f, Additional file 1: Fig. S7a and Additional file 2: Table 1) and

programs (Additional file 1: Fig. S7b,c and Additional file 3: Table 2) pointing to a loss

of identity and function in prolonged storage conditions. Further, two cold-shock

master-regulators Cold Inducible RNA Binding Protein (CIRBP) and the RNA Binding

Motif Protein 3 (RBM3) were among the top upregulated genes in both datasets (Fig. 1f

and Additional file 1: Fig. S6a). Comparing our profiles with a sampling time-dependent sig-

nature detected by bulk gene expression analysis [11] and with tissue-dissociation signature

[8], several bona fide stress-regulators were consistently detected across signatures (NFKBI,

JUN, JUND, JUNB; Additional file 1: Fig. S8a,b). However, there was a marginal global inter-

section (Additional file 1: Fig. S8a,c and Additional file 4: Table 3), which highlights the

need for technology-specific benchmarking efforts of technical confounders. As an example,

gene markers for splicing events detected in bulk analysis [12] were undetectable with

scRNA-seq, while CIRBP and RBM3 were only found in single-cell experiments.

Motif enrichment analysis at sampling time-sensitive enhancers identified by scATAC-

seq pointed to a significant increase in the accessibility of transcription factor binding sites

(TFBS) of early stress response genes, such as JUNB and FOSL1 (Fig. 1h and Additional file 5:

Table 4), as previously shown in scRNA-seq studies [8]. Further, we detected a significant

decrease in accessibility at TFBS of immune and inflammation-related genes, such as

STAT6 and IRF9 (Fig. 1h, Additional file 5: Table 4), in line with the downregulation of im-

mune response genes at the transcript level.

We next sought to identify solutions for retrospective study designs and prospective co-

hort collection. To predict such sampling time effect, we calculated a time score using the

abovementioned signature [13], which classified cells to be affected by sampling time

(AUC= 0.888, Fig. 1i, j). In silico data correction is commonly applied to diminish the ef-

fects of technical or biological variability in scRNA-seq datasets by scoring and regressing

out specific gene sets [14]. Applying such strategy on the time gene expression score, we

were able to reduce the sampling effect, especially for samples with local processing (< 8

h). This correction was robust for different PBMC subtypes (Kbet score [15]; Fig. 2a,b)

and neoplastic cells from CLL patients (Additional file 1: Fig. S9a) as well as simulated

datasets with varying proportions of affected cells (Additional file 1: Fig. S9b), suggesting a

broad application spectrum. Importantly, the correction conserved biological variance re-

lated to cell identity in blood and inter-individual variation in CLL patients. However,

owing to the Simpson’s paradox [16] and to gene expression pleiotropy [17], regressing

out technical confounders can remove subtle biological heterogeneity and homogenize
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cell subpopulations, which can challenge data interpretation. Consequently, we sought

experimental alternatives to reduce sampling effects in retrospective study designs. We

reasoned that the magnitude of gene expression alterations could be diminished by cell

culture and through the activation of cell type-specific programs. Hence, we utilized

PBMC (cryopreserved at 0/8/24 h) and processed them directly (day 0) or after 2 days in

Fig. 2 Solutions to correct or prevent sampling time-induced artifacts. a tSNEs displaying the effect of
varying processing times on the transcriptome profiles of 7378 PBMC before (left) and after (right)
regressing out the time score for every highly variable gene. b kBET acceptance score distribution across
sampling times with or without the computational correction. c tSNE showing the effect of PBMC culturing
and activation with anti-CD3 Dynabeads over 2 days. d kBET acceptance score distribution across cell types
with or without cell culture/activation. e tSNE highlighting the sampling effect between cells cryopreserved
immediately (fresh, 0 h) or after 24 h and 48 h stored cold (4 °C) or at RT (21 °C). f kBET acceptance score
distribution across storage temperatures
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cell culture with simultaneous T cell activation (anti-CD3, day 2). Strikingly, the cul-

turing/activation reduced the sampling induced artifact, quantifiable through in-

creased similarities between the time points (Kbet score; Fig. 2c, d). In line, after cell

culture, no significant differences in time score could be observed between the time

points (Additional file 1: Fig. S10). It is of note that culturing and activation result in

specific gene expression profiles that allow the simulation of disease phenotypes (e.g.,

auto-immune diseases), but might also distort expression profiles observed in vivo

(Additional file 1: Fig. S11 and Additional file 6: Table 5).

