
SOFTWARE Open Access

scATAC-pro: a comprehensive workbench
for single-cell chromatin accessibility
sequencing data
Wenbao Yu1,2, Yasin Uzun1,2, Qin Zhu3, Changya Chen1,2 and Kai Tan1,2,3,4*

* Correspondence: tank1@email.
chop.edu
1Center for Childhood Cancer
Research, The Children’s Hospital of
Philadelphia, Philadelphia, PA 19104,
USA
2Department of Biomedical and
Health Informatics, The Children’s
Hospital of Philadelphia,
Philadelphia, PA 19104, USA
Full list of author information is
available at the end of the article

Abstract

Single-cell chromatin accessibility sequencing has become a powerful technology for
understanding epigenetic heterogeneity of complex tissues. However, there is a lack of
open-source software for comprehensive processing, analysis, and visualization of such
data generated using all existing experimental protocols. Here, we present scATAC-pro
for quality assessment, analysis, and visualization of single-cell chromatin accessibility
sequencing data. scATAC-pro computes a range of quality control metrics for several
key steps of experimental protocols, with a flexible choice of methods. It generates
summary reports for both quality assessment and downstream analysis. scATAC-pro is
available at https://github.com/tanlabcode/scATAC-pro.
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Background
Chromatin accessibility is a strong indicator of the activities of functional DNA sequences.

Recently, multiple experimental protocols have been developed to profile genome-wide

chromatin accessibility in single cells, including the Assay of Transposase Accessible Chro-

matin with high-throughput sequencing (scATAC-seq) [1], single-cell combinatorial

indexing ATAC-seq (sci-ATAC-seq) [2], single-cell transposome hypersensitivity site se-

quencing (scTHS-seq) [3], plate-based scATAC-seq protocol [4], and droplet-based single-

cell combinatorial indexing ATAC-seq (dsci-ATAC-seq) [5]. In this paper, we collectively

define data generated with these experiment protocols as single-cell chromatin accessibility

sequencing data, or scCAS data. Application of these protocols has helped to understand

the epigenetic heterogeneity across cell populations in complex tissues during normal

development and pathogenesis, including adult mouse tissues [6], forebrain development

[7], hematopoietic differentiation and leukemia evolution [8, 9], and T cell development

and exhaustion [10].

In contrast to the rapid growth of scCAS data, bioinformatics tools for scCAS data

analysis are critically lacking. The majority of existing tools lack comprehensiveness in

their ability to process scCAS data. Both chromVar [11] and single-cell regulome
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analysis toolbox (SCRAT) [12] work with preprocessed data and only report loss or gain

of chromatin accessibility on a set of predefined genomic regions, which ignores a large

amount of information in the data. Detection of cell-type-specific difference in chromatin

accessibility (Detin) [13], single-cell accessibility-based clustering (scABC) [14], and cisTo-

pic [15] focuses on identifying cell populations and/or differential accessible regions given

the processed data such as bam files or in peak-by-cell count matrix.

To our knowledge, Scasat [16] and scitools [17] are the only published software for

comprehensive analysis of scCAS data. However, Scasat is developed in the Jupyter

notebook environment. Although it is interactive, the programming codes are hard to

standardize and reuse and users need to customize the analysis step by step. Further-

more, Scasat binarizes raw peak-by-cell count matrix, which ignores the differences

among accessible regions and thus may lead to loss of valuable information for down-

stream analysis. Scasat does not provide summary reports for either data quality assess-

ment or downstream analysis. scitools is designed for sci-ATAC-seq data only. Another

tool SnapATAC [18] also binarizes the raw count data and cluster cells based on bin-

by-cell count matrix. Cellranger-atac by 10x Genomics is another comprehensive tool

but only works with data generated using the 10x Genomics platform, and the software

code is not open source. Additionally, some key analysis modules of cellranger-atac are

not flexible and do not use state-of-the-art algorithms. For example, the peak calling

module does not use state-of-the-art algorithms, such as model-based analysis for

ChIP-Seq 2 (MACS2) [19], resulting in many problematic peaks.

Here, we present a comprehensive and open-source software package for quality as-

sessment and analysis of single-cell chromatin accessibility data, scATAC-pro. It pro-

vides flexible options for most of the analysis modules with carefully curated default

settings. Summary reports for both quality assessment and downstream analysis are

automatically generated. Interface to an interactive single-cell data exploration and

visualization tool VisCello [20] is also provided.

