Wang et al. Genome Biology (2020) 21:60
https://doi.org/10.1186/s13059-020-01959-8

The genome evolution and domestication

of tropical fruit mango

Genome Biology

?.)

Check for
updates

Peng Wang' '@, Yingfeng Luo**", Jianfeng Huang'", Shenghan Gao**', Guopeng Zhu?, Zhiguo Dang',
Jiangtao Gai', Meng Yang®, Min Zhu', Huangkai Zhang®, Xiuxu Ye', Aiping Gao', Xinyu Tan*?, Sen Wang®,
Shuangyang Wu?, Edgar B. Cahoon?, Beibei Bai'“, Zhichang Zhao', Qian Li', Junya Wei', Huarui Chen’,
Ruixiong Luo', Deyong Gong®, Kexuan Tang’, Bing Zhang®, Zhangguang Ni°, Guodi Huang'®,

23,11*

Songnian Hu and Yeyuan Chen'*

Abstract

Background: Mango is one of the world’s most important tropical fruits. It belongs to the family Anacardiaceae, which
includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many
species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis.

Results: We generate a chromosome-scale genome assembly of mango, providing a reference genome for the
Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in
mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes
that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global
temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and
particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of
urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial
varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast
Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in

genomes.

Conclusions: Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism
are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol
biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in
commercial varieties, and shows distinct genetic background of landraces.
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Background

Mango, commonly known as the “king of fruits,” is one of
the most popular fruits in the world [1]. Mango is widely
cultivated in tropical and warmer subtropical areas in the
world. India, China, and Thailand are the top three
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producers. In 2016, the global production of mango was
46.5 million tons, which ranks as the fifth most produced
fruit crop worldwide (http://www.fao.org/faostat/). Mango
fruits are mainly consumed fresh, while some are proc-
essed into products like nectar, juice, jam, and powder [1].
The fruits demonstrate attractive visual appearance and
offer a favorable sensory experience to consumers, making
them growingly popular among world consumers. Never-
theless, like many other Anacardiaceae plants such as poi-
son ivy, sumac, and cashew, mango produces phenolic
compounds (e.g., urushiols) that can induce contact
dermatitis, an undesired quality for fresh mango consump-
tion [2]. The biosynthetic pathways for these compounds
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remain largely uncharacterized but are believed to arise
from initial polyketide synthase-like reactions mediated by
chalcone synthase for phenolic ring formation [3].

Mango is the member of the genus Mangifera in the
Anacardiaceae family [4]. Within this genus, most, if not
all, cultivated mangoes belong to the species Mangifera
indica, although dozens of other Mangifera species pro-
duce edible fruits [5]. It has a domestication history of
over 4000 years within a large area in the Indo-Burmese
and Southeast Asia regions but spreads to other parts of
the world since the fourteenth century [6, 7]. Traditional
varieties have largely been produced through vegetative
propagation by grafting of mutated branches, while
mango cross-breeding has become dominant since its
introduction to the USA, Australia, and China, produ-
cing a number of cultivars that have established world
popularity [8]. However, considering its long cultivation
history and complex genetic backgrounds, it is still
largely unknown if there are varieties that can serve as
genetic resources different from germplasms currently
preserved and produced.

Despite the availability of cytogenetics data [9], tran-
scriptome data [10, 11], and genetic maps [12, 13],
whole-genome resources for mangoes are still publically
unavailable, which creates difficulties in genomic-based
trait improvement and understanding of specialized
Anacardiaceae biochemistry underneath. To conquer
this, we sequenced and assembled the chromosome-level
genome of mangoes. Our analysis reveals that the
genome is highly heterozygous, and it has experienced
extensive evolution and domestication which may lead
to uniqueness and diversity of mango qualities.

Results

Genome assembly and annotation

Prior to deep sequencing, a genomic survey of 22 mango
varieties with represented genetic background uncovered
universally high levels of genome heterozygosity (Add-
itional file 3: Table S1). Among them, the genome of the
variety Alphonso, a traditional Indian cultivar, demon-
strated a relatively low heterogeneity rate and was thus
chosen for whole-genome sequencing and de novo
assembly (Additional file 1: Supplementary Notes). The
genome was de novo assembled based on single-
molecule subreads generated by PacBio Sequel II plat-
form, improved by a combination of paired-end and
mate-paired short reads, and incorporated with Hi-C se-
quencing for scaffolding (Additional file 4: Table S2).
The assembled scaffolds were further anchored to gen-
etic maps with 20 linkage groups (pseudomolecules).
The final assembly consists of 252 scaffolds, which spans
392.9 Mb in total (Table 1), with the scaffold N50 size of
17.6 Mb and contig N50 size of 3.5 Mb, and with 90.1%
anchoring to the linkage groups [12], including 20
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Table 1 Statistics for the mango genome assembly and

annotation

Assembly and annotation feature Statistics
Assembly size 3929 Mb
% of assembly in 20 pseudomolecules 91.1%
Number of scaffolds 252
Scaffold N50 size 17.6 Mb
Number of contigs 420
Contig N50 size 3.5Mb
CEGMA complete percentage in assembly 95.1%
BUSCO complete percentage in assembly 95.9%
Predicted protein-coding genes 41,251
% of genes in 20 pseudomolecules 90.7%

pseudomolecules with sizes ranging from 12.2 to 29.4
Mb (Additional file 5: Table S3 and Additional file 1:
Supplementary Notes); 391.7 Mb of 392.6 Mb (99.8%)
was covered by >50 PacBio subreads. Ninety-eight per-
cent of the assembled RNA-Seq transcripts were mapped
with single scaffolds with aligned length longer than 80%
(Additional file 6: Table S4). Of the 6594 genetic
markers from published linkage map [12], 6543
(99.2%) were reliably detected in the assembly, and
the majority of adjacent markers were located within
a short distance in genome sequence assembly (Add-
itional file 2: Figure S1), confirming that the order
and orientation of the scaffolds are largely correct.
Furthermore, 95.1% of the ultra-conserved core
eukaryotic genes based on Core Eukaryotic Genes
Mapping Approach (CEGMA) analysis [14] and 95.9%
of the single-copy orthologs based on the Benchmark-
ing Universal Single-Copy Orthologs (BUSCO) ana-
lysis [15] could be completely detected in the
assembly, further confirming the continuity and qual-
ity of the assembled genome.