Finally, we hypothesized that cold sample storage could prevent time-related sam-

pling effects by minimizing active and passive cell responses. In line, tissues (lung, pan-

creas, and esophagus) preserved at cold temperatures (4 °C) did not show altered

single-cell gene expression profiles or cell type composition changes up to 72 h of stor-

age [18]. Importantly, changing storage temperatures could be readily implemented in

prospective cohort study designs to enable subsequent scRNA-seq. Indeed, when

PBMC or CLL samples were stored at 4 °C until cryopreservation (24 and 48 h for

PBMC; 2, 4, 6, 8, and 24 h for CLL), we did not detect global gene expression artifacts,

an effect observed for both healthy and CLL samples and replicated across donors and

technologies (Fig. 2e,f and Additional file 1: Fig. S12a,b). Although we detected an up-

regulation of stress-regulators (NFKBIA, FOS, JUN, JUNB) in PBMC stored > 24 h at

4 °C (Additional file 1: Fig. S12c), we identified between 254 (2 h) and 362 (24 h) DEG

in CLL cells, notably less than when kept at RT (between 797 and 1956 DEG at 2 h and

24 h, respectively; Additional file 1: Fig. S12d).

Conclusions
We report that varying sampling times until cryopreservation is a driver of technical

variability in scRNA-seq and scATAC-seq profiles. This bias was ubiquitous across cell

types, donors, protocols, and disease status, thus likely presenting a highly frequent

obstacle in transcriptome and epigenome cohort studies. Despite the substantial impact

on single-cell datasets, the proposed computational corrections, cell culture, and stor-

age adjustments allow the design of reliable retro- or prospective studies of immune

cells from archived sample collections. However, sampling effects can be tissue- and

cell type-specific; thus, dedicated benchmarking efforts are required for sample types

other than the ones tested here. In general, sampling artifacts are important to consider

when planning single-cell experiments. Failing to select suitable samples or to correct

datasets will lead to biased or false reporting.

Methods
PBMC isolation and cryopreservation

Peripheral venous blood samples were collected by venipuncture from two voluntary

blood donors, one male and one female. Blood samples were collected in ACD-tubes

and stored at room temperature (RT) or 4 °C. In the former condition, peripheral blood

mononuclear cells (PBMC) were isolated at 2, 8, 24, and 48 h. For samples stored at

4 °C, PBMC were isolated at 24 and 48 h. PBMC separation was performed using Ficoll

density gradient centrifugation. For each condition, 12 ml of blood was diluted with an

equal volume of pre-warmed RPMI 1640 culture medium (Lonza). The diluted blood
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was then carefully layered onto a Leucosep tube (Greiner Bio-One) prefilled with 15ml

of Ficoll-Plus (GE Healthcare Biosciences AB) and centrifuged for 15 min at 800×g and

RT (without acceleration and brake). After centrifugation, PBMC were collected with a

sterile Pasteur pipette into a 50-ml tube, diluted up to 10ml with pre-warmed RPMI

medium and centrifuged for 10 min, at 400×g and RT. Following a second washing step

with 5 ml of RPMI medium and a 5-min centrifugation, PBMC were resuspended in 8

aliquots of freezing media. Freezing media consisted of RPMI 1640 with 20% heat-inac-

tivated fetal bovine serum (Sigma-Aldrich), 10% DMSO (Sigma-Aldrich), and penicillin-

streptomycin 1:1000 (Lonza). One-milliliter aliquots, with approximately 1 × 10e6 cells/ml,

were gradually frozen using a commercial freezing box (Mr. Frosty, Nalgene) at − 80 °C for

24 h and then stored in a vapor-phase liquid nitrogen tank at − 150 °C.