Results
Overview of scATAC-pro workflow

scATAC-pro consists of two units, the data processing unit and the downstream ana-

lysis unit (Fig. 1). The data processing unit takes raw fastq files for reads and barcodes

as the input and outputs peak-by-cell count matrix, QC report, and genome track files.

It consists of the following modules: demultiplexing, adaptor trimming, read mapping,

peak calling, cell calling, genome track file generation, and quality control assessment.

The downstream analysis unit consists of the following modules: dimension reduction,

cell clustering, differential accessibility analysis, Gene Ontology analysis, TF motif en-

richment analysis, TF footprinting analysis, prediction of chromatin interactions, and

integration of multiple data sets. We provide flexible options for all modules. Details

about each module are summarized in Additional file 2: Table S1. We designed the

scATAC-pro to be user friendly. In each run, users just need to specify the input file

(“--input” flag), the module name (“--step” flag), and a configuration file (“--config” flag)

in which users provide parameters and options for the analysis modules. Users can

choose to run the entire or partial workflow. By default, all results are saved in the

“output” directory under the current directory (--output_dir “./output”).
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scATAC-pro provides flexible choices of methods for many analysis tasks

We provide at least two methods for most data processing and analysis modules. There

are several reasons to have multiple methods for a given data processing or analysis

task. First, for certain tasks such as read mapping, many tools such as BWA [21], Bow-

tie [22], and Bowtie2 [23] exist that perform equally well but have different levels of

trade-off between mapping accuracy and mapping speed [23, 24]. Users can choose

among those aligners based on different goals. For cell calling, cells can be called by fil-

tering low-quality barcodes [1, 2, 6, 9] or by using model-based approaches (e.g.,

cellranger-atac). Each category of methods has its pros and cons that can be tailored to-

wards the goals of the analysis.

Second, in cases where a general-purpose and top-performing method exists, such as

MACS2 [19] for peak calling, there are other methods that are more suitable for specific

tasks. For example, the genome-wide event finding and motif discovery algorithm, GEM

[25], was shown to have better performance in identifying peaks overlapping with transcrip-

tion factor binding sites (TFBS) [26]. In this case, the users might prefer GEM over MACS2.

Third, often times, there is a need for methods that can address data set-specific charac-

teristics. For example, using both real and simulated data, we found that the clustering

Fig. 1 The scATAC-pro workflow. The workbench consists of two units, data processing unit and
downstream analysis unit. Modules of the data processing unit include demultiplexing and adaptor
trimming of the raw reads, followed by mapping of reads to the reference genome and filtering of low-
quality reads. Aggregated reads are used for generating genome browser tracks, peak calling, and cell
calling. Quality check (QC) reports are generated based on both aggregated data and single-cell data.
Modules of the downstream analysis unit consists of dimension reduction, clustering, differential
accessibility between different cell populations, genome browser track generation per cell subpopulation,
TF motif enrichment analysis, footprinting analysis, and prediction of chromatin interactions. Most modules
provide more than one analysis methods
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performance using binarized/non-binarized data varies among different methods. For in-

stance, cisTopic performs better using binarized data whereas SCRAT performs better

using non-binarized data (Additional file 1: Fig. S1A, Fig. S2D). Even for the same cluster-

ing algorithm, we found that most of the time, both Louvain (Additional file 1: Fig. S1B)

and K-mean (Additional file 1: Fig. S1C) clustering algorithms work better with non-

binarized data although at higher noise levels, the performance difference becomes

smaller, and in some cases using binarized data is more accurate. Given this observation,

we provide methods that work on either binarized or non-binarized data or both

(see “Methods” for details). Another example is clustering, a critical task for under-

standing heterogeneity in a cell population. To help select better clustering

methods, we conducted benchmarking studies using simulated data and real data.

The compared methods include scABC, chromVAR, cisTopic, latent semantic

indexing or LSI [2], SCRAT, and Louvain algorithm implemented in Seurat v3

[27]. Based on the benchmarking result (Additional file 1: Fig. S2), we recommend

cisTopic, SCRAT, and Seurat as the top-performance methods although all above

methods are available in scATAC-pro.

scATAC-pro provides carefully evaluated default settings for all modules

Method and parameter choice makes a big difference in the result of several analysis mod-

ules. We therefore provide a set of carefully evaluated default settings for each analysis mod-

ule. We discuss the settings for the major modules as follows (see “Methods” for details).

Read mapping

Because of its balance between mapping speed and accuracy [28], especially for paired-

end sequencing data, we choose BWA (specifically bwa-mem) as the default read aligner.

