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Abstract

Background: The initiation and subsequent evolution of cancer are largely driven by a relatively small number of
somatic mutations with critical functional impacts, so-called driver mutations. Identifying driver mutations in a
patient’s tumor cells is a central task in the era of precision cancer medicine. Over the decade, many computational
algorithms have been developed to predict the effects of missense single-nucleotide variants, and they are
frequently employed to prioritize mutation candidates. These algorithms employ diverse molecular features to build
predictive models, and while some algorithms are cancer-specific, others are not. However, the relative performance
of these algorithms has not been rigorously assessed.

Results: We construct five complementary benchmark datasets: mutation clustering patterns in the protein 3D
structures, literature annotation based on OncoKB, TP53 mutations based on their effects on target-gene
transactivation, effects of cancer mutations on tumor formation in xenograft experiments, and functional annotation
based on in vitro cell viability assays we developed including a new dataset of ~ 200 mutations. We evaluate the
performance of 33 algorithms and found that CHASM, CTAT-cancer, DEOGEN2, and PrimateAI show consistently
better performance than the other algorithms. Moreover, cancer-specific algorithms show much better performance
than those designed for a general purpose.

Conclusions: Our study is a comprehensive assessment of the performance of different algorithms in predicting
cancer driver mutations and provides deep insights into the best practice of computationally prioritizing cancer
mutation candidates for end-users and for the future development of new algorithms.

Keywords: The Cancer Genome Atlas, Driver mutations, Passenger mutations, 3D clustering, TP53 mutations, Tumor
transformation, Cell viability assay

Background
Cancer is a group of highly heterogeneous human
genetic diseases. The initiation and progression of cancer
are driven by changes to a cell’s DNA, also known as
somatic mutations. Since the first cancer genome was
sequenced [1], extensive studies have characterized som-
atic mutations in the patient tumors in a systematic way
using next-generation sequencing technologies,

especially through recent cancer consortium projects
such as The Cancer Genome Atlas (TCGA) [2] and
International Cancer Genome Consortium [3]. As a re-
sult, previous studies have sequenced more than 30,000
cancer whole exomes or genomes and have identified
thousands of unique somatic mutations from a broad
range of cancer types. The vast majority of the somatic
mutations observed in tumor cells have either no
phenotypic consequences or no biological effects and are
therefore selectively neutral during the clonal evolution,
usually termed as “passenger mutations.” In contrast, a
small fraction of the somatic mutations have critical
functional effects (e.g., oncogenic activation to tumor
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suppression inactivation) and confer a selective advan-
tage to the cells, leading to preferential growth or sur-
vival of a clone, usually referred to as “driver mutations”
[4]. Although the number of cancer somatic mutations
has been increasing at a fascinating speed, our know-
ledge of distinguishing driver mutations from passenger
mutations remains limited, even in best-studied cancer
genes such as EGFR and BRAF. This critical knowledge
gap not only prevents us from a deep understanding
about the molecular mechanisms underlying the cancer
phenotype but also leads to key challenges in imple-
menting precision cancer medicine where targeted panel
gene sequencing is routinely used to guide the selection
of optimal treatment strategies.
Among various types of cancer somatic mutations,

single-nucleotide variants (SNVs) in the protein-coding
regions are of particular interest since they can change
amino acids and are enriched in driver mutations. Given
a list of missense SNVs in a cancer sample, one common
practice is to predict driver mutation candidates compu-
tationally. Over the last decade, several dozens of com-
putational algorithms have been developed for this
purpose. These algorithms utilize a diverse range of in-
formation content from evolutionary conservation, to
protein features, to epigenetic signals; some of them
were specifically designed to predict the “drivers” in the
cancer context while others aim to predict whether a
mutation has some functional effects in a general sense.
However, the relative performance of these algorithms
in predicting cancer driver mutations is hard to assess
for several reasons. First, given the interest of “publica-
tion,” authors tend to choose potentially “favorable”
benchmark datasets to demonstrate the utility of their
algorithms in the original reports. Second, although fre-
quently used in the cancer research community, some
algorithms have not been assessed for predicting cancer
drivers since they were designed for a general purpose.
Third, the definition of “driver mutation” itself is com-
plicated, and each benchmark dataset has its own merits
and limitations. Therefore, we decided to perform an ob-
jective, comprehensive assessment of different computa-
tional algorithms in predicting cancer driver mutations
using consistent and complementary benchmark
datasets.

Results
Overview of the study design
Our analysis included 33 algorithms (reported in 29
studies) that could prioritize or categorize SNV muta-
tions that result in amino acid changes. To robustly
assess the performance of different algorithms, we
employed five different benchmark datasets: (i) the
mutation clustering patterns in protein 3D structures;
(ii) literature annotation based on OncoKB [5], a widely

used knowledge database in the cancer research commu-
nity; (iii) the effects of TP53 mutations on their target
transcription activity; (iv) the effects of cancer mutations
on tumor formation in xenograft experiments; and (iv)
functional annotation based on in vitro cell viability as-
says developed by our group. These benchmark datasets
represent different features of driver mutations relative
to passenger mutations and are highly complementary
to each other, thereby ensuring a comprehensive assess-
ment. Given the positive (driver) and negative (passen-
ger) cases defined in each benchmark dataset, based on
numeric scores for each algorithm, we employed area
under the curve (AUC) of receiver operating characteris-
tics (ROC) curves to assess the predictive performance,
which is a common measurement independent from the
threshold value in each algorithm. In addition, we com-
pared categorical predictions of different algorithms
against true labels in each benchmark analysis (Table 1,
Additional file 1).
Table 1 shows the characters of the 33 algorithms we

