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Abstract

Single-cell RNA sequencing has enabled the characterization of highly specific cell types in many tissues, as well as
both primary and stem cell-derived cell lines. An important facet of these studies is the ability to identify the
transcriptional signatures that define a cell type or state. In theory, this information can be used to classify an
individual cell based on its transcriptional profile. Here, we present scPred, a new generalizable method that is able
to provide highly accurate classification of single cells, using a combination of unbiased feature selection from a
reduced-dimension space, and machine-learning probability-based prediction method. We apply scPred to scRNA-
seq data from pancreatic tissue, mononuclear cells, colorectal tumor biopsies, and circulating dendritic cells and
show that scPred is able to classify individual cells with high accuracy. The generalized method is available at
https://github.com/powellgenomicslab/scPred/.

Introduction
Individual cells are the basic building blocks of organ-
isms, and while a human consists of an estimated 30 tril-
lion cells, each one of them is unique at a transcriptional
level. Performing bulk or whole-tissue RNA sequencing,
which combines the contents of millions of cells, masks
most of the differences between cells as the resulting
data comprises of the averaged signal from all cells.
Single-cell RNA-sequencing (scRNA-seq) has emerged
as a revolutionary technique, which can be used to iden-
tify the unique transcriptomic profile of each cell. Using
this information, we are now able to address questions
that previously could not be answered, including the
identification of new cell types [1–4], resolving the cellu-
lar dynamics of developmental processes [5–8], and
identify gene regulatory mechanisms that vary between
cell subtypes [9]. Cell type identification and discovery
of subtypes has emerged as one of the most important
early applications of scRNA-seq [10]. Prior to the arrival
of scRNA-seq, the traditional methods to classify cells
were based on microscopy, histology, and pathological
criteria [11]. In the field of immunology, cell surface

markers have been widely used to distinguish cell sub-
types [12], for a wide range of purposes. While this ap-
proach is desirable in practical terms for cell isolation,
e.g., via fluorescence-activated cell sorting (FACS), these
markers may not reflect the overall heterogeneity at a
transcriptomic and phenotypic level from mixed cell
populations [13, 14]. Unsupervised and supervised clus-
tering approaches have been used to determine groups
of cells based on similar transcriptional signatures within
a sample [2, 15, 16], and frequently, cells within a cluster
are collectively labeled based on the average expression
levels of canonical markers [17]. The cluster-based clas-
sification methods assume that all cells within a cluster
are the same type and thus can be labeled collectively.
This assumption is frequently wrong, with clusters often
containing small percentages of multiple cell types in
addition to a major cell type. A method that classifies
each cell individually, without clustering first, solves
these problems and should provide higher overall accur-
acy in cell labeling. To be able to predict the classifica-
tion of a single cell based upon its transcriptome read-
out, first, a prediction model needs to be built where the
effects of given features are estimated. It is clear that
both the selection of features and estimation of their ef-
fects play a critical role in the overall prediction
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performance. Unlike prediction methods that use data
derived from bulk RNA-seq data where gene expression
averages are used as features, phenotype prediction at
single-cell level faces new challenges. Firstly, cell-to-cell
differences must be considered to define and predict cell
types. Using only a subset of genes (e.g., differentially
expressed genes) will likely exclude discriminant sources
of variation across cells. An additional limitation is the
inconsistency seen between statistical methods used to
identify differentially expressed genes [18]. Finally, if the
number of observations that define a specific subtype of
cells is high, then classification algorithms can be com-
putationally expensive or suffer from overfitting. There
are numerous applications for which prediction of a cell
state or type from its scRNA-seq data can play an im-
portant role. An obvious example is in the burgeoning
use of single-cell data in characterizing disease states
and underlying biology at single-cell resolution [12, 19].
The granular nature of single-cell characterization has
enormous implications for the accurate prediction of
specific cell subtypes and pathological-related states. We
anticipate that such prediction strategies will play an im-
portant role in the early diagnosis of diseases or inform-
ing personalized treatment. Similarly, efforts arising
from the Human Cell Atlas [10] are set to create a com-
prehensive reference atlas of most cell subtypes in the
human body, meaning cells from new samples can be
mapped against this reference. Here, we introduce
scPred, a method that takes advantage of dimensionality
reduction and orthogonalization of gene expression
values to accurately predict specific cell types or states

of single cells from their transcriptional data (see Fig. 1).
scPred can be applied to any situation where cells can be
labeled into discrete categories, including cell subtypes
or defined cell states.