Peak calling

Peak calling is usually done on aggregated data across all barcodes. Such an approach fails

to identify peaks that only appear in rare cell populations. We implemented a two-step

strategy, similar to the idea used by Cusanovich et al. [6]. We first segment the genome

into 5-kb bins and generate a bin-by-barcode count matrix, removing barcodes with fewer

than 1000 unique fragments. We then cluster the barcodes using the graph-based Louvain

algorithm using principal components as the input. Finally, we use MACS2 to call peaks

on the aggregated data for each cell cluster. The final set of peaks are generated by mer-

ging peaks less than 200 bp apart identified from different cell clusters.

Cell calling

As default, we use a filtering strategy to distinguish cell barcodes from non-cell bar-

codes, because the method is intuitive, easy to interpret, and widely used among pub-

lished studies [1, 2, 4, 6, 9, 17]. We define a barcode as a cell if its total number of

unique fragments is greater than 5000 and the fraction of such fragments in peaks is

greater than 50%. Users can use different thresholds for the fraction of fragments in en-

hancers, promoters, or mitochondrial genome to filter barcodes as well.
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Normalization

We provide two normalization methods. The term frequency-inverse document fre-

quency (TF-IDF) method [2, 6] treats count data as binary and normalizes data by se-

quencing depth per cell and total number of unique fragments per peak. In the second

method, count data is first log-transformed, followed by a linear regression to remove

the confounding factor due to varying sequencing depth per cell for every peak. This

method enables users to work with non-binarized count data. The TF-IDF method is

set as the default normalization method in scATAC-pro.

Dimension reduction and data visualization

We use principal component analysis (PCA) as the default dimension reduction

method because it is the most widely used method for scCAS data and easy to inter-

pret. Note that if the PCA is conducted on the TF-IDF normalized data, such dimen-

sion reduction is also referred as latent semantic indexing or LSI [2]. We use the PCA

implementation in Seurat v3 with some modifications. In Seurat v3, the raw count

matrix is log-transformed followed by a regression to remove confounding factors (the

total number of unique fragments per cell). PCA is then performed on the transformed

features. Because there are usually hundreds of thousand peaks in a scCAS data set, this

process takes about a couple of hours to finish for a typical data set. In our implemen-

tation, we first perform PCA on the normalized peak-by-cell count matrix, followed by

a regression analysis on each principal component. This procedure substantially re-

duces the computation time and produces very similar clustering results as the original

Seurat implementation (Additional file 1: Fig. S3). Uniform Manifold Approximation

and Projection (UMAP) [29] is used as the default visualization method.

Clustering

We provide the graph-based Louvain algorithm implemented in Seurat v3 as the default

clustering method. Shared neighbor network (SNN) graph is constructed based on the

first 30 principal components. Louvain algorithm is then performed on the SNN graph

with default setting. We found that the Louvain clustering algorithm has a better balance

between accuracy and running speed among several popular clustering methods (Add-

itional file 1: Fig. S2).

scATAC-pro provides summary reports and interface to visualization tools

scATAC-pro generates quality assessment metrics for both aggregated and single-cell

data. Two types of metrics are generated. The first type of metrics evaluates data qual-

ity internally, including read mapping rate, duplicate rate, high-confidence mapped

fragments (MAPQ score greater than 30), and library complexity. The second type of

metrics evaluates data quality using external annotations of genomic features, including

fraction of fragments in mitochondrial genome and fraction of fragments overlapping

with peaks and other annotated genomic regions, such as enhancers and promoters.

The quality assessment summary reports are generated in html format. These statistics

can be used to filter low-quality barcodes.

Besides quality assessment metrics, scATAC-pro also generates summary reports for

downstream analyses, including dimension reduction, clustering, differential chromatin
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accessibility analysis, TF motif enrichment analysis and footprinting analysis, gene

ontology analysis, and prediction of chromatin interactions.

To enable interactive exploration of data in scATAC-pro, we provide an interface to

VisCello [20], a data explorer and visualization tool for single-cell omics data. To do

this, we annotate the peaks with its nearest gene and mark genes with their TSSs lo-

cated within the peak. Users can then visualize the chromatin accessibility signal of

each peak or gene in all cells and identify differential accessible peaks among arbitrary

groups of cells.

scATAC-pro provides utility functions to facilitate downstream analyses

Generation of input files for genome browser tracks for each cluster

In addition to visualizing scCAS signal in VisCello, it is also common to visualize

scCAS signal for each cell population on a genome browser. To generate a normalized

signal track file, bam file of cells from each cell cluster is first split from the bam file of

all barcodes. Reads per cluster are then normalized as reads per kilobase per million

mapped reads. scATAC-pro outputs normalized chromatin accessibility for each cluster

in bigWig and bedGraph file formats, which can be directly uploaded to a genome

browser for visualization.