Together, we generated a highly contiguous assembly
of the heterozygous mango genome. Repetitive se-
quences account for 40.5% of the mango genome, of
which 39.9% was annotated as retrotransposons (Fig. 1;
Additional file 7: Table S5). After masking the repetitive
sequences, we carried out a combination of de novo
gene  prediction, homology  comparison, and
transcriptome-based annotation, as well as quality con-
trol to annotate coding genes on the genome (Add-
itional file 1: Supplementary Notes). In total, 41,251
protein-coding genes were annotated (Additional file 8:
Table S6, Additional file 9: Table S7, and Additional file 2:
Figure S2), of which 37,424 (90.7%) could be located
onto the 20 pseudomolecules. In addition, a total of 599
tRNAs, 459 microRNAs, 560 small nuclear RNAs, and
275 ribosomal RNAs were identified in the mango
genome.
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Fig. 1 Overview of the mango (Mangifera indica) genome assembly. The outer layer of colored blocks is a circular representation of the 20
pseudomolecules, with thick mark labeling each 5 Mb. The distribution of genetic markers mapped to mango chromosomes is shown in (A).
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Repeat density (B) and gene density (C) are calculated in 100-kb windows sliding in 10-kb steps. Tandem duplicated genes are displayed in (D).
Genes involved in disease resistance (E), pigment-related metabolisms (F, yellow lines represent carotenoid synthesis genes, green lines represent
chl metabolism genes and red lines represent anthocyanin synthesis genes), lipid metabolism (G, red lines represent genes participant in the
synthesis of triacylglycerol, sphingolipid, phospholipid and mitochondrial lipopolysaccharide, phospholipid signaling, and lipid trafficking; the
green lines represent the rest lipid metabolism genes) and photosynthesis related genes (H, red lines represent photosystem genes, black lines
represent the Calvin cycle genes, and green lines represent genes participant in sucrose and starch synthesis, glycolysis, and Krebs cycle) are also
displayed. Transcription factors are shown in (). The innermost layer shows inter-chromosomal synteny, with the red links representing syntenic

blocks retained after a recent WGD in mango genome, and the gray links representing homologs as results of older WGD

Genome evolution

To investigate the evolutionary history of mango genome,
we performed a gene family clustering using mango and
11 other representative angiosperm species, including 2
species in the same order Sapindales (Citrus sinensis [16]
(sweet orange) and Dimocarpus longan [17] (longan)), 7 in
the same Eudicot clade (Carica papaya (18], Arabidopsis
thaliana [19], Theobroma cacao [20], Citrullus lanatus
[21], Prunus persica [22], Vitis vinifera [23], and Solanum

lycopersicum [24]), and 2 outgroup species (Oryza sativa
[25] and Amborella trichopoda [26]) (Additional file 10:
Table S8). From the result, 248 single-copy families were
used for phylogenetic tree construction and species diver-
gence time estimation, which placed mango as a sister
species in adjacent with sweet orange and longan, which is
consistent with published results [27] (Fig. 2a). We esti-
mated that mangoes diverged from the ancestor of longan
and sweet orange ~ 70 million years ago (MYA).
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Fig. 2 A recent whole genome duplication and resulted gene fate in mango genome. (a) Inferred phylogenetic tree across 12 plant species
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expressional correlation coefficient of syntenic homologousgene pairs retained from recent WGD and ancient WGD in mango genome. (d)
Enrichment ofmetabolic genes retained after the recent WGD of mango genome. The vertical dashed linerepresents average percentage of
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To detect whole-genome duplications (WGD) in man-
goes, we performed a genomic synteny analysis based on
the self-comparison of mango coding genes, which identi-
fied 41 large collinear blocks with at least 50 homologous
gene pairs. Among them, 38 collinear blocks have similar
(0.3-0.4) median synonymous substitutions values (Ks) for
homologous gene pairs (Additional file 11: Table S9).
These collinear blocks were distributed across the 20 pseu-
dochromosomes, spanning 50.7% length of chromosomes
(181.3 Mb/357.7 Mb) and covering 62.1% of protein-
coding genes (23,260/37,424) (Additional file 12: Table
S10), which strongly supports a recent WGD event in
mango genome. An exemplary illustration of co-synteny is
shown between chr. 3 and 7 (Fig. 3e). In contrast to the
findings of biased fractionation following WGD in maize
[28] or Arabidopsis [29], there was no apparent difference
for region lengths or gene density between the mango col-
linear blocks (Additional file 11: Table S9), indicating that
the mango-specific WGD might be an auto-diploidization
event. The calculation of Ks for mango vs. orange, mango
vs. longan, and orange vs. longan collinear orthologs

indicated that the WGD event occurred after the split of
mango lineage and the ancestor of orange and longan
(Fig. 2b); no WGD event was detected after the split in ei-
ther genome of sweet orange and longan (Additional file 2:
Figure S3). This WGD event in the mango genome might
date back to ~ 33 MYA by mapping the WGD event onto
the phylogeny.