assessed in this study. Among them, six algorithms were
developed specifically to predict cancer driver mutations,
and the others were designed to predict the functional
impact of an SNV in general. While not developed for
identifying cancer drivers, those non-cancer-specific al-
gorithms, such as SIFT and Polyphen2, have been widely
used to prioritize mutations in cancer-related research.
Further, 16 are ensemble algorithms that use the scores
from other published algorithms as input (Fig. 1a). These
algorithms employ a variety of information as features to
build predictive models: 10 use the features related to
sequence context such as nucleotide change types and
CpG island locations; 9 contain protein features such as
domain and amino acid changes; 24 consider evolution-
ary conservation, and 6 include epigenomic information
(Fig. 1a). To study the correlations of different algo-
rithms, we compiled and calculated the scores of the 33
algorithms for ~ 710,000 unique mutations detected in
the TCGA whole-exome sequencing project across 33
cancer types by the Multi-Center Mutation-Calling in
Multiple Cancers (MC3), [12, 35]. We then quantified
their score similarities using Spearman rank correlations
across all these mutations and found that the algorithm
scores showed overall positive correlations (Fig. 1b). In
the dissimilarity-based tree (Fig. 1b), the algorithms
derived from the same study were always clustered
together such as Eigen-PC and Eigen [32], SIFT4G [31]
and SIFT [21], and MetaLR and MetaSVM [36], which is
expected given they were built in a similar way.

Benchmark 1: Mutation clustering patterns in the protein
3D structures
The functional impact of a specific mutation largely
depends on its location in the protein 3D structure.
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Functional or driver mutations tend to form spatial
hotspot clusters. In recent years, several computa-
tional algorithms have been developed to detect mu-
tation clusters in the protein 3D space, which are

able to detect rare mutations with validated functional
impacts. From this perspective, we constructed a
benchmark dataset based on the mutation 3D cluster-
ing patterns. We employed four spatial cluster

Table 1 Summary of 33 computational algorithms included in this study

Classifier Features Method Reference

CADD Conservation, epigenetic signals, functional predictions,
genetic context, and published predictors

Linear kernel support vector machine Rentzsch et al. [6]

CanDrA Structural, evolutionary, and genomic features,
published predictors

Support vector machine Mao et al. [7]

CHASM Structural, evolutionary, and genomic features Random forest Carter et al. [8]

CTAT-cancer TransFIC, fathmm, chasm, candra Principal component analysis (PCA) Bailey et al. [9]

CTAT-population SIFT, PolyPhen2, mutationAssessor, VEST PCA Bailey et al. [9]

DANN Conservation, epigenetic signals, functional
predictions, and genetic context

Deep neural network Quang et al. [10]

DEOGEN2 Evolutionary, protein, gene, pathway, PROVEAN Random forest Raimondi et al. [11]

Eigen Prediction scores of other tools, allele frequencies,
epigenomic signals

Unsupervised spectral approach Ionita-Laza et al. [12]

Eigen-PC Prediction scores of other tools, allele frequencies,
epigenomic signals

Unsupervised spectral approach Ionita-Laza et al. [12]

FATHMM-disease Sequence homology Hidden Markov models Shihab et al. [13]

FATHMM-cancer Sequence homology Hidden Markov models Shihab et al. [14]

FATHMM-MKL Conservation, epigenomic signals Multiple kernel learning Shihab et al. [15]

FATHMM-XF Conservation, genomic features, epigenomic signals Multiple kernel learning Rogers [16]

GenoCanyon Conservation, biochemical annotation Posterior probability by unsupervised
statistical learning

Lu et al. [17]

Integrated_fitCons Integrated epigenomic signals INSIGHT Gulko et al. [18]

LRT Sequence homology Likelihood ratio test of codon neutrality Chun et al. [19]

M-CAP Published predictors, conservation Gradient boosting tree classifier Jagadeesh et al. [20]

MetaLR Nine prediction scores and allele frequencies in 1000G Logistic regression Dong et al. [21]

MetaSVM Nine prediction scores and allele frequencies in 1000G Radial kernel support vector machine Dong et al. [21]

MPC Regional missense constraint, missense badness, polyphen2 Logistic regression Samocha et al. [22]

MutationAssessor Sequence homology Combinatorial entropy formalism Reva et al. [23]

MutationTaster2 Conservation, genetic context, regulatory features Naïve Bayes classifier Schwarz et al. [24]

MutPred Protein structural and functional properties,
conservation, SIFT

Random forest Li et al. [25]

MVP Sequence and structural features, published
predictors, conservation

Deep neural network Qian et al. [26]

Polyphen2_HDIV Eight sequence-based and three structure-based
predictive features

Naïve Bayes classifier Adzhubei et al. [27]

Polyphen2_HVAR Eight sequence-based and three structure-based
predictive features

Naïve Bayes classifier Adzhubei et al. [27]

PrimateAI Sequence homology Deep residual neural network Sundaram et al. [28]