Transcription factor footprinting analysis

ATAC-seq and related technologies use the Tn5 enzyme to cleavage nucleosome-free

DNA while keeping the transcription factor binding sites intact due to protection by

the bound TF. As a result, a small region, referred to as the footprint, exhibits reduced

Tn5 cleavage rate at the ATAC-seq peak locus. Unlike TF motif enrichment analysis,

TF footprinting analysis provides direct evidence of TF binding to the chromatin [30].

With Hint-ATAC [31], scATAC-pro enables footprinting analysis of either one cell

cluster or differential TF binding between two groups of cell clusters.

Integration of multiple scCAS data sets

To integrate multiple scCAS data sets, assuming each data set is processed by

scATAC-pro, we first merge peaks identified in each data set. Using this merged set of

peaks, scATAC-pro reconstructs the peak-by-cell matrix for each data set. Because we

generate the peak-by-cell matrix using the same set of peaks for all samples, it is

straightforward to integrate the data sets using existing tools, such as Seurat v3 or Har-

mony [32]. scATAC-pro uses Seurat v3 as the default for this task.

Peak annotation and gene ontology analysis

To facilitate Gene Ontology analysis of genes associated with differential accessibility

peaks, scATAC-pro first annotates each peak with its nearest gene. Gene Ontology ana-

lysis for those genes can then be performed using the runGO module. The background

gene set is comprised of all genes associated with the differential accessibility peaks in

all cell groups resulted from the differential accessibility analysis. This analysis helps

users to further explore the identity of each cell cluster.
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Predicting chromatin interactions by Cicero

Connecting regulatory DNA elements to target genes is a prerequisite to understanding

transcriptional regulation. Cicero [33] predicts the interactions between cis-regulatory

elements and the target genes using scCAS data. scATAC-pro generates the predicted

interactions by running the runCicero module. The resulting interactions can be viewed

through the UCSC genome browser.

Case study

We used three real data sets generated with different experimental protocols to demon-

strate the utility of scATAC-pro: a data set of sorted human bone marrow

hematopoietic cells generated using the Fluidigm protocol [8, 9] (Buenrostro2018), a

data set of human peripheral blood mononuclear cells (PBMCs) generated using the

10x Genomics protocol [34], and a data set of 13 adult mouse tissues generated using

the sci-ATAC-seq protocol [6] (Cusanovich2018). For the sake of brevity, we present

the result based on the 10x Genomics data set in the main figures. Similar figures based

on the two other data sets are presented as supplementary figures.

Starting from the fastq files, scATAC-pro first demultiplexed sequencing reads by

adding the cell barcodes (R2.fastq.gz) information to the paired-end reads (R1.fastq.gz,

R3.fastq.gz). Adaptor sequences were then trimmed off, mapped to the GRCh38 refer-

ence genome using scATAC-pro default settings. Fragments with mapping quality

score (MAPQ score) less than 30 were removed. A summary report for mapping statis-

tics and library complexity is provided for all reads (Fig. 2A) and reads belonging to

called cells (Fig. 2B, C). Summary reports for the other two data sets are shown in Add-

itional file 1: Fig. S4 and Fig. S5, respectively.

Using the default peak caller, scATAC-pro called 129,049 peaks after removing peaks

overlapping with ENCODE blacklisted genomic regions [35]. Cell barcodes were se-

lected by filtering out barcodes with fewer than 5000 total unique fragments and the

fraction of unique fragments in peak less than 50% (Fig. 3A). Quality assessment report

for each barcode was generated using various metrics, including distribution of insert

size, transcriptional start site (TSS) enrichment profile, distribution of the total number

of unique fragments for cell and non-cell barcodes, and fractions of unique fragments

overlapping with annotated genomic regions (Fig. 3B–E). Overall statistics of data ag-

gregated from all called cells was also computed (Fig. 3F). Figures showing quality as-

sessment metrics for called single cells for the other two data sets are shown in

Additional file 1: Fig. S6 and Fig. S7, respectively.

Downstream analyses including clustering, TF motif enrichment analysis, TF foot-

printing analysis, GO analysis, and cis-element interaction prediction were conducted

using default scATAC-pro methods and settings (Fig. 4). In total, we found 10 cell

types. The top 10 enriched TFs for each cluster are shown in Fig. 4B, which provides a

means for identifying cell type associated with each cluster. For example, binding mo-

tifs of PU.1 (encoded by SPI1), IRF4, CEBPA, and CEBPB are highly enriched in clus-

ters 0, 6, 7, and 8, suggesting those clusters are monocytes [36]. Motifs of EOMES and

TBX5 were enriched in clusters 1, 2, and 5, suggesting those clusters are T cells. En-

richment of EBF1 [37] and BCL11A motifs [38] suggests cluster 3 represents B cells.