Within the 5369 homologous gene pairs retained post-
WGD, 508 gene pairs are transcriptional factors, account-
ing for 9.6% of the retained genes, more than the average
level in the genome (5.6%, 2342/41,251). Consistently,
Gene Ontology analysis revealed the gene pairs retained
post-WGD are enriched in the “DNA binding” category of
molecular function (GO:0003677, DNA binding, p = 4.42¢
-13) (Additional file 13: Table S11). These results suggest
the preferred retaining of essential and regulatory genes
after WGD in the mango genome, consistent with the
dosage hypothesis that genes with large number partners
are preferred to be retained after WGD [30]. In addition,
the expressional similarities analysis on multiple tissues
found that the gene pairs retained from recent WGD
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Fig. 3 Expansion of genes in metabolism of flavonoids, lipids, chlorophylls and terpenoids. (@) Gene family analysis showing expansion of genes
in flavonoid biosynthesis, lipid metabolism, chlorophyll metabolism and isoprenoid biosynthesis, including CHS family. Numbers showing in cells
represent genes counting of each family in each species. (b) Gene structure of a typical CHS peptide (here shows mango gene Mi07g07250). The
blue and red blocks represent two conserved domains PF00195.15 and PF02797.11, respectively, and the red circles suggest three conserved residues,
Cysteine, Histidine and Asparagine, respectively, within the sequence. (c) Topology of phylogenetic tree of genes containing conserved domains
PF00195.15 and PF02797.11 from mango, sweet orange and Arabidopsis. CHS-encoding genes are classified in a distinctive class, here
named CHS. (d) The expression pattern of CHS genes in mango cultivars. Unexpressed genes were not showed in this figure. (e)
Macrosynteny and microsynteny among mango chr.3, orange chr. 9 and mango chr. 7. Top: macrosynteny patterns among mango chr.3,
orange chr. 9 and mango chr. 7. Co-synteny regions are linked with grey belts, except synteny of the regions harboring CHS genes,
which are highlighted with a red belt. Bottom: microsynteny of the regions harboring CHS genes among the three chr. The CHS genes

event were significantly greater than those retained from
ancient WGD (Additional file 14: Table S12 and Fig. 2c).
The omega values (Ka/Ks) for most of collinear homolo-
gous gene pairs were smaller than 1 (Additional file 2:
Figure S4), indicating that protein neofunctionalization
may not be the predominant status for the retained genes
from recent WGD.

Mango-specific recent WGD may also impact the
different metabolism categories with distinct contri-
butions. For instance, the percentage of retained
gene from recent WGD in energy metabolism, glycan
biosynthesis and metabolism, carbohydrate metabol-
ism, and lipid metabolism was about 48.4-53.8%,
much greater than the genome average 30.1%
(Fig. 2d). Notably, genes involved in photosynthesis
were preferentially retained after recent WGD
(53.6%), especially for genes that participated in the
Calvin cycle (56.1%) (Additional file 15: Table S13).
Half of the sugar metabolism-related genes were the
results of recent WGD, and the majority of pathway

members in sucrose synthesis (7/10) and starch syn-
thesis (8/9) have recent WGD-retained duplicated
genes (Additional file 16: Table S14). These findings
indicated recent WGD-retained genes may preferen-
tially take participant in the assimilation, storage,
and utilization of CO,. Lipid genes were also found
to be preferentially retained post-WGD (47.9% vs.
30.1% in general). Interestingly, genes of lipid-
saccharide conjugate biosynthesis were preferentially
retained, including genes in galactolipid, sphingo-
lipid, and liposaccharide metabolisms. In addition,
genes related to lipid trafficking and phospholipid
and triacylglycerol biosynthesis were preferentially
retained in the mango genome (Additional file 17:
Table S15). Isoprenoid synthesis genes are also pref-
erentially retained, especially for the genes involved
in synthesis of precursor isopentenyl diphosphates
(IPP), that is, most of the genes in the cytosolic
mevalonate (MVA) pathway (4/6) and plastidic 2-C-
methyl-D-erythritol-4-phosphate (MEP) pathway (6/7)
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have duplicated copies retained from recent WGD
(Additional file 18: Table S16).

Gene expansion
Gene family analysis among 12 plant species provided
hints for a better understanding of the genetic basis of
mango biology. Among the 3791 gene families with at
least 20 members across 12 plants, we detected expan-
sion of 2249 gene families and contraction of 491 gene
families in the mango genome (Fig. 2a and Add-
itional file 19: Table S17). High ratio of gene expansion
to contraction (4.5x) in the mango genome is in striking
contrast to sweet orange (0.6) and longan (0.4). Among
the 12 plants we investigated, other species with recent
WGD events (<80 MYA), including Arabidopsis, rice,
and tomato, also demonstrated higher expansion/con-
traction ratio than other species, but the highest ratio
was in mango genome, reflecting a relatively recent oc-
currence of the WGD event in the mango genome. Gene
Ontology (GO) enrichment analysis showed that the sig-
nificantly expanded gene families in mangoes are
enriched in basic biological functions, primarily in phos-
phorylation process and nucleotide-binding function;
also enriched are genes in response to biotic stimulus
response (p < le-15) (Additional file 20: Table S18).
Considering that mango individuals suffer from dis-
eases through all stages of their life cycle that result in
rot, necrosis, spots, etc., we analyzed the gene compos-
ition and phylogeny of disease resistance-related gene
families in the mango genome and compared them to
the phylogenetic close plants. In total, we identified 437
genes encoding nucleotide-binding site and leucine-rich
repeat (NBS-LRR), as well as 296 receptor-like genes
and 13 genes of lipoxygenase. Among these gene fam-
ilies, receptor-like genes, NBS-LRR-encoded genes expe-
rienced expansion in mango genome compared to sweet
orange genome (Additional file 21: Table S19).

Expansion of CHS genes: relation to specialized phenolic
biochemistry

Among the expanded families, several mango gene fam-
ilies are involved in flavonoid biosynthesis, lipid metabol-
ism, chlorophyll biosynthesis, and isoprenoid synthesis
(Fig. 3a). Notable among this expansion is chalcone syn-
thase gene (CHS) family. Our results show that the mango
CHS gene family is composed of 23 members in the
mango genome, whereas only 12 and 4 were identified in
sweet orange and Arabidopsis, respectively (Fig. 3a). The
CHS family members were confirmed by the identification
of the genes containing conserved domains PF00195.18
and PF02797.14 (Fig. 3b). Phylogenetic analysis showed
that the genes in CHS family split into 2 independent
groups, one of which clustered the majority of the mango
CHS family members (19 of 23) together with a
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Arabidopsis gene that has been demonstrated to be a bona
fide CHS gene [31]; the remaining 4 mango genes were
clustered with Arabidopsis genes encoding CHS-like
(CHSL) hydroxyalkyla-pyrone synthases [32] (Fig. 3c).
Based on transcriptomic analyses, the expression of CHS
genes were generally higher than that of CHSL members
in mangoes (Fig. 3d).