PROVEAN Sequence homology Delta alignment score Choi et al. [29]

REVEL Published predictors Random forest Ioannidis et al. [30]

SIFT Sequence homology based on PSI-BLAST Position-specific scoring matrix Ng et al. [31]

SIFT4G Sequence homology based on Smith-Watermann Position-specific scoring matrix Vaser et al. [32]

TransFIC SIFT, Polyphen2, mutationAssessor Transformed functional impact scores Gonzalez-Perez [33]

VEST4 Amino acid-related features, DNA context,
conservation, protein structure

Random forest Carter et al. [34]
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algorithms (HotMAPs [37], 3DHotSpots [38],
HotSpot3D [39], and e-Driver3D [9]) to predict puta-
tive mutation hotspots. We defined the consensus
score as the number of the four tools that predicted
each mutation to be within a 3D cluster (Fig. 2a). We
found a strong enrichment of mutations with a high
consensus score in known cancer genes (i.e., cancer
gene census [CGC]) (p < 2.2 × 10−16, Fisher’s exact
test; see the “Methods” section; Additional file 2).
To compile the benchmark set, from the ~ 710k

TCGA mutations, we designated mutations with a
high consensus score (≥ 2) in a known cancer gene as
driver candidates (positive cases, n = 1429) and ran-
domly selected the same number of mutations with a
consensus score of 0 in non-cancer genes as passen-
ger candidates (negative cases, n = 1429). We then
evaluated the performance of the 33 algorithms using
ROC curves. We found that the performance of dif-
ferent algorithms varied greatly, and the AUC score
ranged from 0.64 to 0.97, with a median value of 0.79
(Fig. 2b; Additional file 3). Six algorithms had a AUC
score of > 0.9, including CTAT-cancer [12], CanDrA

[7], CHASM [8], DEOGEN2 [11], FATHMM-cancer
[14], and MVP [26]. To confirm our results, we
generated another same-size negative set of CGC
mutations with a consensus score of 0, repeated the
evaluation, and found a strong correlation of AUCs
between the two evaluations (Pearson correlation, r =
0.97; Additional file 4). In terms of group-based
comparison (Fig. 2c), cancer-specific algorithms
performed much better than general algorithms (mean
AUC 92.2% vs. 79.0%, Wilcoxon rank sum test,
p = 1.6 × 10−4), and ensemble scores showed higher
AUC scores than others (mean AUC 84.3% vs. 78.7%,
Wilcoxon rank sum test, p = 0.015).
To evaluate the performance of binary predictions, we

calculated accuracy, sensitivity, specificity, PPV, and
NPV (see the “Methods” section; Additional file 5). In
the analysis, we randomly selected 1000 positives and
1000 negatives to construct the benchmark sets and
used the median score value of each algorithm as the
threshold to make binary predictions. The process was
repeated for 100 times to estimate mean and standard
deviation for each metric. CanDrA showed the highest

Fig. 1 Feature summary and inter-correlations between algorithms. a Based on features included, each algorithm was labeled as using ensemble
score, sequence context, protein feature, conservation, or epigenomic information. The algorithms trained on cancer diver data or proposed to
identify cancer drivers are labeled as cancer-specific. b Left: hierarchical clustering pattern of 33 algorithms based on ~ 710,000 TCGA somatic
mutations; right, a triangle heatmap displays the Spearman rank correlation coefficient between any two algorithms
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Fig. 2 Assessment using a benchmark dataset based on mutation 3D clustering pattern. a Overview of the assessment process. We used four
computational algorithms to detect whether mutations are located within the protein 3D structural hotspots, each algorithm with one vote. The
number of votes was defined as the consensus cluster score. A mutation with a score of ≥ 2 and in a cancer gene (i.e., cancer gene consensus)
was considered as a positive case, and a mutation with a score of 0 and in a non-cancer gene was considered as a negative case. b ROC curves
and corresponding AUC scores for the top 10 algorithms. c Boxplots showing the differences of AUC between two groups of algorithms with or
without certain features. p value is based on the Wilcoxon rank sum test. d Sensitivity and specificity of each algorithm calculated by using the
median score value as the threshold to make binary predictions. Error bars, mean ± 2SD
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overall accuracy (mean = 0.91), followed by CTAT-
cancer, CHASM, DEOGEN2, and FATHMM-cancer.
The sensitivity and specificity for CanDrA, CTAT-
cancer, CHASM, DEOGEN2, and FATHMM-cancer
consistently ranked among the top ones (Fig. 2d). Some
algorithms, such as MutationTaster2 [24], Integrated_fit-
Cons [18], GenoCanyon [17], and LRT [19], had very
unbalanced sensitivities and specificities. In addition, we
calculated the same metrics for the 17 algorithms with
the default categorical predictions (see the “Methods”
section; Additional file 6). CanDrA and DEOGEN2
showed the highest accuracy. The results in this section
provide an overview of how well the algorithms distin-
guish mutations clustered in the 3D space from the iso-
lated ones in the protein structures.