The differential footprinting analysis between cluster 0 and the rest of clusters further
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suggests that cluster 0 represents monocytes, because the monocytic TFs PU.1, JUNB,

JUN, CEBPA, and CEBPE [36, 39, 40] all have significant higher binding probability in

cluster 0 cells (Fig. 4C).

Summary report for downstream analyses for the other two data sets is shown in

Additional file 1: Fig. S8 and Fig. S9, respectively.

Using VisCello [20], we can display chromatin accessibility values of TSS regions of

several marker genes across cell clusters (Fig. 5A and Additional file 1: Fig. S10A), such

as MS4A1 (CD20) for B cells, GNLY and NKG7 for natural killer (NK) cells, CD3E for

T cells, CD14, LYZ, and FCGR3A (CD16) for monocyte cells, and CST3 for dendritic

cells (DC) [41]. We also displayed UCSC genome browser tracks for two example

genes, CD14 (Fig. 5B) and the FCER1A (Additional file 1: Fig. S11). Taken together,

based on the chromatin accessibility profile of known cell-type-specific marker genes,

Fig. 2 Summary statistics for read mapping, library complexity, and cell calling. scATAC-seq data of human
peripheral blood mononuclear cells (PBMCs) was used for illustration purpose. Global mapping statistics are based
on all data (A). Cell barcode mapping statistics are based on called cells (B, C). MAPQ, mapping quality score

Fig. 3 Quality assessment metrics for called single cells. scATAC-seq data of human PBMCs was used for
illustration purpose. (A) Plot of the fraction of fragments in peaks versus the total number of unique fragments.
The plot can be used to distinguish cell barcodes from non-cell barcodes. (B) Distribution of insert fragment
sizes. The plot can be used to evaluate the quality of transposase reaction. (C) Transcription start site (TSS)
enrichment profile. (D) Distribution of the total number of unique fragments for cell and non-cell barcodes. The
plot can be used to evaluate the amount of cell debris sequenced. (E) Boxplot of fragments overlapping
annotated genomic regions per cell. (F) Overall statistics of data aggregated from all called cells
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we annotated cell clusters as T cells, B cells, CD14+ monocytes, CD16+ monocytes,

dendritic cells, and natural killer cells (Fig. 5C). VisCello can also conduct differential

chromatin accessibility analysis between any two arbitrary groups of cell clusters (Add-

itional file 1: Fig. S10B).

Discussion
scATAC-pro provides a comprehensive solution for scCAS data QC and analysis. It re-

ports a number of QC metrics for both aggregated data of all barcodes and barcodes of

called cells. These metrics evaluate multiple steps of the experimental protocol, includ-

ing the quality of nuclei preparation, transposase reaction, and cell encapsulation (in-

sert size, fraction of unique reads, cell vs non-cell reads, mitochondrial reads), and

library preparation and sequencing (duplicate rate, fraction of unique reads and reads

with MAP score > 30). Although there is no universally optimal QC metric for all types

of scCAS data, the fraction of fragments in peak per cell is the most widely used in the

literature [1, 2, 4, 6, 9, 17]. Alternative metric such as the TSS enrichment score per cell

is introduced recently [18], but its utility may be limited for cell types that have a large

fraction of active TSS-distal peaks. Having a comprehensive annotation of cis-

regulatory elements across all human cell types will facilitate the task of evaluating

quality of gene-distal ATAC-seq peaks.

Because there is no clear optimal method for many analysis tasks, scATAC-pro pro-

vides multiple methods that allow users to tailor their analyses and to address data set-

specific characteristics. To guide the users, we have provided carefully evaluated default

settings for each analysis task, including both method choice and parameter setting of

the selected method(s).

Fig. 4 Summary report for downstream analyses of human PBMC data set. Results of the following analyses
are shown: clustering analysis (A), transcription factor (TF) motif enrichment analysis (B), differential
footprinting analysis (between one cluster and the rest of the clusters (C), enriched gene ontology (GO)
terms for cluster0 (D), and predicted cis-interactions at the CD14 locus (E)
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The open-source and modular design of scATAC-pro facilitates the maintenance and

future development of the software. Several experimental protocols exist for generating

scCAS data. Data generated using these protocols have different characteristics and qual-

ities. scATAC-pro is the first software tool that enables analysis of all types of scCAS data.