Results
scPred is a generalized method for classifying a single
cell based on its transcriptional data. The method uses a
combination of decomposing the variance structure of a
gene expression matrix to identify limited informative
features, and a machine learning approach to estimate
the effect of these features on classifying cells (Fig. 1). In
doing so, it is able to incorporate a large number of
small differences in the mean and variance of gene ex-
pression between different cell types in the prediction
model. This removes the need to perform gene-specific
analyses such as to identify informative features. scPred
has two main steps. Firstly, a prediction model is built
using a training cohort of single-cell data, where the
identity of the cells is already known. Secondly, the ap-
plication of the prediction model to single-cell data ob-
tained from independent sample, with each cell then
assigned a conditional class probability (y = 1|f) of be-
longing to a given cell subtype or state. scPred incorpo-
rates a rejection option to avoid assigning cells to a class
when the conditional class probability is lower than a
given value. In the case of binary classification, this
means that Pr(y = 1|f) and Pr(y = 0|f) should be higher
than a probability threshold for a cell to be assigned to
any class respectively. When the maximum probability
across all classes is lower than the threshold, then a cell

Fig. 1 Summary of the scPred method. a Training step. A gene expression matrix is eigendecomposed via singular value decomposition (SVD) to
obtain orthonormal linear combinations of the gene expression values. Only PCs explaining greater than 0.01% of the variance of the dataset are
considered for the feature selection and model training steps. Informative PCs are selected using a two-tailed Wilcoxon signed-rank test for each
cell class distribution (see the “Methods” section). The cells-PCs matrix is randomly split into k groups and the first k group is considered as a
testing dataset for cross-validation. The remaining K-1 groups (shown as a single training fold) are used to train a machine learning classification
model (a support vector machine). The model parameters are tuned, and each k group is used as a testing dataset to evaluate the prediction
performance of a fi(x) model trained with the remaining K-1 groups. The best model in terms of prediction performance is selected. b Prediction
step. The gene expression values of the cells from an independent test or validation dataset are projected onto the principal component basis
from the training model, and the informative PCs are used to predict the class probabilities of each cell using the trained prediction model(s) fb(x)
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is labeled as “unassigned.” Sensitivity and specificity met-
rics reported in this paper consider the “unassigned”
label as incorrect. Therefore, computed probabilities for
cells in the test dataset are below the threshold, all of
them are labeled as unassigned, and the sensitivity and
specificity are both equal to zero (see the “Methods” sec-
tion). This criterion avoids misclassifying cells when
some cell types are not considered in the prediction
model but are present in the test data. For all analyses in
this paper, we used a strict threshold of 0.9. This thresh-
old can be changed in the software implementation.
Here, we present the results of the application of scPred
under four distinct scenarios.

scPred can accurately predict tumor epithelial cells from
gastric cancer
We initially sought to demonstrate the performance of
scPred by making computational predictions of tumor
and non-tumor cells based on their transcriptomes and
validating our classification using a cell-specific inde-
pendent immunohistochemistry assay targeting the
MLH1 and PMS2 protein expression. We used this

information as an RNA-independent gold-standard to
annotate the status of all cells. The loss of MLH1 pro-
tein expression has been shown to be related to a hyper-
mutable state of microsatellite instability which can be
detected at single-cell resolution from the raw scRNA-
seq data [20]. Along with the protein depletion con-
firmed by the immunochemistry assay, we confirmed the
loss of expression of MLH1 at the RNA level, as well as
the upregulation of EPCAM and TFF3 in tumor cells,
which are known to be overexpressed in cancer cells [21,
22] (see Additional file 1: Figure S1). Thus, we have a
method for linking the observed scRNA-seq data to the
immunohistochemistry-labeled classification for each
cell. We obtained surgical biopsies from stage IIA intes-
tinal gastric adenocarcinoma along with matched-
normal epithelium from two patients and measure the
protein expression of MLH1 and PMS2 to validate the
presence of tumor cells. Then, we generated scRNA-seq
data for four samples using the Chromium platform
(10X Genomics). For the first pair of samples, we ob-
tained 1905 epithelial cells based on the expression of
EpCAM, and from these identified tumor cells based on