Mango produces urushiols and related anacardic acids,
characterized by an aromatic ring linked to a hydrocar-
bon tail of differing chain lengths and unsaturation [2].
Urushiols are characteristic of many Anacardiaceae spe-
cies like poison ivy, sumac, cashew, and mango. Current
knowledge is limited on the mechanisms of urushiol bio-
synthesis, but the first committed step in the pathway is
believed to be catalyzed by CHS [3]. CHS also generates
the aromatic ring of anthocyanins, the red fruit peel pig-
ment found in many consumer-preferred mango var-
ieties (e.g., Sensation and Alphonso) [33] (Fig. 4a and
Additional file 2: Figure S5). Expansion of CHS genes in
mango genome highlights its important roles in the evo-
lution of the Anacardiaceae clade. To shed light on roles
of the CHS group in mangoes, we further analyzed the
sequence, phylogeny, expression, and synteny character-
istics of these genes in the mango genome.

Phylogeny further split the CHS group genes into
three clades, namely clades I, II, and III (Fig. 3c, Add-
itional file 2: Figure S6, Figure S7 and Figure S8). Three
and two CHS genes are harbored in clades I and II, re-
spectively. Only Mi14G0074300 and Mil14G0151200 had
evident expressions, both showing remarkably higher ex-
pression in peel than in flesh in the red-peel varieties
Alphonso and Sensation, while not significant expression
was observed in mature fruits of yellow-peel variety
Hongyu and green-peel variety Guire 82 (Fig. 3d). Con-
sidering the red color of the mango peels is attributed to
the accumulation of anthocyanins, the expression pat-
tern suggests the role of CHSs in clades I and II in
anthocyanin biosynthesis in mangoes. A majority of CHS
genes (14 of 19) are in clade III, in which only one sweet
orange homolog and one Arabidopsis homolog are
present, indicating that the extensive expansion of the
CHS genes mainly occurred among the clade III mem-
bers in mangoes. We asked if the expansion is a widely
occurring event in Anacardiaceae, and retrieved CHS ho-
mologs from genomes of pistachio (Pistacia vera) and
Sclerocarya birrea, and those from assembled contigs of
publically available transcriptomes of poison ivy (Toxico-
dendron radicans) and sumac (Rhus chinensis), two
other Anacardiaceae species producing urushiols (Add-
itional file 3: Table S20) [34, 35]. Phylogeny clearly
showed the contigs together with mango CHSs are
clustered into three clades, and the majority of contigs
are grouped with mango clade III genes, in agreement
with mango peptide phylogeny (Additional file 2: Figure
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S7 and Figure S8). The results suggested the extensive
expansion of CHS was a commonly occurring event in
Anacardiaceae, which was originated from a single
CHS copy.

Many clade III genes (12 of 14) are located in two syn-
tenic clusters in the mango genome, a result of the re-
cent WGD, which is syntenic to a region in Chr. 9 of
sweet orange genome with a single CHS gene
(Cs9g11190), suggesting the WGD medicated gene ex-
pansion occurred after the split of Acanardiaceae and
Rutaceae (Fig. 3e). Besides the regions harboring CHS
genes, the co-synteny can be found among the majority
of the chr. 3 and chr. 7 of mango and chr. 9 of sweet or-
ange (Fig. 3e). Each cluster has several CHS genes, which
are likely results from tandem duplications (Fig. 3e).
Gene structure and sequence identity revealed that
Mi03g0182300 and Mi07g0142900 show higher similar-
ity with the sweet orange CHS gene (Cs9g11190), likely
serving as ancestral genes of the tandem duplications
(Additional file 24: Table S22). All the three sites key to
the CHS activity are conserved among the mango CHS
peptides (Additional file 2: Figure S9).

Despite extensive duplications, class III CHS genes in
early stages of tandem duplication tended to express
highly compared to the products of later duplications
(Fig. 3d). Only two genes showed evident expressions in
fruits, and they exhibited ubiquitously higher expression
in peels than in flesh of the varieties with different colors
when ripe, indicating that the CHS genes in clade III are
not involved in anthocyanin biosynthesis in mangoes.

Moreover, urushiols are ubiquitously more abundant in
peels than in flesh in different mango varieties, as there
are abundant resin canals where urushiols are produced
[36]. Ubiquitous higher expression of the clade III CHS
genes in peels in different mango varieties suggest their
roles in regulating biosynthesis of urushiols and related
phenols in mangoes [37, 38] (Fig. 3d).

Mango fruit peel pigmentation
During the process of fruit development and ripening,
mango fruit peels usually undergo dramatic, mild, or no
color changes, resulting in combinations of yellow, red
and green pigmentation that is mostly variety-dependent.
For example, fruits of the variety Sensation undergo rapid
color changes, resulting in light to dark red coloration of
peels in the process of fruit development (Fig. 4a). Con-
sistent with the long-term understanding that red color of
fruits is a result of anthocyanin accumulation, most genes
in the anthocyanin biosynthesis pathways exhibited tre-
mendously higher expression levels in red-peel Sensation
than in peels of red pigment-free Hongyu and Guire-82
fruits (Fig. 4b). We also observed remarkably higher ex-
pression levels of most anthocyanin biosynthesis genes in
Sensation fruit peels than in flesh, consistent with the
observations in the leaves that the light stimulated the
synthesis of anthocyanin and the accumulated antho-
cyanin protect plants against the damage of strong light
[39, 40] (Fig. 4b).

During the fruit ripening, the fruit peel color of some
varieties turns from green to yellow, a process called
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degreening. This is virtually a process of chlorophyll deg-
radation mediated by Chl catabolic genes (CCGs) [41].
Hongyu is a typical variety whose fruits experience degre-
ening process and exhibit yellow-peel, while Guire82 is a
Chinese cultivar derived from yellow-peel Neelum and
represents atypical stay-green peel (Fig. 4a). No major dif-
ferences in the expression of CCGs were detected between
the green-peel Guire82 and the yellow-peel Hongyu
during ripening (Fig. 4c).