By doing so, scATAC-pro facilitates the integration of rapidly growing scCAS data.

The current version of scATAC-pro generates a static summary report. It can be en-

hanced by generating dynamic summary report in future versions of the software. For

example, for downstream analysis, the results can be updated in real time based on the

cell clusters compared. Interactively display of cis-interactions within an arbitrary gen-

omic region will be another very useful feature to add.

Conclusions
scATAC-pro is a comprehensive open-source software for processing, analyzing, and

visualizing single-cell chromatin accessibility sequence data. With the rapid accumulation

Fig. 5 Visualization of scATAC-seq data. (A) Chromatin accessibility signal of single cells. Normalized chromatin
accessibility signal for peaks overlapping with transcriptional start sites of selected marker genes. Data is visualized
by automatically calling VisCello. (B) Chromatin accessibility signal of aggregated cells. Genome browser view of
normalized chromatin accessibility signal at the CD14 locus across cell clusters. (C) Cell type assignment based on
chromatin accessibility signals of known cell type marker genes. Inset, clustering result without cell type assignment
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of single-cell chromatin accessibility sequencing data, application of scATAC-pro will fa-

cilitate a better understanding of epigenomic heterogeneity in healthy and diseased

tissues.

Methods
Details of each scATAC-pro module

Demultiplexing

Given the reads fastq files and the barcode fastq files, the barcode sequences are written

into the name of each read sequence (in the format of @BARCODE:ORIGINAL_READ_

NAME) to facilitate the tasks of downstream modules, such as generating peak-by-cell

matrix and quality assessment of single cells. For data generated using 10x Genomics, sci-

ATAC-seq, and dsci-ATAC-seq protocols, users need to provide the paired-end read fastq

files and the index fastq file (also supports multiple index fastq files). For scTHS-seq data,

users need to specify the parameter isSingleEnd = TRUE in the configuration file because

scTHS-seq data are single-end reads. This module is skipped if the barcode for each read

is recorded in the required format. For example, in the mouse sci-ATAC-seq atlas data [2,

6], the barcode for each read is saved in the name of each read.

Adaptor trimming

To map sequencing reads confidently to the reference genome, scATAC-pro first trims

off the adaptor sequence and primer oligo sequence from raw reads using trim_galore

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) as the default, which

can automatically detect and trim the adaptor and primer sequences. Alternatively,

users can also use Trimmomatic [42], which is faster but users need to specify the se-

quence of the adaptor in the configuration file.

Read mapping

Different alignment methods make different compromises between mapping accuracy

and speed. BWA, Bowtie, and Bowtie2 are three popular and top-ranked aligners based

on previous benchmarking studies [24, 28]. scATAC-pro enables all three aligners for read

mapping. We use BWA (bwa-mem) as the default aligner based on its balance between

mapping speed and accuracy. Users can provide additional options in the configuration

file by specifying MAPPTING_METHOD and corresponding parameters. For instance, if

users want to use 10 CPUs for parallel computing, they can set BWA_OPTS = -t 10 if

BWA is used, BOWTIE_OPTS = -p 10 if BOWTIE is used, and BOWTIE2_OPTS = -p 10

if Bowtie2 is used. After mapping, scATAC-pro uses samtools [43] to sort, index, mark

duplicates. and filter low-quality reads in the bam file.

The position sorted bam file, filtered bam file (default MAPQ score > 30), and the mapping

statistics are automatically generated and saved for downstream modules. A file called frag-

ment.txt that records the genomic location, barcode, and the number of duplicates of each

unique fragment is generated using a custom R script to facilitate downstream analysis.

Peak calling

By default, scATAC-pro calls peaks using aggregated fragments across all barcodes.

MACS2 is a popular peak calling tool for ATAC-seq and ChIP-Seq data. We also
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enable the GEM algorithm for peak calling. It is recommended by the ENCODE consortium

for its good performance on calling peaks with enriched TF motifs. The processed scCAS

data is then summarized as the peak-by-barcode matrix. Peaks that only appear in rare cell

types are challenging to call by the above approach of using aggregated fragments across all

barcodes. An alternative approach is to bin the genome without peak calling or combination

of binning the genome and peak calling [6]. For the combination strategy, we first segment

the genome into 5-kb bins and generate bin-by-barcode count matrix, removing barcodes

with low total number of fragments (e.g., 1000). We then cluster the barcodes followed by

peak calling for each cluster using MACS2. Peaks or bins overlapped with blacklisted gen-

omic regions are removed for downstream analysis. Users can specify PEAK_CALLER to be

one of MACS2, GEM, BIN, or COMBINED in the configuration file.