Fig. 2 Classification performance of tumor cells from gastric adenocarcinoma. scPred shows high prediction accuracy to classify tumor cells (0.979
(95% bootstrap CI 0.973–0.984) and non-tumor cells 0.974 (95% bootstrap CI 0.960–0.989). scPred outperforms predictions based on differentially
expressed genes and per-cell mean of log2(CPM + 1) (prediction baseline). Ten bootstrap replicates were used to assess the prediction
performance of all methods
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the microsatellite stability, and trained a model to detect
differences between tumor and non-tumor epithelial cells.
Using cells from the second pair of samples, we then ap-
plied this model to classify cells using just the scRNA-seq
data. We then confirmed our predictions using the observa-
tion of microsatellite instability. Overall, we obtained a sen-
sitivity of 0.979 and specificity of 0.974 (AUROC= 0.999,
AUPRC = 0.999, F1 score = 0.990) across the ten bootstrap
replicates (Fig. 2 and Additional file 2: Table S1). To dem-
onstrate the increase in performance from using the princi-
pal components selected by scPred as features, we
compared the prediction performance of scPred against five
baselines. First, we fitted an SVM model using scPred and
used only the intercept of the hyperplane as a predictor to
evaluate any bias in the predictor due to class proportions.
We obtained sensitivity and specificity equal to zero
(AUROC= 0.5 and AUPRC= 0) and thus show no bias
when cell classification is attempted for unequal ratios of
cells. Then, we evaluated the contribution of the inform-
ative principal components by setting all the coefficients of
the hyperplane to 1. We found that the sensitivity was 0
and the specificity 0.995 (AUROC= 0.496, AUPRC = 0.538,
F1 = 0.000), which indicates that the predictors should be
weighted to separate the cells accurately into tumor and
non-tumor. To demonstrate the importance of the feature
selection performed by scPred, we used all principal com-
ponents as predictors to having a baseline of the expected
classification from all data. We obtained sensitivity and spe-
cificity equal to zero (AUROC= 0 and AUPRC = 0.398,
F1 = 000), which implies that the informative principal
components recover the cell-type informative variance from
the entire data. To evaluate how the global cell composition
can predict tumor status, we calculated the per-cell mean
of the log2(CPM+ 1) and trained a model using these
values as a predictor. After performing the predictions on
the test data, we obtained a sensitivity of 0.894 and specifi-
city of 0.902 (AUROC= 0.912, AUPRC= 0.912, F1 = 0.916).
The lower performance compared to the default scPred al-
gorithm demonstrates using principal components for fea-
ture selection captures variance in gene expression that
cell-type specific. Finally, we calculated the differentially
expressed genes between tumor and non-tumor cells to ob-
tain a set of discriminant genes. We used these genes as
features to train a model, and after the predictions, we ob-
tained sensitivity and specificity of 0.903 and 0.909 respect-
ively (AUROC= 0.937, AUPRC= 0.931, F1 = 0.922). For all
analyses, we performed ten bootstrap replicates with the
same data partitions used before. These results show that
scPred yields higher accuracy than our baseline models and
outperforms predictions based on differentially expressed
genes (see Fig. 2 and Additional file 2: Table S1). Next, we
investigated the effect of sequencing depth and the number
of cells of a given cell type on the prediction performance
of scPred. First, we down-sampled the reads from each cell

in the training data by scaling the gene counts so that each
cell had fewer than a fixed N number of reads. We evalu-
ated a range of sequencing depths from an average of 5000
to 40,000 reads per cell to train the models and predicted
the cell types from the test data. We repeated this process
ten times using the same data partitions from previous ana-
lyses. The sensitivity of the classification showed no
changes across sequencing depths, while the specificity,
AUROC, and AUPRC showed a considerable decrease once
the average reads per cell are 20,000 (Additional file 1: Fig-
ure S2). Based on the cellranger output, we estimate that
20,000 reads per cell represent approximately 50% satur-
ation of the library. We, therefore, recommend training
models on cells that have been sequenced to high satur-
ation. Finally, we assessed the impact of the cell population
size in the prediction accuracy by performing bootstrap it-
erations of classifying cells using a training model generated
with between 100 and 900 randomly sampled tumor cells.
We observed a small effect on the AUROC, AUPRC, F1
score, sensitivity, and specificity until the number of tumor
cells included in the training model was less than 200.
When only 100 cells were included (AUROC= 0.996,
AUPRC = 0.996, F1 = 0.990), the mean sensitivity dropped
down to 0.741 while the specificity changed from 0.974 to
0.885 with respect to the 953 cells used originally (see Add-
itional file 1: Figure S3). Collectively, these results show that
scPred can accurately classify cells provided they are not a
very rare type in the training data.