Benchmark 2: Literature-based annotation
Functional effects of specific mutations have been a
major theme in cancer research over decades. Therefore,
literature is a rich resource to define the role of somatic
mutations in cancer development. OncoKB is a widely
used, expert-guided, precision oncology knowledge base
where the functional effects of somatic mutations in >
400 cancer-associated genes have been classified into
four categories (oncogenic, likely oncogenic, likely neu-
tral, and inconclusive) based on their biological and
oncogenic effects and the prognostic and predictive sig-
nificance reported in the literature [5].
Based on OncoKB annotation, we performed two com-

parisons for the algorithm evaluation: (i) oncogenic
(positive cases) vs. likely neutral (negative cases) (773 vs.
497) and (ii) oncogenic + likely oncogenic (positive
cases) vs. likely neutral (negative cases) (2327 vs. 497)
(Fig. 3a). The two comparisons yielded highly consistent
results in terms of the AUC scores (Pearson correlation
r = 0.90; Fig. 3b). The likely oncogenic mutations
reduced the overall AUC scores, probably due to incon-
sistent literature annotations for those mutations. The
top 10 algorithms in the first comparison had very close
AUCs, ranging from 0.71 to 0.75 (Fig. 3b;
Additional file 7). We did not observe significant differ-
ences for group-based comparisons (Additional file 8).
For binary predictions, we calculated accuracy, sensitiv-
ity, specificity, PPV, and NPV (Additional file 9), by
using randomly selected 400 positives and 400 negatives
(see the “Methods” section). PROVEAN [29], VEST4
[34], and MPC [22] had the highest accuracy values
(0.69, 0.69, and 0.68 respectively; PROVEAN, VEST4,
MPC, REVEL [30], FATHMM-cancer, CTAT-
population [12] were the top ones in both sensitivity and
specificity (Fig. 3c). In addition, we calculated the same
metrics for the 17 algorithms with the default categorical
predictions (see the “Methods” section; Additional file 10).
DEOGEN2 showed the best accuracy (mean = 0.70).

These results provide insights into how well the algo-
rithms predict driver mutations based on literature-
driven evidence.

Benchmark 3: Effects of TP53 mutations on target-gene
transactivation
TP53 is the most frequently mutated gene in human
cancers, and the IARC TP53 database compiles vari-
ous types of information on TP53 gene variants [40].
The TP53 mutants had been functionally assessed
based on the median transactivation levels, measured
as percentage of wild-type activity, of 8 TP53 targets
(WAF1, MDM2, BAX, h1433s, AIP1, GADD45,
NOXA, and P53R2). We constructed a benchmark
dataset by selecting TP53 mutations with transactiva-
tion level ≤ 50% as positive cases, and all others as
negative cases.
The top five algorithms, ordered by AUC scores, were

CHASM, CTAT-cancer, CTAT-population, DEOGEN2,
and VEST4 (Fig. 4b; Additional file 11). While a few al-
gorithms had an AUC of ~ 50%, the majority of the 33
algorithms were above 80% (Additional file 11). It should
be noted that CanDrA, FATHMM-cancer, and
FATHMM-disease appear to be gene-specific, as all
TP53 mutations were predicted to be drivers. We sus-
pect that these tools intrinsically give very high scores
for mutations in well-known cancer genes. In terms of
group-based comparisons (Additional file 12), algorithms
that used epigenomic information had significantly lower
AUCs than others (Wilcoxon rank sum test, p = 0.02);
cancer-specific algorithms showed marginally significant
than the other algorithms (Wilcoxon rank sum test, p =
0.08). We calculated the accuracies using median scores
as the threshold to make binary predictions for each al-
gorithm and found that their performance varied consid-
erably among algorithms. CHASM was the most
accurate one (mean AUC = 0.88) followed by CTAT-
cancer and CTAT-population (Additional file 13).
MetaSVM had the lowest accuracy (mean = 0.44).
Several algorithms, including Integrated_fitCons, LRT,
and SIFT, showed very unbalanced ranks of sensitivity
and specificity (Fig. 4c), due to the fact that these algo-
rithms provide the same scores for most mutations in
this benchmark dataset. CHASM, CTAT-cancer, CTAT-
population, VEST4, and DEOGEN2 had both good sen-
sitivities and specificities. For the 15 algorithms that
were provided with recommended cutoffs in their ori-
ginal studies, we calculated the same five performance
metrics based on their explicit cutoffs (see the
“Methods” section; Additional file 14). These results
present an informative view of how well the algorithms
distinguish putative TP53 mutation drivers that had a
high impact on target transcription activity from
passengers.
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Fig. 3 (See legend on next page.)
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Benchmark 4: In vivo tumor formation assays
A recent study employed an in vivo tumor formation
assay to systematically assess the oncogenicity of a large
number of mutant alleles curated from > 5000 tumors
[41]. In the assay, HA1E-M cell lines that stably
expressed individual mutant allele were injected into
mice. Mutant alleles that formed any tumor > 500mm3

by 130 days were considered as oncogenic mutations
and thus used as positive cases in our study, and all
other alleles were used as negative cases (Fig. 5a). Based
on the functional annotation of such 71 mutations (45
positives vs. 26 negatives), we evaluated the 33 algo-
rithms. Five algorithms, including CHASM, PROVEAN,
PrimateAI [28], and REVEL, had an AUC score of > 70%
(Fig. 5b; Additional file 15), while six algorithms were <
60%. Cancer-specific algorithms did not outperform
others (Additional file 16), and there were no significant
differences for other group-based comparisons as well.
Using the median scores as thresholds, we compared

categorical predictions against the true labels. PRO-
VEAN had the highest accuracy (0.72), followed by Pri-
mateAI and CHASM (Additional file 17). Most
algorithms had balanced rankings in sensitivity and spe-
cificity (Fig. 5c). However, MutationTaster2, GenoCan-
yon, and LRT were the top three in sensitivity, but had
the lowest specificities. This is because these three algo-
rithms gave the same scores for most mutations in this
benchmark analysis. Categorical outputs, directly pro-
vided by 17 algorithms as outputs, showed PROVEAN
the highest accuracy (mean accuracy = 0.71; Add-
itional file 18). The results in this section provided in-
sights into how those algorithms were able to
differentiate cancer mutations with tumor formation po-
tential from those that unlikely drive tumor formation.