Cell calling

Not all barcodes are real cells in a typical scCAS data set due to cell collision and/or

cell debris. How to distinguish cell barcodes from non-cell barcodes is still a challen-

ging problem. Generally, users select cell barcodes either by filtering out low-quality

barcodes based on some summary statistics, such as total number of fragments and

fraction of fragments in peak regions. Alternatively, users can use model-based ap-

proaches. For example, the cellRanger-atac method fits a mixture of two zero-inflated

negative binomial models to discriminate between cell barcodes and non-cell barcodes.

EmptyDrops [44], originally designed to identify cells from scRNA-Seq data, models

the counts using a Dirichlet-multinomial distribution. scATAC-pro provides all of the

aforementioned strategies/methods. Based on our experience, cellranger-atac and Emp-

tyDrops (with the default fdr of 0.001) tend to call too many cells, while the knee point

approach of EmptyDrops and cellRanger-atac are too stringent. Therefore, we choose

the filtering strategy as the default since it is simple and intuitive. For the filtering strat-

egy, users can filter barcodes based on one or multiple summary statistics such as the

total number of unique fragments, fraction of fragments in peaks, fraction of fragments

in mitochondrial genome, and fraction of fragments overlapping with annotated pro-

moters, enhancers, and TSS regions. Since the implementation of cellRanger-atac cell

calling is not publicly available, we implemented the algorithm using custom R scripts.

Quality assessment

scATAC-pro provides mapping statistics for all reads as well as reads belonging to

called cells. The following QC metrics are reported: total reads, total number of

mapped reads, unique mapping rate, fraction of reads in mitochondrial genome, num-

ber of duplicate reads, high-quality reads (MAPQ > 30), library complexity, fraction of

reads in annotated genomic regions, and TSS enrichment profile. The same set of sum-

mary statistics is also reported for reads belonging to called cells. scATAC-pro also re-

ports the number of cells called, median number of fragments per cell, and fraction of

mapped reads belonging to cells.

Normalization

The default term frequency-inverse document frequency (TF-IDF) normalization is im-

plemented using the TF-IDF function in Seurat v3. We also provide an alternative
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normalization method, which first log-transforms the count followed by regression to

remove the confounding factor due to sequencing depth per cell.

Dimension reduction, cell clustering, and visualization

scATAC-pro supports principal component analysis (PCA) (which is also called latent

semantic indexing (LSI) if the data were first normalized by TF-IDF) and latent

Dirichlet allocation (LDA) for dimension reduction. We use the Seurat v3 toolkit to im-

plement PCA, Louvain clustering algorithm, and the cisTopic R package to implement

LDA. Different numbers of reduced dimensions can be specified by nREDUCTION par-

ameter (default 30) in the configuration file. We provide t-distributed stochastic neigh-

bor embedding (tSNE) and uniform manifold approximation and projection (UMAP)

(implemented in Seurat v3) for visualization.

Differential chromatin accessibility analysis

Peaks with differential accessibility across different cell clusters are potentially cell-

specific gene regulatory elements. We use Wilcoxon test as the default method to per-

form differential accessibility analysis. Alternative methods such as logistic regression-

based method (implemented in Seurat v3), DESeq2 [45], and negative binomial

regression-based test (implemented in Seurat v3) are also available. Users can compare

two clusters or one cluster vs the rest of clusters using the module runDA and specify

group1 and group2 in the configuration file.

Generation of genome browser track files

scATAC-pro outputs bigWig and bedGraph files for visualizing chromatin accessibility

signal in a genome browser. The signal is normalized by reads per kilobase per million

mapped reads. Those files are generated using the bamCoverage command in deep-

Tools toolkit [46].

TF motif enrichment analysis

scATAC-pro constructs the TF binding accessibility profile for each single cell using

chromVAR with a slight modification. chromVAR computes a gain or loss of accessibil-

ity score for peaks sharing the same motif by comparing accessibility scores of peaks

with similar mean accessibility and GC contents. To speed up this analysis, in

scATAC-pro, instead of using the whole peak-by-cell matrix, we select the top 30% of

most variable peaks. This reduces the running time of chromVAR by eight times com-

pared to using the full matrix of the PBMC data. We then identify TFs that have sig-

nificantly higher accessibility in one cell cluster than in the other cell cluster by

conducting a two-sample Wilcoxon test. TFs that have significantly higher chromatin

accessible in each cell cluster are saved in a text file and visualized using a heatmap.