Cryopreserved (− 80 °C) PBMC samples were rapidly thawed in a 37 °C water bath.

Each sample was transferred into a 15-ml Falcon using a 1000-μl cut tip without mix-

ing by pipetting. Next, 1 ml of 37 °C pre-warmed media (Hibernate-A supplemented

with 10% FCS; ThermoFisher) was added dropwise with gentle swirling of the sample.

After 1-min incubation, 2 ml of pre-warmed media was added and incubated for 1 min.

Next, 5-ml pre-warmed media was gently added, inverted, and incubated (1 min). This

step was repeated once. Finally, the samples were centrifuged at 700×g for 5 min (4 °C).

The supernatant was removed, and the pellets re-suspended in 100 μl of Cell Staining

Buffer (BioLegend). Of note, we did not observe an increase of damaged/dead cells (cell

viability staining) towards the later time points with an average viability of 95% (range,

88–98%) across time points. An increased fraction of debris could be observed at 24

and 48 h, which, however, did not result in reduced data quality (e.g., proportion of ex-

cluded cells) during data analysis (Additional file 7: Table 6).

CLL patient samples were obtained from freshly extracted blood, stored either at RT or

4 °C. Mononuclear cells were isolated after Ficoll density gradient centrifugation, at 2, 4,

6, 8, and 24 h after patient blood extraction. The cells were directly cryopreserved with

freezing media (RPMI 1640 with 20% FBS and 10% DMSO), in the concentration of 5–

10 × 10e6 cells/ml, according to standardized protocol. The tumor cell content of all the

samples was > 80%, as assessed by immunostaining of CD19, CD20, CD5, and CD45

followed by flow cytometry. All patients gave informed consent for their participation in

the study according to International Cancer Genome Consortium (ICGC) guidelines.

Cell hashing was performed following the manufacturer’s instructions (Cell hashing

and Single Cell Proteogenomics Protocol Using TotalSeq™ Antibodies; BioLegend).

Therefore, samples were incubated 10min at 4 °C with Human TruStain FcX™ Fc

Blocking reagent (BioLegend). Next, sample-specific TotalSeq antibodies (anti-human

Hashtag 1-8, Biolegend) were added with subsequent incubation on ice for 45 min.

Cells were washed once with cold 1X PBS supplemented with 0.0005% BSA (Thermo-

Fisher) and pelleted at 700×g for 5 min. A single-cell solution was obtained resuspend-

ing the pellet in 1X PBS (0.0005% BSA) and filtering it through a 40-μm cell strainer.

The cells were counted in an automatic cell counter (Countess® v.2, ThermoFisher).

PBMC isolation and activation

Peripheral venous blood samples were collected by venipuncture from one volun-

tary donor (male). Blood samples were collected in 10-ml Vacutech Vacuum Blood
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Collection Tubes K2/K3 EDTA (Becton Dickinson) and stored at RT. Peripheral

blood mononuclear cells (PBMC) were isolated at 0, 8, and 24 h after blood collec-

tion. PBMC separation was performed using Ficoll density gradient centrifugation.

For each condition, 9 ml of blood was diluted with an equal volume of 1X PBS

(Gibco). The diluted blood was then carefully layered onto 9 ml of Lymphoprep

solution (STEMCELL Technology) and centrifuged for 15 min at 700×g and RT

(without acceleration and brake). After centrifugation, PBMC were collected and

washed twice with 10 ml of 1X PBS. The pellet was resuspended with 10 ml of 1X

PBS, and cells were counted with a TC20™ Automated Cell Counter (Bio-Rad

Laboratories). PBMC were again centrifuged for 5 min at 700×g and resuspended

in an appropriate volume of freezing media (RPMI with 10% heat-inactivated fetal

bovine serum and 10% DMSO). Aliquots of ~ 0.5 × 10e6 cells/ml were gradually

frozen using a commercial freezing box (Mr. Frosty, Nalgene) at − 80 °C for 24 h

and then stored in a vapor-phase liquid nitrogen tank at − 150 °C.