Benchmark 5: In vitro cell viability assays
A common functional consequence of a driver mutation
is to confer a preferential growth or survival advantage
to the cell, and this effect can be directly assessed by cel-
lular assays. We recently developed a systems-biology
approach to test the functional effects of mutations on
an individual basis using an in vitro system [42]. Briefly,
we generated bar-coded expression mutated open read-
ing frame (ORF) clones by a HiTMMoB approach [43],
and then tested the effects of mutated ORFs in IL-3-
dependent Ba/F3 cells (a sensitive leukemia cell line, fre-
quently used in drug screening) and EGF- and insulin-

dependent MCF10A cells (a non-tumorigenic breast epi-
thelial cell line) in parallel using a lentiviral approach,
with wild-type counterparts as well as negative and posi-
tive experimental controls. Based on the effects on cell
viability in the two cell models, we generated a consen-
sus functional annotation for each tested mutation based
on an “OR gate” logic. Mutations with detectable effects
(i.e., activating, inactivating, inhibitory, and non-
inhibitory) are considered as driver candidates (positive
cases), whereas those without a notable effect (i.e., neu-
tral) are considered as passengers. Using this approach,
our recent study [42] reported the functional annotation
of a large number of somatic mutations. To increase the
robustness of our evaluation, we selected another ~ 200
mutations from the TCGA mutation pool, performed
the same cell viability assays, and obtained the inform-
ative functional annotations of 164 mutations (Add-
itional file 19). We performed the algorithm assessment
using three experiment-annotated datasets: (i) the pub-
lished dataset (797 in total; positive vs. negative: 321 vs.
476), (ii) the new dataset (164 in total; positive vs. nega-
tive: 55 vs. 109), and (iii) the combined dataset (961 in
total; positive vs. negative: 376 vs. 585) (Fig. 6a;
Additional file 19).
We found that the predictive power of different algo-

rithms varied greatly. Based on the published dataset,
the top three algorithms were CTAT-cancer (AUC =
77.0%), CHASM (AUC = 75.4%), and CanDrA (AUC =
72.9%) (Fig. 6b; Additional file 20A). Based on the new
dataset, the top three algorithms were PrimateAI
(AUC = 81.4%), REVEL (AUC = 77.6%), and CTAT-
cancer (AUC = 77.5%) (Fig. 6b; Additional file 20B).
Based on the combined dataset, the top algorithms were
CTAT-cancer (AUC = 77.1%), CHASM (AUC = 75.7%),
and PrimateAI (AUC = 74.0%), whereas a few algorithms
had an AUC score close to 0.5 (Fig. 6b; Add-
itional file 20C). The new dataset generally resulted in
higher AUC scores than the published dataset, with the
largest differences observed for FATHMM-disease [13],
MetaLR, and MetaSVM (AUC difference = 0.21, 0.14,
and 0.14 respectively). These differences may be due to
the intrinsic features of the benchmark mutation sets.
We used the combined dataset for downstream ana-

lyses. In group-based comparisons, cancer-specific algo-
rithms were significantly better than the others (mean
AUC 72.0% vs. 63.5%, Wilcoxon rank sum test, p = 7 ×
10−4). The top three algorithms by the overall accuracy

(See figure on previous page.)
Fig. 3 Assessment using a benchmark dataset based on OncoKB annotation. a Overview of the assessment process. The OncoKB database
classifies mutations into four categories: oncogenic, likely oncogenic, likely neutral, and inconclusive. We considered “likely neutral” as negative
cases, and we considered “oncogenic” mutations only or both “oncogenic” and “likely oncogenic” mutations as positive cases. b Bar plots
showing the AUC scores of the 33 algorithms in the two comparisons. The red color is for oncogenic plus likely oncogenic vs. likely neutral, and
green is for oncogenic vs. likely neutral. c Sensitivity and specificity of 33 algorithms. Error bars, mean ± 2SD
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Fig. 4 Assessment using a benchmark dataset based on the transactivation effects of TP53 mutations. a Overview of the assessment process.
Promoter-specific transcriptional activity was measured for 8 targets of p53 protein. Mutations with the median transcription activity ≤ 50% were
used as positive cases, and others were used as negative cases. b ROC plot and AUC scores for the top 10 algorithms. c Sensitivity and specificity
of 33 algorithms. Error bars, mean ± 2SD
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were CTAT-cancer (mean = 0.70), PrimateAI (mean =
0.70), and CHASM (mean = 0.69) (Additional file 21).
All the three algorithms were among the top ones in
terms of sensitivity and specificity (Fig. 6d). For the 17
algorithms with default categorical predictions, we calcu-
lated the same metrics using the same benchmark set
(Additional file 22). The top three algorithms were
PrimateAI, PROVEAN, and DEOGEN2. As these experi-
mental data (especially the new data) were generated
independently from the algorithm development, these
results provide a valuable assessment of how well the
algorithms identify driver mutations with an effect on
cell viability in vitro.