Mango germplasm diversity

We selected 48 M. indica accessions and 4 additional
species of Mangifera for whole-genome resequencing,
including 35 typical cultivars representing the history of
mango breeding in different areas of the globe and 13
landraces germplasms collected from remote areas in
South China. Across the 52 accessions plus the variety
Alphonso, a total of 21.04 million high-confidence vari-
ants, or 53.9 variants per kilobyte in average, were iden-
tified. They include 19,433,034 SNPs, 635,320 insertions,
and 972,376 deletions; 4,297,808 variants (20.4%) were
located in genic regions, including 542,626 synonymous,
828,252 nonsynonymous, and 2,849,557 intronic vari-
ants. Among them, 69.1% have a minor allele frequency
of less than 10%. This tendency was even greater for
functional variants, as the frequencies of nonsense muta-
tion sites were 0.15% with MAF < 10%, while its value
was decreased to 0.03% with MAF >90% (Add-
itional file 25: Table S23).

As expected, all the mango varieties form a group dis-
tinct from the four other Mangifera species (Fig. 5a, b).
Phylogenetic inference splits the mango varieties into
two distinct groups, with indigenous varieties from
Southeast Asia residing in one group and traditional var-
ieties from India in the other. This coincides with the
long-proposed two centers of domestication, one in
India and the other in continental Southeast Asia [42,
43] (Fig. 5b). The overall Fst between Mangifera wild
relatives and Southeast Asia/India varieties (0.1747/
0.1856) is higher than that between Southeast Asia and
India varieties (0.1358). Furthermore, the USA varieties
are more closely related to India varieties than to South-
east Asia varieties, agreeing with previous analysis using
25 microsatellite loci [42] (Fig. 5b, c). Landraces col-
lected in South China were clustered together with
South East germplasms (Fig. 5b), some of which expe-
rienced allelic admixture (k=3, 4; Fig. 5c). Although
grouped with India germplasms, most of the commercial
varieties experienced allelic admixture (Fig. 5c). India
and Southeast Asia varieties have a comparable level of
genetic diversity () (0.0084 and 0.0094) as that of other
Mangifera species (0.0094). The regions of high  values
in the mango genome coincide with highly repetitive
areas (i, ila—iic; Fig. 5d). No significantly enriched
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functional roles were observed in genetic diversity-
declined regions compared between Mangifera wild rela-
tives and India type/Southeast Asia type with different
parameters.

Despite the widespread admixture, inbreeding played
important roles in the mango breeding history. The values
of the inbreeding coefficient and cumulative length of runs
of homozygosity (ROH) varied within different cultivars
(Additional file 26: Table S24 and Additional file 2: Figure
S10). As expected, the admixture of both the Southeast
Asia and India germplasms have lower inbreeding coeffi-
cient and small amounts of ROH. Interestingly, we found
the length of ROH was related to genomic heterozygous
rates in mango cultivars (Additional file 2: Figure S11).
The Southeast Asia germplasms have a higher inbreeding
coefficient and have more regions of runs of homozygosity
(ROH). Three India and USA germplasms close to the
variety Alphonso have the largest inbreeding coefficient.
The excess of ROH by inbreeding is the reason why
Alphonso have a lower level of heterozygosity. The USA
cultivar Irwin also has larger regions of ROH, suggesting
the existence of inbreeding in Irwin breeding.

Discussion

A high-quality reference genome for mangoes can facili-
tate mango molecular breeding and evolutionary studies
of Anacardiaceae. The mango genome is highly hetero-
zygous and also experienced a recent WGD event, ren-
dering substantial challenges for mango genome
assembly [44]. Sequencing technologies producing long
reads have facilitated the recent assembly of highly het-
erozygous genomes, such as those of durian [45], oak
[46], and Gnetum montanum [47]. We addressed the is-
sues of high heterozygosity and WGD primarily by using
long (PacBio) reads, in association with NGS sequencing,
Hi-C mapping, and a high-density integrated linkage
map, through which we have produced a chromosome-
level genome assembly for mango (Mangifera indica).
To our knowledge, this is the first and most complete
genome assembly of mango. The genome assembly
provides a useful resource for mango breeding and also
is valuable for understanding the biochemistry and
evolution of specialized metabolism for urushiols and
related phenols in Anacardiaceae.

WGD events, or polyploidization, occurred throughout
the routes of plant evolution, which are important drivers
for specialization and emergence of novel traits and
functions [48-51]. Consequences of WGD offer genetic
preconditions for successful domestication which is
responsible for the advent of many crops [52]. The recent
WGD in mango genome (~ 33 MYA) occurred long after
the split of Anacardiaceae from Rutaceae and Sapindaceae
(~70 MYA based on our results) and even after the advent
of the family Anacardiaceae (54.8-74.9 MYA) [53, 54].
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Fig. 5 Genomic diversity of M. indica varieties and relatives within Mangifera. 49 M. indica germplasms and 4 otherspecies in the genus of
Mangifera were sampled for the analyses. (@) PCA analysis of the samples using SNP markers. The three groups indicated by phylogenetic (b) and
STRUCTURE (k=3) (c) analyses were circled, respectively. Germplasms with different backgrounds are represented with dots with different shapes
and colors. (b) Neighbor-joining phylogenetic tree of the samples in polar layout based on SNPs. Clades of the three major groups are indicated
with different colors as indicated in STRUCTURE analysis (k=3). Tips of outgroup germplasms are indicated with green hollow blocks. Tips of
traditional and commercial varieties are labeled with filled rounds, and those representing landraces are suggested as hollow circular forms.
Traditional varieties and commercial cultivars without admixture are labeled in red, and germplasms representing Southeast Asia varieties and
landraces are in yellow, while those with allele admixture are in blue. (¢) STRUCTURE analysis of the samples, with each color representing one
population, and the length of each color segment in each vertical bar representing the proportion contributed by ancestral populations. On the
right is assumed number of clusters (k), and below is the name or origin of the samples. (d) Circos demonstration of genetic diversity. Outer circle
represents 20 pseudo-molecules of mango genome. i, contents of repetitive elements; iia- iic, nucleotide diversity (1) of other Mangifera species,

varieties of Southeast Asia and India germplasms, respectively. iiia-iiic, population differentiation (Fst) levels of other Mangifera species vs.
germplasms of Southeast Asia, other Mangifera species vs. India germplasms, and those of Southeast Asia vs. India, respectively

Mango belongs to the genus Mangifera which can be classi-
fied under the tribe Anacardieae. Despite the availability of
molecular systematics data of Anacardiaceae [55], a detailed
molecular clock dating of the species within the family is
lacking, and no other chromosome-level Anacardiaceae
genome is currently available [56], which hamper our de-
tailed estimation of WGD event time. However, we ob-
served preferential post-WGD retaining of duplicated genes
involved in energy metabolism, such as photosynthesis and
lipid biosynthesis. Considering that the recent WGD event
occurred within the period of drastic decline of atmos-
pheric carbon dioxide concentrations resulting in a descent
into icehouse climate [57, 58], it is appealing to hypothesize
that the preferential retaining of the duplicated energy
metabolism genes is the result of adaptive evolution to
cope with the decline of carbon dioxide as an essential
substrate for carbon fixation and shrinking capability of
the plant photosynthesis and energy assimilation by
icehouse climate.