For T cell activation, cells were thawed in MACS buffer (1X PBS, 4% FBS, 2mM

EDTA), centrifuged during 5min at 700×g and RT, and resuspended in pre-warmed cul-

ture media (RPMI, 1% Pyruvate, 20% FBS, Pen/Strep, DNase 100 U/ml). A TC20™ auto-

mated cell counter was used to assess cell number and viability. The number of only

viable cells was used to calculate volumes for cell seeding. For each condition, 200,000 live

cells were seeded into two wells of a 96-well round bottom plate (Sigma Aldrich) for a

total of 400,000 cells per condition (time point). Dynabeads Human T-Activator CD3/

CD28 (Thermo Fisher Scientific) were transferred to a 1.5-ml tube (5 μl/well), washed

twice with 1ml of cell culture media, and resuspended with 10 volumes of cell culture

media. Fifty microliters of resuspended beads was added to each well for T cell activation

and expansion. Cells were incubated during 24 h at 37 °C with 5% CO2 and 5% humidity.

The remaining cells (~ 350,000 cells per condition) were used as a control (day 0) for T

cell activation. Cells subjected to T cell activation protocol were collected in a 1.5-ml tube

and stained with DAPI (Thermo Fisher Scientific) at 1 μM final concentration. DAPI-

negative live individual cells were sorted with a BD FACSAria™ Fusion Flow cytometer

(BD Biosciences) in 1X PBS supplemented with 0.05% BSA.

Samples subjected to T cell activation treatment, as well as corresponding control

samples, were subjected to a Cell Hashing protocol before proceeding to scRNA-

seq. Cell hashing was performed following the manufacturer’s instructions (Cell

hashing and Single Cell Proteogenomics Protocol Using TotalSeq™ Antibodies; Bio-

Legend). Cells were counted with a TC20™ Automated Cell Counter, and an equal

number of cells was taken for each condition. Briefly, samples were resuspended in

Cell Staining Buffer (BioLegend), incubated 10 min at 4 °C with Human TruStain

FcX™ Fc Blocking reagent (Bio Legend). To each condition, a specific TotalSeq-A

antibody-oligo conjugate (anti-human Hashtag 1-8, Biolegend) was added and incu-

bated on ice for 1 h. Cells were then washed three times with cold PBS-0.05% BSA

(ThermoFisher) and centrifuged for 5 min at 700×g at 4 °C. Finally, cells were re-

suspended in an appropriate volume of 1X PBS-0.05% BSA in order to obtain a

final cell concentration > 500 cells/ul, suitable for 10x Genomics scRNA-seq. An

equal volume of hashed cell suspension from each of the conditions (0 h, 8 h, and

24 h) was mixed and filtered with a 40-μm strainer. Cell concentration was verified

by counting with a TC20™ Automated Cell Counter.
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Single-cell RNA sequencing

Cells were partitioned into Gel Bead In Emulsions with a Target Cell Recovery of 10,

000 total cells. Sequencing libraries were prepared using the single-cell 3′ mRNA kit

(V2 for PBMC samples and V3 for CLL and cultured PBMC samples; 10x Genomics)

with some adaptations for cell hashing, as indicated in TotalSeq™-A Antibodies and

Cell Hashing with 10x Single Cell 3′ Reagent Kit v3 3.1 Protocol by BioLegend. Briefly,

1 μl of 0.2 μM HTO primer (Hashtag Oligonucleotides; GTGACTGGAGTTCAGACG

TGTGC*T*C; *Phosphorothioate bond) was added to the cDNA amplification reaction

in order to amplify the hashtag oligos together with the full-length cDNAs. A SPRI

selection cleanup was done in order to separate mRNA-derived cDNA (> 300 bp) from

antibody-oligo-derived cDNA (< 180 bp), as described in the abovementioned protocol.