Overall evaluation
From the above sections, we evaluated the performance
of different algorithms using five different criteria. Each
benchmark uses an independent information source to
define driver and passenger mutation candidates. The
positive cases and the negative cases included in each

benchmark dataset are quite distinct. For the positive
cases, 3D clustering pattern, OncoKB annotation, trans-
activation of TP53 mutations, in vivo tumor formation
assays, and in vitro cell viability assays contained 56.1%,
68.1%, 46.4%, 15.6%, and 54.5% unique mutations, re-
spectively (Fig. 7a). The percentages of unique negatives
were even higher (Fig. 7b).
The five benchmark analyses showed an overall good

consistency: the highest Spearman correlation of AUC
scores was observed between in vitro cell viability assay
and 3D clustering patterns (Fig. 7c). Interestingly, des-
pite the diversity of the benchmark data used, we ob-
served a great convergence on a few top-performing
algorithms (Fig. 7d, the top five algorithms highlighted
for each benchmark). CHASM and CTAT-cancer ranked
among the top 5 for four times, but they were not
among the top in the OncoKB benchmark; and DEO-
GEN2 and PrimateAI were among the top 5 for three
times including OncoKB. A few others, including
VEST4, PROVEAN, MPC, CanDrA, REVEL, CATA-

Fig. 5 Assessment using a benchmark dataset based on in vivo tumor formation. a Overview of the assessment process. Cell lines stabling
expressing mutant alleles were injected into mice. Mutations that could form any tumors greater than 500mm3 by 130 days were considered as
functional mutations and used as positives, and other mutations were used as negatives. b ROC plot and AUC scores for the top 10 algorithms.
c Sensitivity and specificity of 33 algorithms. Error bars, mean ± 2SD
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Fig. 6 Assessment using a benchmark dataset based on in vitro cell viability. a Overview of the assessment process. For each mutation, we
performed cell viability assays in two “informer” cell lines, Ba/F3 and MCF10A. Consensus calls were inferred by integrating the functional effects
observed in Ba/F3 and MCF10A. We considered activating, inactivating, inhibitory, and non-inhibitory mutations as positive cases, while neutral
mutations were considered negative. b The ROC curves of the 33 algorithms based on a combined set of published mutations (Ng et al. [42])
and newly generated mutations in this study. c Bar plots showing the AUC scores of the 33 algorithms in the three datasets: new functional data
(red), published functional data (green), and the combined set (blue). d Boxplots showing the differences of AUC between two groups of
algorithms with or without certain features. p values are based on the Wilcoxon rank sum test. d Sensitivity and specificity of 33 algorithms. Error
bars, mean ± 2SD
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population, and FATHMM-cancer, ranked among the
top 5 in one or two benchmarks. Except for CTAT-
cancer and REVEL which were solely based on published
predictors, the top-performing algorithms employ a wide
range of features, including published scores, sequence
context, protein features, and conservation. Collectively,
CHASM, CTAT-cancer, DEOGEN2, and PrimateAI may
represent the best choice for predicting cancer driver
mutations.

Discussion
Identifying driver somatic mutations in a patient’s tumor
cells is a central task in the era of precision cancer medi-
cine. In this study, we performed a comprehensive as-
sessment of the 33 published algorithms in their ability
to distinguish driver mutations from passenger muta-
tions using five complementary benchmark datasets.

Our results suggest that CHASM, CTAT-cancer, DEO-
GEN2, and PrimateAI show consistently better perform-
ance than the other algorithms. Moreover, cancer-
specific algorithms perform better than algorithms de-
signed for general purpose.
The five benchmark datasets we constructed are based

on different characters of driver mutations; each has its
own merits and limitations. The clustering patterns of
mutations in the protein 3D structures employ the
spatial information, but this feature is only available for
mutations in a gene with a corresponding protein 3D
structure. Further, the completeness, quality, and func-
tional state of the protein 3D structure can all affect the
mutation clusters detected. Literature-based OncoKB
provides the most robust annotation for driver muta-
tions, but due to the reporting bias, the annotated muta-
tions are highly biased toward known cancer genes,