scPred can accurately predict cell subtype using scRNA-
seq data generated across different platforms
Given the rapid development of single-cell sequencing
assays and technologies, we anticipate that a prediction
model for a given cell subtype(s) will often be built with
data generated from an alternative platform to that used
for independent test samples. To assess the robustness
of scPred, we sought to evaluate the performance using
training data generated from multiple platforms and
testing the prediction accuracy for independent cells se-
quenced on another platform. We chose to develop a
prediction model using scPred to classify subtypes of is-
lets of Langerhans cells from scRNA-seq data generated
from pancreas tissue due to their limited abundance
(4.5% in a pancreatic tissue sample) [23], and thus will
represent a class of cells that is expected to be more dif-
ficult to predict based on their low relative existence
compared to other cells. Islets of Langerhans are com-
posed mainly of four distinct cell types, namely α
(alpha), β (beta), δ (delta), and γ (gamma) cells, that are
responsible for producing glucagon, insulin, somato-
statin, and pancreatic-polypeptides, respectively [24]. We
generated a training reference cohort of scRNA-seq data
from a total of 4292 cells from three independent studies
undertaken by Muraro et al. [25], Segerstolpe et al. [3],
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and Xin et al. [26] that had sequenced cells using CEL-
seq2 [27], Smart-Seq2 [28], and SMARTer [29], respect-
ively. Details of the training cohort data are given in
Additional file 2: Table S2. Importantly, using the Seurat
alignment method [30], we are able to demonstrate that
between platform and between sample batch effects can
be removed for the training cohort (Fig. 3). The best fit
models from scPred for α, β, δ, and γ cells used between
14 and 18 PCs, which represents a small feature space
for prediction in an independent data, and correspond-
ingly will reduce the computational requirements of
scPred in the testing phase. Using the prediction classi-
fier model trained from the aligned reference cohort
data, we naively predicted the cell type of each of 7932
cells [31], collected from four healthy individuals, using
their scRNA-seq data generated using inDrop [32]. The
testing data includes a heterogeneous mix cell islets of
Langerhans cells, meaning non-α, β, δ, and γ cells, such
as epsilon, endothelial, or T cells, provide a negative

control. We classified a cell as a specific cell subtype
based on a class probability (Pr(y = 1|f)) greater than 0.9.
The overall accuracy of the predictions was evaluated
based on the known cell identities determined based on
the expression of classic markers (GCG, INS, SST, and
PPY). For islets of Langerhans cells, the prediction
model built by scPred using the scRNA-seq data from
the reference cohort was able to predict cell type with
an average accuracy of 97.68% (Table 1 and Fig. 3) and
accurately labeling 94.9% heterogeneous populations of
other cells. For example, of the 2302 α cells in the test
cohort, our scPred model classified 2264 cells correctly.
Of the 38 misclassified cells, 33 were unassigned to an-
other target cell type, which also demonstrates a high
specificity of the model. We observed the same pattern
for all cell types tested (Additional file 2: Table S3). To
further support this conclusion, the mean Pr(y = 1|f) for
cells classified as α, β, δ, and γ was 0.994–0.997, while cells
classified as other (i.e., epsilon, endothelial, or T cells) had

Fig. 3 Principal component alignment of pancreatic cells. a Training (Muraro, Segerstolpe, and Xin) datasets [3, 25, 26] were used to generate the
training eigenspace. The test dataset (Baron et al. [31]) was projected, and all datasets were aligned using Seurat. No batch effect is observed
after the alignment. b α, β, δ, and γ cells are included in the training datasets. The prediction dataset contains also 2326 “other” cell types such as
epsilon, acinar, stellate, ductal, endothelial, Schwann, and T cells (bright green cells). After the dataset alignment, cells cluster by cell type. The X-
axis shows variance explained (exp.var.), principal components (PC), and aligned principal components (APC)
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a mean Pr(y = 1|f) of 0.307 (Additional file 1: Figure S4).
To evaluate the effect of the Seurat manifold alignment on
data integration across platforms, we performed the sam-
ple cell classifications using trained models developed
using unaligned data. We observed a reduction of 31% in
sensitivity and only 0.7% in specificity (see Additional file 3:
Table S4). Then, we compared the performance of other
prediction models (k-nearest neighbors, elastic net, Naive
Bayes, multivariate adaptive regression splines, random
forests, and generalized linear model) to support vector
machines. Overall, support vector machines with a radial
kernel showed the highest accuracy for detecting cells
from the islets of Langerhans while reducing the propor-
tion of other cells being miss-classified (see Additional file
2: Table S5). Together, these results show that support
vector machines are ideal for classifying single cells from
an informative feature eigenspace.
To further demonstrate the application of a scPred