10x cDNA sequencing libraries were prepared following 10x Genomics Single Cell 3′

mRNA kit protocol, while HTO cDNAs were indexed by PCR as follows. Briefly, 5 μl of

purified hashtag oligo cDNA was mixed with 2.5 μl of 10 μM Illumina TruSeq D70X_s

primer (IDT) carrying a different i7 index for each sample, 2.5 μl of SI primer from 10x

Genomics Single Cell 3′ mRNA kit, 50 μl of 2X KAPA HiFi PCR Master Mix (KAPA

Biosystem), and 40 μl of nuclease-free water. The reaction was carried out using the

following thermal cycling conditions: 98 °C for 2 min (initial denaturation), 12 cycles of

98 °C for 20 s, 64 °C for 30 s, 72 °C for 20 s, and a final extension at 72 °C for 5 min. The

HTO libraries were purified with 1.2 X SPRI bead selection. Size distribution and

concentration of cDNA and HTO libraries were verified on an Agilent Bioanalyzer

High Sensitivity chip (Agilent Technologies). Finally, sequencing of HTO and cDNA

libraries was carried out on a HiSeq4000 or NovaSeq6000 system (Illumina).

Single-cell ATAC sequencing

For the single-cell ATAC-seq experiments, we analyzed one PBMC and one CLL sam-

ple isolated after 0 h, 8 h, and 24 h of blood storage at room temperature before cryo-

preservation. Frozen samples were rapidly thawed in a 37 °C water bath. Each sample

was transferred into a 15-ml Falcon using a 1000-μl cut tip without mixing by pipet-

ting. Next, 1 ml of 37 °C pre-warmed media (Hibernate-A supplemented with 10% FCS)

was added dropwise with gentle swirling of the sample. After 1 min of RT incubation,

additional 2 ml of pre-warmed media was added. The samples were again kept at RT

for 1 min, before 5 ml of pre-warmed media was gently added. This step was repeated

once. Then, samples were centrifuged at 700×g for 5 min. Supernatant was removed

and the pellets resuspended in 500 μl of PBS supplemented with 0.05% BSA. Cell con-

centration and viability were determined with a TC20™ Automated Cell Counter.

Nuclei isolation was performed following the “Nuclei Isolation for Single Cell ATAC

Sequencing demonstrated protocol” (10x Genomics). Briefly, 1,000,000 cells from the

CLL sample and 300,000 cells from PBMC were transferred to a 1.5-ml microcentrifuge

tube and centrifuged at 500×g for 5 min at 4 °C. The supernatant was removed without

disrupting the cell pellet, and 100 μl of chilled Lysis Buffer (10 mM Tris-HCl (pH 7.4);

10 mM NaCl; 3 MgCl2; 0.1% Tween-20; 0.1% Nonidet P40 Substitute; 0.01% Digitonin

and 1% BSA) was added and pipette-mixed 10 times. Samples were then incubated on

ice during 3 min. Following lysis, 1 mL of chilled Wash Buffer (10 mM Tris-HCl (pH

7.4); 10 mM NaCl; 3 MgCl2; 0.1% Tween-20 and 1% BSA) was added and pipette-
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mixed. Nuclei were centrifuged at 500×g for 5 min at 4 °C, and the supernatant re-

moved without disrupting the pellet. Based on the starting number of cells and assum-

ing a 50% loss during the procedure, nuclei were resuspended into the appropriate

volume of chilled Diluted Nuclei Buffer (10x Genomics) in order to achieve a nuclei

concentration of 1540–3850 nuclei/μl, suitable for a Target Nuclei Recovery of 5000.