Fig. 7 Overall evaluation. a, b The overlapping summary of positive (a) and negative cases (b) in the five benchmark datasets. c Correlations of
the performance ranks of the 33 algorithms based on the five benchmark datasets. d A heatmap showing the rank of the 33 algorithms based
on each benchmark dataset. Ranks are labeled for the top five algorithms only. Red, higher ranks, and white, lower ranks. The features of the 33
algorithms are shown on the top, indicated by color (gray, no; and black, yes)
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especially clinically actionable genes. The TP53 mutation
benchmark analysis included a large number of TP53
somatic mutations and used key consequences on eight
TP53 targets as the functional readout. But the transacti-
vation signals may not fully represent the oncogenic
effect of TP53 mutations. The in vivo tumor formation
assay provides the most definite evidence for driver
potential, but the number of cases included is limited.
Further, the top ranked algorithms performed relatively
poor in this benchmark probably because this set con-
tains many low-frequency mutations. The in vitro cellu-
lar assays we developed provides an efficient assessment
directly based on the functional consequence of a muta-
tion on cell viability, a core feature of driver mutations.
But our assays only assess the conferred survival advan-
tages and may thus miss other functional consequences
of driver mutations, such as their effect on a cell’s ability
to migrate and invade. Further, our assays are not sensi-
tive to detect tumor suppression inactivation due to the
pre-existence of the wild-type copy in the cell models,
and the functional effects of a driver may highly depend
on a specific tumor context that is not well represented
by our “informer” cell lines. Despite these limitations,
based on the complementary benchmarks used, the top
four algorithms are quite consistent, conferring consid-
erable confidence. These algorithms should thus be
given higher priority in practice.
Cancer-specific algorithms show much better perform-

ance than general algorithms for variant functional im-
pact prediction in three benchmark analyses (3D
clustering, p = 1.6 × 10−4; TP53 mutations, p = 0.08; and
in vitro assays, p = 7 × 10−4). One may concern that some
features such as literature annotation have been used in
the training process of some algorithms, and this “data
peeking” may boost their performance in the related
benchmark assessment. But different benchmarks inde-
pendently validate the superior performance of CHASM
and CTAT-cancer. DEOGEN2 and PrimateAI are the
leading algorithms that presumably have not used
cancer-specific information, and their predictive power
should be more robust, especially for mutations in non-
cancer-related genes. We also notice that DEOGEN2 is
the only algorithm that includes pathway/network
information, which may contribute to its outstanding
performance.
Our comprehensive benchmark assessment suggests

valuable directions for future algorithm development.
First, cancer context plays an important role in deter-
mining the effects of a mutation, and some cancer genes
even show distinct functions in different cancer contexts.
Thus, with more and more sequencing and functional
data accumulated, it is essential not only to develop
next-generation cancer-specific algorithms but also
cancer-type-specific algorithms. Second, ensemble-based

algorithms, such as CTAT-cancer, may be more promis-
ing because such crowd-sourced algorithms can effect-
ively balance the limitations of pre-existing algorithms,
as demonstrated in a series of Dream Challenges. Finally,
information from genes other than where the mutation
resides, such genes in a related pathway or regulatory
network, may also help improve the prediction of driver
mutations.

Conclusions
Our study provides a comprehensive performance as-
sessment of 33 algorithms in predicting cancer driver
mutations and suggests that CHASM, CTAT-cancer,
DEOGEN2, and PrimateAI show consistently better per-
formance than the others. These results will inform the
best practice of computationally prioritizing cancer mu-
tation candidates for end-users and suggest valuable di-
rections for the future development of new algorithms.

Methods
Literature review of algorithms
A literature review was performed to classify the features
used by each of the 33 algorithms. We grouped their
original features into six major categories. Features such
as base change frequency, base composition, and gene
annotation were considered as “sequence context.”
Protein-related features such as secondary and 3D con-
formations and biochemical properties were labeled as
“protein feature.” Sequence homology or evolutionary
conservation was grouped into “conservation.” Features
derived from regulatory annotations and epigenomics
data were grouped into “epigenomic information.” Algo-
rithms that used scores from existing functional predic-
tors were assigned to “ensemble score.” Lastly, if an
algorithm was trained using cancer-specific datasets or
was designed to identify cancer drivers, we considered it
“cancer-specific.”

Inter-correlation analysis among algorithms
To measure inter-correlations between algorithms, we ob-
tained prediction scores for ~ 710,000 somatic mutations
processed and compiled by the TCGA MC3 working group
and driver working group [12, 35]. The mutation list was
downloaded from https://gdc.cancer.gov/about-data/publi-
cations/pancan-driver. Prediction scores of most algorithms
were extracted from dbNSFP V4.0 [15] which included
FATHMM-MKL [16], FATHMM-XF [44], MutationAsses-
sor [23], Polyphen2-HDIV [27], Polyphen2_HVAR [27],
VEST4 [34], CADD [6], DANN [10], Eigen [32], Eigen-PC
[32], Integrated_fitCons [18], GenoCanyon [17], DEOGEN2
[11], M-CAP [20], MetaLR [36], MetaSVM [36], MPC [22],
MutPred [25], MVP [26], PrimateAI [28], REVEL [30],
FATHMM-disease [13], SIFT [21], SIFT4G [31], LRT [19],
MutationTaster2 [24], and PROVEAN [29]. CHASM [8]
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scores were retrieved from the CRAVAT web server
(v5.2.4) [45]. CanDrA [7] scores were obtained from http://
bioinformatics.mdanderson.org/main/CanDrA, using the
“cancer-in-general” scores with version plus. TransFIC [33]
scores were obtained from http://bbglab.irbbarcelona.org/
transfic/home. FATHMM-cancer [14] scores were re-
trieved from http://fathmm.biocompute.org.uk/cancer.html.
CTAT-cancer scores and CTAT-population scores were
calculated by performing principal component analysis in
R, as described in the original paper [12]. FATHMM-
disease and FATHMM-cancer were using the same model,
but were trained on different datasets. FATHMM-disease is
for mutations of inherited diseases, while FATHMM-
cancer is for cancer mutations. Next, we converted scores if
a lower original score was more damaging/functional, and
then we calculated Spearman correlations between algo-
rithms using the R function “cor”. Missing values were
omitted. Hierarchical clustering was used to cluster
algorithms and visualize their relativeness.