model in multiple datasets, we trained a prediction
model on the Baron data and assessed its prediction per-
formance on the Muraro, Segerstolpe and Xin datasets.
We obtained an average accuracy of 0.98, 0.92, 0.93, and
0.82 for alpha, beta, delta, and gamma cells respectively
using the Baron dataset as reference only (see Additional
file 2: Table S6). Finally, we compared the performance
of scPred with scmap [33], CaSTLe [34], singleCellNet
[35], and scID [36] methods. For scmap, we applied both
cluster and cell projection algorithms to annotate cells
based on their proximity to the reference dataset. Scmap
failed to identify all gamma cells using both algorithms
and exhibited low performance classifying delta cells by
yielding at most 14% of accuracy using the Baron dataset
as reference (see Additional file 2: Tables S7 and S8).
Likewise, CaSTLe exhibited an accuracy of zero for clas-
sifying gamma cells in both Segerstolpe and Xin datasets
and very poor accuracy to detect beta and delta cells
(see Additional file 3: Table S9). singleCellMap suffered
from very low accuracy for gamma cells with only 9% of

accuracy (see Additional file 3: Table S10). scID classified
gamma cells from the Segerstolpe and Xin datasets with
high accuracy (96% and 94% respectively), however, it
failed to classify 99% from the Muraro dataset (see Add-
itional file 3: Table S11). These results show that the fea-
tures selected from the decomposed training data are
able to define hyperplanes that are able to separate indi-
vidual cells by cell type, based upon linear combinations
of scRNA-seq data fitted to a scPred models.

Accurate prediction of peripheral blood mononuclear
cells
Peripheral blood mononuclear cells (PBMCs) comprise di-
verse groups of cells that are extensively studied because of
their role in mediating adaptive and innate immune re-
sponses as well as their implication in autoimmune, meta-
bolic, and infectious diseases [37, 38]. Here, we aimed to
classify PBMCs from which their cell identity was deter-
mined based on fluorescence-activated cell sorting (FACS)
[39]. For doing so, we developed a hierarchical tree-based
prediction approach in which individual cells are classified
along with categories following the hematopoietic lineage
of PBMCs (see Fig. 4). This strategy decomposes the prob-
lem of predicting closely related cells by training models for
cell types that are comparable in terms of their variance
and hierarchic organization in the hematopoietic lineage.
Firstly, a cell is classified as myeloid, lymphoid, or progeni-
tor. Secondly, all cells predicted as lymphoid are further
subcategorized into B cells, T cells, and Natural Killer. Fi-
nally, the cytotoxic state of the predicted T cells is assigned.
For each level in the hierarchy, a scPred model was trained.
To verify the performance of this approach, we compared
the cell type information derived from FACS versus the
predictions made by scPred based exclusively on the tran-
scriptome. We performed ten bootstrap replicates to esti-
mate to test the performance of our approach by splitting
the 94,655 PBMCs into training and test groups. Overall,
97.67% of the cells from the test group (45, 884 out of 47,

Table 1 Prediction of pancreatic cells. The training panel corresponds to the Muraro, Segerstolpe, and Xin datasets used as a
reference to train the prediction models for each cell type from the islets of Langerhans. As part of the training, no other cell types
were considered. The test information corresponds to the Baron [31] dataset used to measure the performance of the trained
models in an independent dataset. The Baron dataset contains epsilon, acinar, stellate, ductal, endothelial, Schwann, and T cells
referred as “Other” in this table. The accuracy is defined as the fraction of cells correctly assigned for each cell type of interest. The
accuracy for the remaining cells corresponds to the fraction of cells from the test dataset that are correctly unassigned to any of the
classes of interest (negative controls) as a consensus across all four prediction models
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328) were classified correctly (see Fig. 4). Notably, the high-
est and lowest accuracies obtained for a cell-type group
were 99.7% and 95.13% for lymphoid cells and cytotoxic T
cells respectively. Bootstrap 95% confidence intervals are re-
ported in Additional file 1: Table S12. These results demon-
strate that scPred can accurately classify cells that share
very similar transcriptional profiles.