The resulting nuclei concentration was determined using a with a TC20™ Automated

Cell Counter.

scATAC-seq libraries were prepared according to the Chromium Single Cell ATAC

Reagent Kits User Guide (10x Genomics; CG000168 Rev. B). Briefly, the transposition

reaction was prepared by mixing the desired number of nuclei with ATAC Buffer (10X

Genomics) and ATAC Enzyme (10X Genomics), before incubation for 60 min at 37 °C.

Nuclei were partitioned into Gel Bead-In-Emulsions (GEMs) by loading the following

into a Chip E: the master mix (previously added to the same tube of the transposed nu-

clei), the Chromium Single Cell ATAC Gel Beads (10X Genomics), and the Partitioning

Oil (10X Genomics). After the run into the Chromium Controller, the DNA linear

amplification was performed by incubating the GEMs at the following thermal cycling

conditions: 72 °C for 5 min, 98 °C for 30 s, 12 cycles of 98 °C for 10 s, 59 °C for 30 s, and

72 °C for 1 min. GEMs were broken using the Recovery Agent (10X Genomics), and

the resulting DNA was purified by Dynabeads and SPRIselect reagent (Beckman

Coulter; B23318) bead cleanups. Indexed sequencing libraries were obtained by mixing

the amplification product with the Sample Index PCR Mix (10X Genomics) and the

Chromium i7 Sample Index (10x Genomics) and incubating at the following thermal

cycling conditions: 98 °C for 45 s, 12 cycles of 98 °C for 20 s, 67 °C for 30 s, 72 °C for 20

s, and with a final extension of 72 °C for 1 min. Sequencing libraries were subjected to a

final bead cleanup SPRIselect reagent and quantified on an Agilent Bioanalyzer High

Sensitivity chip (Agilent Technologies). Finally, libraries were loaded on an Illumina

HiSeq 2500 system in Rapid Run mode using the following read length: 50 bp Read 1N,

8 bp i7 Index, 16 bp i5 Index, and 50 bp Read 2N.

Primary processing and demultiplexing

We processed sequencing reads with CellRanger v3.0.0 for the PBMC data and v3.0.2 for

the CLL and T cell activation data. We used the human GRCh38 assembly as reference

genome. To specify the hashtag oligonucleotide (HTO) libraries, the cDNA libraries, and

the HTO sequences, we followed the “Feature Barcoding Analysis” pipeline, available at

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/usi

ng/feature-bc-analysis. We set the --chemistry and --expect-cells flags of cellranger count

to “SC3Pv3” and “5000”, respectively. We demultiplexed cell hashtags as described in

Stoeckius et al. [19] for each batch and donor separately. Briefly, we normalized hashtag

oligonucleotide (HTO) counts using a centered log ratio (CLR), in which each count is di-

vided by the geometric mean of a HTO across cells and log-transformed. We then clus-

tered barcodes using k-medoids with k equal to the number of conditions (k = 4 for batch

03, and k = 8 for batch 04), which allowed us to identify the background distribution of

each HTO. We re-clustered Male 04 with k = 3, as no clear signal for the HTO “24 h 4 °C”

was detected. Subsequently, we considered the top 0.5% normalized HTO counts of the

background distribution as outliers and excluded them. We classified barcodes to a given
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condition if the normalized HTO counts of that condition exceeded the 0.99 quantile. We

discarded both barcodes that were assigned to more than one condition (multiplets) and

barcodes that were not assigned to any condition (negatives). In subsequent datasets (CLL

and T-cell activation), we demultiplexed the HTO with Seurat’s built-in functions [20]. Of

note, all sampling time point showed comparable dataset qualities (e.g., library size and

mitochondrial read content; Additional file 7: Table S6).