Urushiols and related phenols (e.g., anacardic acids)
are produced in many Anacardiaceae plants, with a 15-
or 17-carbon side chain that is responsible for allergic
skin rash [36]. These phenols are likely defensive mole-
cules against fungi, insects, and herbivorous vertebrates
[59-61]. Nevertheless, they have the potential for the
treatment of cancer and skin and viral diseases [62].
Phenolic compounds are diverse, and the diversification
of phenols is based on the general phenolic biosynthesis
pathway, in which early genes like chaconne synthase
(CHS) have important contributions to the metabolic
flow of phenols in plants [31]. Extensive expansion of
CHS genes in the mango genome highlights the import-
ant roles of CHS in mango. The expansion before the re-
cent WGD but after the split of Anacardiaceae and
ancestor of Rutaceae and Sapindaceae indicates the CHS
genes might have been expanded in the early stages of
Anacardiaceae emergence. Our results show that exten-
sive duplications lead to a large number of members in
clade III of CHS genes, and, for the highly expressed
genes, they tend to be highly expressed in barks and

peels rather than in the flesh of all the four varieties we
investigated; this is comparable to high accumulation of
urushiols in these tissues in mangoes, suggesting their
important roles in the biosynthesis of urushiols in man-
goes [2, 63, 64]. As urushiols are specific to and com-
monly accumulated in Anacardiaceae to varying levels, it
will be interesting to investigate if CHS genes follow
similar patterns of gene family evolution in other species
when more Anacardiaceae genomes are available which
might help understand the mechanisms and evolution of
the family-specific phenol biosynthesis.

It is widely accepted that there are two centers of do-
mestication: one in India, a majority of which are mono-
embryoonic, and the other in continental Southeast Asia,
most of which are polyembryonic [42, 43]. Mango cultivars
in Florida, USA, are unique, as they have a long history of
breeding, and many of the cultivars are descendants of
Mulgoba, the only one survived among the six grafted
mangoes introduced from India in the late nineteenth cen-
tury [8]. During the past decades, Chinese breeders have
successfully bred several varieties which demonstrate
superior performance. With the availability of high-quality
reference genome and resequencing data, we have an un-
precedented opportunity to closely study genetic compo-
nents and compare mango germplasms with different
backgrounds. This can help clarify relationships of many
mango varieties, on which efforts have been made by other
approaches [8, 42]. Our results show that the mango var-
ieties can be clustered into two groups, coinciding with the
proposed two centers of domestication, and allelic admix-
ture was observed in the genomes of commercial varieties.

Although grouping with Southeast Asia germplasms,
landraces indigenous in China forming distinct clades
and some have clear allelic admixture. These represent
unique genetic resources for future mango breeding
endeavors. Landraces have long been recognized as a
source of traits for improving yield, nutrition, and abi-
otic stress adaptation. They are especially important as
agricultural production is affected by worldwide climate
change [65]. Varieties widely cultivated are facing
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common issues such as alternate bearing, narrow ripen-
ing window, poor fruit quality, and cold sensitivity [2]. It
is essential to broaden the repository of genetic re-
sources by exploring more exotic germplasms. The land-
races in South China represent a valuable resource for
future breeding. However, the agronomic and quality
characters of these landraces are currently poorly under-
stood, and the genetic resources are threatened by mod-
ern agricultural practices and expansion of industries. It
is urgent to proceed with comprehensive studies on
these landraces. We believe these landraces might not be
only germplasms distinct from the mainstream varieties.
The availability of the mango genome lays the ground
for a more thorough survey of landraces, which would
be critical for the improvement of agronomic and quality
traits of current mango varieties.

Conclusions

We have generated a mango genome assembly, which is,
to our knowledge, the first publically available genome re-
source for mangoes. This provides crucial information for
the study of the evolution of not only mangoes, but the
Anacardiaceae family. And this will facilitate the establish-
ment of genome-enabled breeding programs for mango.
We estimated that the mango genome underwent an
event of whole-genome duplication (WGD) about 33 mil-
lion years ago. Interestingly, duplicated genes involved in
photosynthesis and lipid metabolism are preferentially
retained in the mango genome, which likely provides
adaptive advantages to sharp historical decreases of con-
centrations of atmospheric carbon dioxide. Sixty-eight
percent of gene families were expanded in the mango gen-
ome; among them, genes of chalcone synthase (CHS) were
extensively duplicated, which are mostly results of tandem
duplications prior to WGD. Particular CHS genes showed
universally higher expression in peels among mango var-
ieties, which are likely involved in the biosynthesis of uru-
shiols and related phenols, a group of Anacardiaceae-
specific phenols which can induce contact dermatitis.
Two distinct groups of mango varieties through genome
resequencing, with commercial varieties clustered with
India germplasms, which demonstrate allelic admixture.
Although grouped with Southeast Asia germplasms, land-
races indigenous in South China formed distinct clades,
some of which showed admixture.