In vitro cell viability assays
To perform a more objective assessment, we selected
~ 200 mutations to perform cell viability assays, as we
have recently reported [42]. Two growth factor-dependent
cell lines, Ba/F3 and MCF10A, were used. In the absence
of growth factors, driver mutations will confer survival
and proliferation advantages to the cells, while cells with
non-drivers will have reduced survival and proliferation
rates. In each screen, five experimental controls (2 nega-
tive and 3 positives) and corresponding wild-type clones
were included to measure cell viability. Functional calls,
including activating, inactivating, inhibitory, non-
inhibitory, and neutral, were determined by comparing
with the wild-type.

Construction of benchmark sets
3D cluster benchmark
Four algorithms, HotMAPS, HotSpot3D, 3DHotSpots.
org, and e-Driver3D, were used to identify 3D structural
hotspots [12]. For each mutation, we defined the num-
ber of the four algorithms that detected the mutation
within a 3D structure hotspot as “consensus score.” If a
mutation was located within the coding regions of a
known CGC cancer gene and had a consensus score of
≥ 2, we considered it as a positive case. If a mutation was
in a non-cancer gene and had a consensus score of 0, we
considered it as a negative case. As there were far more
negatives than positives, we randomly selected a subset
of negatives to match the number of positive cases to
build the final benchmark set. We generated another set
of negative cases by randomly selecting the same
number of CGC mutations with a consensus score of 0.
The results based on the two different negative sets were
highly consistent.

OncoKB annotation benchmark
OncoKB annotations were downloaded from OncoKB
(https://www.oncokb.org). This version contained 816
oncogenic mutations, 1384 likely oncogenic mutations,
and 421 likely neutral mutations. We excluded 271
mutations annotated as inconclusive from this study.
We considered “likely neutral” as negative case; we used
“oncogenic” mutations only as the first positive set and
used both “oncogenic” and “likely oncogenic” mutations
as the second positive set. We found highly correlated
AUC scores on both positive case sets.

TP53 mutation benchmark
Missense somatic mutations were retrieved from the
IARC TP53 database. We included 1421 mutations with
well-documented genomic nucleotide changes and
amino acid changes for analyses. We obtained the
promoter-specific transcriptional activity measured in
yeast functional assays from the IARC database. In total,
679 mutations with a median transactivation level ≤ 50%
were used as positive cases, and 742 other mutations
were used as negative cases.

In vivo tumor transformation assay benchmark
We obtained 71 somatic mutations, along with their
oncogenicity annotations from the study by Kim et al.
[41]. In the analysis, 45 mutations that were able to form
a tumor larger than 500mm3 in vivo by 130 days were
labeled as “functional” and thus used as positive cases
and 26 other mutations were used as negative cases.

In vitro cell viability assay benchmark
We used the cell viability data of 797 missense muta-
tions from our recent study as well as the newly gener-
ated functional data of 164 mutations. Mutations with
no effects were considered as negative cases. Mutations
annotated as activating, inactivating, inhibitory, or non-
inhibitory were considered as positive cases. We ob-
tained consensus functional call by integrating Ba/F3
and MCF10A cell viability data under a “OR gate” logic.
More specifically, any non-neural mutations by either
the Ba/F3 or the MCF10A model would be annotated as
non-neutral in the consensus call, while mutations anno-
tated as neutral by both the Ba/F3 and MCF10A models
would be annotated as neutral in the consensus call. We
constructed 3 benchmark sets from the published muta-
tions, newly generated mutations, and the combined
mutations of the two. For the final evaluation of the 33
algorithms, we focused on the combined set.

ROC curve construction and AUC score calculation
For each benchmark set, ROC curves were constructed
using the R function roc provided in the pROC package.
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Calculation of five evaluation metrics based on
categorical predictions
For the first benchmark analysis, we randomly selected
1000 positives and 1000 negatives. For each of the 33 al-
gorithms, we used the median score as cutoff to make
binary predictions. We compared the binary predictions
against the “gold standard” truth to calculate sensitivity,
specificity, accuracy, PPV, and NPV using the repor-
tROC function in the reportROC package [46]. The
process was repeated for 100 times to calculate standard
deviations for each metric value. We calculated the same
set of metrics for the other four benchmarks following
the same procedures. We used 400, 500, 20, and 400
positives (and also negatives), respectively. Of the 33 al-
gorithms included in this study, 17 have categorical pre-
dictions or explicit score cutoff values in their original
publications (Additional file 1). We compared the cat-
egorical predictions against the “gold standard” annota-
tion of the mutations as described above. We calculated
the five metrics using the reportROC function and esti-
mated standard deviations for each metric value from
100-time random sampling, for each benchmark dataset.
For the third benchmark analysis, CanDrA and
FATHMM-disease were excluded because they predicted
drivers for all T53 mutations.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-020-01954-z.

Additional file 1. Default prediction categories of 17 algorithms.

Additional file 2. Distribution of 3D cluster consensus scores in the
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in benchmark 1.

Additional file 4. Correlation plot for two evaluations using different
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