Quality control and normalization

We performed quality control (QC) and normalization separately for each dataset (PBMC,

CLL, T-cell activation). Following the guidelines from Luecken et al. [21], we inspected

the distributions of three main QC metrics: library size (total UMI), library complexity

(number of detected genes), and mitochondrial expression. Importantly, we analyzed

these metrics jointly to ensure that cells with high mitochondrial expression were not

metabolically active. Finally, we analyzed one of the CLL donors independently as it

showed markedly different distributions in QC metrics. We classified as damaged cells

those barcodes with an aberrantly low number of UMI and genes, or with an abnormally

high mitochondrial expression. Likewise, we classified as doublets those barcodes that

possessed and aberrantly large library size and complexity. We also leveraged DoubletFin-

der [22] to detect doublets that shared the same HTO and were not outliers in any qc

metric. We ruled out genes that were detected in less than 10 (CLL) or 15 cells (T cell ac-

tivation). Finally, we used the Scran 1.10.2 package [23] to normalize UMI counts with

cell-based size factors. We provide a supplementary table with the number of cells before

and after QC, the average library size, library complexity, and mitochondrial fraction

stratified by time, donor, and temperature (Additional file 7: Table 6).

Cell type annotation

Cell type annotation was performed within the Seurat framework [24] (Additional file

1: Fig. S13). To cluster cells, we (i) identified overdispersed genes with the FindVaria-

bleFeatures function (using default parameters), (ii) scaled UMI counts and regressed

out the batch effect, (iii) performed principal component analysis (PCA), (iv) used these

PCs to create a k-nearest neighbors graph with the FindNeighbors function, and (v)

clustered cells with the FindClusters function. We set the resolution parameter to 0.05,

0.01, and 0.1 for the PBMC, CLL, and T cell activation data, respectively. Finally, we

used well-known marker genes to annotate each cluster to its specific cell type. We

provide a supplementary table with the number of cells per cell type stratified by time,

donor, and temperature (Additional file 7: Table 6).

Variance analysis

To quantify and compare sampling time with other sources of variance, we followed

two complementary approaches. First, we defined ρp as a universal measure of cell

similarity, as Skinnider et al. [25] described this proportionality metric as the most ac-

curate to measure cell-cell association. We then downsampled T cells and B cells to 50

cells per sampling time to ensure that different cell types and time points were equally

represented. Likewise, we downsampled each cluster of leukemic cells (one per donor)

in a similar manner. We obtained a distance matrix by computing all pairwise ρp as
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described in Skinnider et al. Finally, we sorted the distance matrix by cell type and time

to allow for interpretation.

Second, we downsampled monocytes and NK cells as described before and merged it

with the T and B cell dataset. We then regressed the scran-normalized gene expression

values of 5282 genes (union of highly variable features of the merged and cell type-

specific datasets) on one of four explanatory variables (cell type, time, donor, and

batch), and extracted a distribution of r2 values for each variable. To conduct a similar

analysis in the Smart-seq2 dataset (T cells), we used the plotExplanatoryVariables func-

tion from Scater [26].

Differential expression analysis (DEA)

To find the scRNA-seq signature, we divided cells in the PBMC and CLL datasets in

time-biased (t > 2 h) and time-unbiased (t < =2 h). Subsequently, we performed a Wil-

coxon signed-rank test to test for differential expression for each gene. Soneson et al. [27]

reported that this test is among the best performing for scRNA-seq DEA analysis. Vieth

et al. [28] showed that with Scran normalization, there is no need for scRNA-seq-tailored

statistical tests. To define the sampling time signatures, we performed the same approach

but setting the logfc.threshold of Seurat’s FindMarkers function to logfc.threshold = 0.25

to increase the specificity.

Gene Ontology (GO) enrichment analysis

To elucidate biological processes affected by sampling time, we conducted a GO en-

richment analysis with the GOstats 2.48.0 package [29]. We used as target set the

entrez identifiers of the upregulated (log fold-change > 0) or downregulated (log fold-

change < 0) genes in the sampling time signature, and as universe set the entrez identi-

fiers of all genes that we included in the analysis. Finally, we filtered out GO terms that

were too general (size ≥ 600), or too specific (size < 3). In addition, we only retained

GO terms with a p value lower than 0.05 and an odds ratio greater than 2.