Methods

Genome survey sequencing

Genome survey sequencing was firstly carried out to iden-
tify mango accessions suited for whole-genome sequen-
cing. Twenty-two mango cultivar/landrace samplings
from the Chinese Academy of Agricultural Sciences Trop-
ical Resources Institute of tropical crop varieties (Hainan,
China) were sequenced with Hiseq2000 at about 20x
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genomic coverage. Leaf genomic DNA isolation, paired-
end library construction, and sequencing were carried out
as described in our previous publication [66]. Genome
size, heterozygosity, and repeat content were estimated
with a k-mer method using Jellyfish (v2.1.3) [67]. Of the
22 sequenced mango cultivars/landraces, Alphonso has a
relatively smaller genome size, lower heterozygosity rate,
and repeat content. Considering that Alphonso has a clear
breeding history and was used as primary breeding germ-
plasm, we chose it as the material for the whole-genome
short-gun sequencing using a single molecular sequencing
strategy. Meanwhile, GenomeScope [68] and ALLPATHS-
LG (v52488) [69] were also used to investigate the genome
profile of Alphonso cultivar. The estimated genome size
of Alphonso cultivar is ~ 360 Mb, and the estimated het-
erozygosity rate is ~ 1.5%. The raw reads of genome sur-
vey sequencing are deposited in the NCBI Sequence Read
Archive under project ID PRJNA487154 [70]. For add-
itional information, see Additional file 1: Supplementary
Notes.

Transcriptome data production and analysis

Total RNA was extracted from mango tissues using TRI-
zol. Subsequent mRNA extraction and mRNA-seq librar-
ies were conducted using Kapa transcriptome kits and
sequenced with Hiseq3000. Qualified reads ware mapped
to mango assembly guided by gene annotation models
using hisat2 (v2.0.4), and the expression level for each
gene was performed by Stringtie (v 1.2.3) [71]. Pearson
correlation coefficient for each gene pair was calculated
with custom PERL scripts. The raw data of transcriptomic
sequencing are deposited in the NCBI Sequence Read
Archive under project ID PRINA487154 [70].

Genome sequencing and assembly

The single-molecule long reads were generated from 1 cell
run on the PacBio Sequel II Platform. A total of 86.5-Gb
long reads (~ 240x based on estimated 36) were generated
and de novo assembled using CANU (version 1.8) [72].
The pair-end and mate-pair short reads were generated by
HiSeq2000 and MiSeq platform, including 2 TruSeq PCR-
free pair-end libraries with an insert size of 180bp and
500 bp and 4 Nextera mate-pair libraries with an insert size
of 3 kb, 5 kb, 8 kb, and 10 kb. The short reads were also in-
dependently assembled by ALLPATHS-LG (v52488) [69]
to investigate the genome profile including estimated gen-
ome size and SNP rate for cross-checking. The initial Canu
assembly was corrected using a combination of long and
short reads with Pilon (v1.23) [73]. Duplicated assembled
haploid contigs were purged using PurgeHaplotigs [74],
which reduced the assembly from 624.85 to 363.08 Mb. A
Hi-C library was constructed and sequenced on the Illu-
mina NovaSeq platform for chromosome-level scaffolding.
With the Hi-C library, the purged contigs were anchored
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into super-scaffolds using Juicer [75] and 3d-dna pipeline
[76]. ALLMAPS (version 1.0) [77] was used to anchor the
Hi-C super-scaffolds with unique mapped genetic markers
from the previous published mango genetic map [78]. Fi-
nally, the genome assembly contains 20 pseudochromoso-
mal molecules, 2 organelles, and 230 unplaced scaffolds.
The raw data of genome deep sequencing (second and
third generation sequencing) together with genome assem-
bly are deposited in the NCBI Sequence Read Archive
under project ID PRJNA487154 [70]. For additional details
about the genome sequencing and de novo assembly, see
Additional file 1: Supplementary Note.

Genomic assembly quality evaluation

To assess the quality of the assembly, we mapped all the
pair-end and long reads to the assembly for their mapping
rate, which indicates the quality and integrity of the assem-
bly. All the pair-end reads were mapped using BWA-
MEM (v0.7.15) [79], and all the PacBio long reads were
mapped using minimap2 [80]. the integrity of the protein-
coding genes of the assembly was evaluated using Bench-
marking Universal Single-copy Orthologs (BUSCO) ana-
lysis (v3.0.2, embryophyta_odb9) [15] and Core Eukaryotic
Genes Mapping Approach (CEGMA) analysis (v2.2) [14].
Genome completeness was further evaluated by the map-
ping of 6594 mango genetic markers [12] and 20,920 Trin-
ity (v 2.2.0) [81] assembled transcripts (length > =1kb)
from RNA-seq data using BLAT software (v34x10, [82]).

Genome annotation

In prior to gene prediction and annotation, the library of
repetitive sequences was ab initio constructed using
RepeatModeler. By using this library, repetitive sequences
were annotated, classified, and soft-masked by RepeatMas-
ker (http://www.repeatmasker.org/). Transcripts were con-
structed using a combination of HISAT2 [83], Stringtie
[71], and TACO [84]. The ORFs on the transcripts were
extracted using TransDecoder within the PASA pipeline
[85]. The homologous from the Uniprot database (tax-
onomy: 3398 [Magnoliophyta]) were mapped to the gen-
ome using GenomeThreader [86]. The ab initio prediction
of protein-coding gene was carried out by the BRAKER2
pipeline [87]. The results from ab initio prediction, homo-
logs, and transcription evidences were integrated using
EVM software (v2012-06-25) [88] and further curated by
removing frame-shifts and redundancies using the gffread
tool from Cufflinks [89]. Meanwhile, retro-transposon (RT)
genes were identified by HMMER [90] with the Pfam data-
base and removed from the final annotation. Transcription
factor identification was conducted in the plant TF data-
base (http://planttfdb.cbi.pku.edu.cn/prediction.php) [91].
Non-protein coding genes were detected by the homolo-
gous searching of the Rfam database [92] using Infernal
(v1.1.2) [93]. Protein annotations were carried out by
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searching NCBI non-redundant protein database, InterPro
[94], and KEGG [95] databases. GO information was ex-
tracted from InterPro annotation. For additional details
about the genome annotation, see Additional file 1: Supple-
mentary Notes. The GO enrichment analysis for the
retained duplicated genes was performed by GOEAST [96]
(http://omicslab.genetics.ac.cn/GOEAST/).