TF footprinting analysis

We use Hint-ATAC [31] to perform TF footprinting analysis, which is the first tool de-

signed specifically for ATAC-seq data. Due to the sparsity of scCAS data, it is impos-

sible to predict TF footprints at a single-cell level, but feasible at cell cluster level since

the read depth per cluster is comparable to bulk ATAC-seq data. We also use Hint-
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ATAC to do differential TF footprinting analysis, by which users can find differentially

bound TFs between any two cell clusters or between one cell clusters and the rest of

the cell clusters.

Summary reports

scATAC-pro automatically updates the summary report after data processing, and

downstream analyses were done using custom R scripts. If some analysis modules are

not executed, scATAC-pro still generates the report with results of the executed

modules.

Clustering methods used in published tools for scCAS data

Louvain algorithm implemented in Seurat v3

The Louvain algorithm for community detection is a popular algorithm for detecting

communities in a network. It maximizes a modularity score for each community. We

used the FindCluster function in Seurat to implement this algorithm, which takes data

in reduced dimensions as the input (the first 30 PCs as default). The function requires

a resolution parameter to control the number of clusters indirectly, where a larger reso-

lution parameter results in a larger number of clusters.

cisTopic

cisTopic takes the binary peak-by-cell count matrix as the input and conducts latent

Dirichlet allocation (LDA) analysis to produce topic-by-cell and peak-by-topic probabil-

ity matrices. The LDA is also a method of dimensionality reduction; therefore, different

numbers of topics can be used. We run cisTopic with 10, 20, 30, 50, 80, and 100 topics

and then use the seleModel function to select the best number of topics. Hierarchical

clustering (hclust function in R) is then performed on the topic-by-cell probability

matrix.

chromVAR

chromVAR computes a gain or loss of accessibility score for peaks sharing the same TF

motif by comparing accessibility scores of peaks with similar mean accessibility and GC

contents. A TF-by-cell z-score matrix is then calculated, indicating the enrichment of

each TF at peaks for each single cell. We conduct PCA on the TF-by-cell z-score

matrix. Hierarchical clustering is performed on the first 20 PCs.

scABC

scABC weighs cells by the number of distinct reads within +/− 500-kb peak regions

and then applies a weighted K-medoids clustering to partition the cells into clusters.

LSI

LSI first filters out peaks that are accessible in fewer than 150 cells and then normalizes the

filtered peak-by-cell matrix using the TF-IDF algorithm. The singular value decomposition

(SVD) is performed, and the hierarchical clustering is run on the 2nd to 10th PCs.
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SCRAT

SCRAT constructs features as either peaks or regions of interest (e.g., gene sets or genomic

regions overlapping with TF motifs). Dimension reduction is done on PCA or tSNE, and

multiple conventional clustering methods, including mclust, hierarchical clustering, and K-

means clustering, can be applied to the reduced dimensions. Here, we implemented the de-

fault setting, by which the raw peak-by-cell matrix is normalized by library size and then

PCA is conducted, the final clustering is done on the first 20 PCs using the mclust algorithm.

Simulated data with different levels of noise using bulk ATAC-seq data

We generated simulated data with different levels of noise from the bulk ATAC-seq data

of 13 primary human blood cell types [8] using the same strategy as that in [47]. We

started with the bulk peak-by-cell count matrix and generated count for peak i in cell type

t using a binomial distribution binomð2; ptiÞ, where pti ¼ ð1−qÞrti=2þ qn=2k, rti is the per-

centage of all reads overlapping with peak i in cell type t, k is the total number of peaks in

the bulk data, n is the number of simulated fragments, and q is a parameter specifying the

level of noise; q = 0 indicates no noise while q = 1 indicates the highest level of noise.

Simulated data by subsampling from bulk ATAC-seq data

The single-cell data were simulated by resampling bulk ATAC-seq data described

above. Specifically, we simulated data for 200 cells for each of the 13 cell types. For

each cell, 10,000 reads were randomly selected from the mapped reads in the bulk data.

Peaks were called using MACS2 using the aggregated single-cell data. The performance

of each method was evaluated using the adjusted rand index and bulk sorted cell types

as the ground truth (Additional file 1: Fig. S2). To investigate the robustness of each

method in the presence of varying cell type compositions, we sampled a total of 1000

cells from the 13 cell types with different cell type compositions. The fractions of differ-

ent cell types were generated based on the Dirichlet distribution (with shape parameter

alpha = 3 for each component). For each clustering method, the default parameters

were used, except for the number of clusters, which was set to 13.
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