Integration of the sampling signatures

To compare the sampling time signatures detected for PBMC and CLL with other

condition-specific signatures, we downloaded the DEG tables for the studies by Baech-

ler et al. [11] and van den Brink et al. [8]. We defined as signature those genes with an

adjusted p value < 0.001. Furthermore, we subsetted the Baechler signature to the top

250 genes to harmonize the number of DEG across signatures. Finally, we calculated a

signature-specific score using the AddModuleScore function from Seurat.

Prediction of sampling time-biased cells

To predict sampling time-biased cells, we used the AddModuleScore function of Seurat

to compute a time score per cell using a signature calculated on the male donor (train-

ing set). We then fitted a logistic regression model using the time score as explanatory

variable. Subsequently, we predicted the probability of being “biased” for every cell of

the female donor (test set) and found the area under the curve (AUC) with the “AUC”

function from the cvAUC v1.1.0 package. To test the significance of our signature, we

repeated the process with a signature defined on random genes.
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Computational correction sampling time signature

To correct the time-biased transcriptomes in the female PBMC dataset (test set), we

regressed the expression of each gene on the time score and kept the scaled and cen-

tered residuals as the variance in gene expression not explained by time. We performed

this process for each cell type independently to minimize Simpson’s paradox.

As all the analysis above used a similar proportion of “biased” and “unbiased” cells, we

sought to test the effect of varying percentages of biased cells on the time score computa-

tion and regression. In this setting, we performed bootstrapping as follows: first, we sam-

pled 300 cells with replacement from the Smart-seq2 dataset, enforcing an approximate

percentage of time-affected cells. Second, we computed the average Silhouette width be-

tween affected and unaffected cells. Finally, we computationally corrected the transcrip-

tome profiles and recalculated the average Silhouette width. We repeated this process 25

times for each set of percentages ranging from 10 to 90% of affected cells.

k-nearest-neighbor batch-effect test (kBET)

To assess the mixability between cells of different time points in the presence or absence

of our corrections, we used the kBET metric [15]. Briefly, kBET compares the label distri-

bution of the local k-nearest neighborhood of a given cell with the global distribution with

a Pearson’s χ2 test, with the null hypothesis that, if samples are well-mixed, both distribu-

tions are equal. We ran kBET with the cells embedded in UMAP space and with default

parameters. We defined the acceptance rate as the percentage of tested cells with a p value

> 0.05, and as rejection rate 100-acceptance rate.

Smart-seq2 validation

To confirm that the results obtained from 10x Genomics-derived data were technology-

independent, we profiled the transcriptome of 376 CD3+ T cells with Smart-seq2 [30].

The cells originated from the same donors as in the 10x Genomics experiments and were

distributed across four 96-well plates (all time points per plate). We discarded 60 cells that

either had < 75,000 or > 1,000,000 total counts, < 435 detected genes or a mitochondrial

expression > 20%. Similarly, we filtered out 6542 genes that had an average expression

across cells < 1. We normalized gene counts with the Scran package, which removed the

batch effect between plates. Finally, we clustered cells with the SC3 1.10.1 package [31], as

it outperforms other tools for small datasets [32].

ATAC-seq data analysis

ATAC-seq data from 10x Genomics was processed with CellRanger-atac 1.1.0. Differen-

tial accessibility to detect changes in open chromatin sites was performed with Wilcoxon-

Mann-Whitney rank sum test for high-throughput expression profiling data (R BioQC

v1.0.0). Motif enrichment analysis was performed using the package motifcounter v.1.10.0

[33] with default parameters, and the motifs were downloaded from JASPAR database

(579 motifs from JASPAR CORE VERTEBRATES, http,//jaspar.genereg.net/downloads/).

The background distribution was computed over the total peaks called in the datasets (56,

627 in the PBMC and 80,861 in the CLL). We provide a supplementary table with mul-

tiple QC metrics (number of high-quality cells and detected peaks, among others) strati-

fied by experiment, donor, and time (Additional file 7: Table 6).
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