Comparative genome analysis

Twelve species (including mango) representing the
major plant domains were selected for phylogenetic
analysis. All-versus-all BLASTP [97] searching results (e
value threshold le-5) were used for gene family con-
struction using OrthoMCL (v2.0.9) [98] with series I
values. The nucleotide sequences of 248 single-copy
genes were concatenated from CDS alignments guided
by individual protein alignments using Clustalw2 (v2.1)
[99] The best model (HKY+I+G) was selected by Jmo-
deltest (v2.1.7), and then a ML tree was constructed with
100 bootstrap value using PhyML (v3.1) [100]. And the
resulting ML tree was used as an input tree for the Café
software and PAML MCMCTree program. The PAML
[101] MCMCTree program was used to estimate the
species divergence times with the HKY85 model. We
used the A. thaliana and C. papaya divergence time
(68—72 million years ago) [18] and the monocot and
eudicot divergence time (130-240 million years ago)
[23] as calibrators. The MCMC analysis was run for 20,
000 generations, using a burn-in of 2000 iterations. Café
software (v3.2, [102]) was used to identify the gene fam-
ily that had undergone expansions or contractions for
the 2903 gene families with at least 20 members among
12 plant genomes.

Genome duplication analysis

MCScanX [103] was used for syntenic region detection
with the all-to-all BLASTP results (blocks with at least
10 pairs homologous genes and the gap was less than 5
genes) for orange/mango, orange/longan, mango/longan,
and mango/mango. The Ks between the syntenic
homologous gene pairs was calculated by PAML (v4.8)
[101] using the YNOO NG model.

For the definition of mango duplicated gene, firstly,
the duplicate_gene_classifier module in MCScan soft-
ware was used to classify the duplicate genes into WGD/
segmental duplication (=10 homologous gene pairs in
collinear blocks), tandem (consecutive repeat), proximal
(in nearby genomic region but adjacent within 10 genes),
or dispersed (other modes than segmental, tandem and
proximal) duplications. The remaining genes were
defined as singletons. Secondly, the WGD/segmental du-
plicated genes were further classified into two subclasses:
the gene pairs located in syntenic blocks with the me-
dian Ks of 0.3-0.4 were defined as the genes retained
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from recent WGD, and the rest were defined as the
genes retained from ancient WGD.

Manual revision for certain genes and gene families
Anthocyanin, carotenoid, chlorophyll, isoprenoids, lipid,
and sugar metabolism-related genes, as well as photo-
synthesis genes functionally characterized in A. thaliana
were retrieved for their corresponding protein sequences
from the Arabidopsis Information Resource (TAIR)
(https://www.arabidopsis.org/index.jsp). The retrieved A.
thaliana proteins were processed with InterProScan [94]
and BLASTP [97] (i value=1e-10) searched against
mango proteins. Hits sharing >30% amino acid identity
and >50% amino acid alignment length with the A.
thaliana homologs were further checked for Pfam do-
mains. Lipid genes are retrieved from the Arabidopsis
Lipid Gene Database [104]. Genes involved in the photo-
synthesis and sugar metabolism are retrieved based on
the information provided in Plant Metabolic Network
[105] (https://www.plantcyc.org). Polyphenol metabolism
and chlorophyll metabolism genes were retrieved based
on references [41, 106]. Carotenoid biosynthesis genes
were retrieved from AtIPD [107].

Population genetics analysis

Qualified NGS reads from mango cultivars, landraces,
and wild relatives (~20x genomic coverage for each
genome) were mapped to the mango genome with
Mem module in BWA (v 0.7.15, 79). The raw data of
genome resequencing are deposited in the NCBI Se-
quence Read Archive under project ID PRJNA487154
[70]. The alignment for each genome was processed by
marking duplicated reads using Picard tools (v 1.119)
(https://github.com/broadinstitute/picard). The reads in
insertion/deletion (Indel) regions were realigned using
RealignerTargetCreator and IndelRealigner modules in
the Genome Analysis Toolkit (GATK) [108]. Variant
calling for each genome was carried out by GATK Hap-
lotypeCaller to produce VCF files. All VCFs for 53 ge-
nomes were merged to single VCF file by GATK
Genotype GVCFs function (v3.5). SNPs were filtered to
remove variants with total a depth across genomes of <
265 (an average of 5 per genome) and depth > 2120 (ap-
proximately twice the mean depth of 20 for each gen-
ome), these with more than 2 missing genotypes. The
gene-based annotation of the resulting qualified vari-
ants using ANNOVAR (v3.5c) [109].

The fourfold degenerate sites were identified accord-
ing to the genomic location of gene model [110], and
370,924 SNPs located in these sites were identified and
used for genetic distance calculation, the principal com-
ponent analysis, and the population structure analysis.
The genetic distance among each combination of 2
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genomes was calculated using the equation used in het-
erozygous human genome [111]. A phylogenetic tree
was constructed using the neighbor-joining method im-
plemented in PHYLIP (v3.697) [112] and displayed in
Evolview [113] (http://www.evolgenius.info/evolview/).
The principal component analysis was conducted using
EIGENSOFT 4.2 software [114]. Population structure
analysis was performed with STRUCTURE [115] using
the admixture and no linkage models in a burn-in
length of 2000 and 2000 replicates type with 10 repli-
cates. The best k (k = 3) was selected by Structure
Harvester (v0.6.93) [116]. The STRUCTURE results
with k values from 2 to 4 were further permuted with
program CLUMPP (v1.1.2) [117] and displayed by the
software Distruct (v1.1) [118].

The value of nucleotide diversity ratios () was calcu-
lated in 20-kb sliding windows and a step size of 10 kb
using VariScan (v 2.0.3) [119] for the populations of
Mangifera outgroups, populations of Southeast Asia type
(n=16), and India type (n=8) with little or no admix-
ture in the STRUCTURE analysis. VCFtools (v0.1.14,
[120]) were used to calculate per-individual inbreeding
coefficients, the regions of runs of homozygosity (ROH),
and the pairwise population differentiation levels (Fgr)
of three populations (Mangifera outgroups, Southeast
Asia type, and India type) with 50-kb sliding window
and 20-kb step. Genome-wide high-confident SNPs were
used for the calculation of nucleotide diversity ratios ()
and pairwise population differentiation (Fsr).
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