Accurate prediction of human dendritic cells from data
generated across laboratories
We next sought to evaluate the performance of scPred
when the training and testing cells sequenced using the
same protocol but in different laboratories. For develop-
ing single cell-based diagnostic tests, this is an important
consideration, as in the majority of cases a predictive

model will be developed using sequence data generated
from different laboratories to those conducting testing.
Between-site effects could bias the predictive perform-
ance of a test if the between-site batch effects are con-
founded with the model classification features. While
between-site variance for bulk-RNA-sequencing is small
[40], it has not yet been fully evaluated for scRNA-Seq.
We chose to evaluate the performance of scPred by
building a prediction model to identify dendritic cells
from peripheral blood samples [1]. Dendritic cells are
antigen-presenting cells, and their main function is to
process antigen material and present it on the cell sur-
face to T cells, acting as messengers between the innate
and adaptive immune systems. Using the cell type classi-
fication based on scRNA-seq and flow validation given

Fig. 4 Prediction results of PBMCs. The average number of cells for each cell type across all ten bootstrap replicates is shown. (i) First, every single
cell was classified as myeloid, lymphoid, or blood progenitor. (ii) A second layer of prediction is used to classify all lymphoid cells as B cells, T
cells, or natural killer. (iii) Finally, all T cells are subclassified as cytotoxic or non-cytotoxic. Confidence intervals for mean estimates are included in
Additional file 2: Table S12
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in Villani et al. [1], we built a scPred prediction model
using scRNA-seq data generated using the SMART-seq2
protocol for 660 dendritic cells. The best fit model from
scPred used 11 PCs, which collectively explained 5.97%
of the variance in the entire training data cohort.
We then applied our model to predict dendritic

cells from two independent test data cohorts consist-
ing of scRNA-seq data from a heterogeneous mix of
cells from peripheral blood (461 cells) and umbilical
cord (420 cells), also generated using the SMART-
Seq2 protocol in a different laboratory [41]. Notably,
the accuracy for peripheral blood-derived cells was
98% (Table 2, Fig. 5 and Additional file 2: Table
S13). When we applied the scPred model to the cells
obtained from an umbilical cord, the overall accur-
acy was 82%. This lower prediction accuracy possibly
reflects a contamination or incorrect original classifi-
cation of cells obtained from the umbilical cord. To
evaluate this, we looked for differentially expressed
genes between the 60 cells with a dendritic cell class
probability of < 0.9 and the remaining cord cells (see
Additional file 3: Table S14). We identified upregula-
tion of genes overlapping the T cell receptor gamma
locus: TRGC2, TARP, and X06776 (a truncated
mRNA from the TRG gamma gene). Additionally, an
over-representation of myeloid and neutrophil-
related biological processes for upregulated genes
was identified in these cells (see Additional file 3:
Table S15). All gene ontologies corresponded to
myeloid cells, and the presence transcripts from a T
cell specialized locus suggests the presence of T cells
or alternatively greater heterogeneity in cord-derived
cells. Collectively, these results demonstrate that
scPred is able to accurately predict cell classes using
a model trained on data generated in a different la-
boratory to the test data, without the need to
normalize data between sites. This implies that any
potential batch effects, or laboratory effects, are not

captured in the informative features used to develop
the prediction model.

Accurate classification when cell types are imbalanced
Primary tumors contain cells that are both tumor and
non-tumor cells of varying types. However, importantly,
tumor cells originate from the same cell subtypes of one
or more of the original healthy cells in a tissue. Numer-
ous methods exist for classifying (or diagnosing) a whole
tissue biopsy as either cancerous or non-cancerous based
on DNA genotyping [42], transcriptome profiling [43,
44], or histochemistry [45, 46]. Most of these methods
work well, but are unable to accurately classify hetero-
geneity at a cellular level, and do not work if the per-
centage of tumor cells in a biopsy is small. We applied
scPred to predict epithelial tumor cells from a heteroge-
neous population of cells from tumor- and normal
mucosa-matched samples from 11 colorectal cancer pa-
tients [47]. Of the 275 cells from colorectal cancer sam-
ples, the imbalance in the proportions of colorectal
cancer epithelial stem/TA-like cells compared to healthy
controls was a 1:5 ratio of normal to tumor cells. The
prediction accuracy was evaluated using a bootstrapping
method, training on a randomly sampled 75% of the data
and predicting on the remaining 25%, while correcting
for class imbalance using the smote algorithm [48]. To
estimate the variance of prediction accuracy, 50 boot-
straps were performed, and the mean across replicates
was calculated (see the “Methods” section). Overall, the
mean area under the receiver-characteristic function was
96.4 with 95% confidence intervals of 95.5–97.2 (Fig. 6a).
Likewise, the mean precision-recall curve was 0.992
(95% confidence intervals of 0.989–0.995) (Fig. 6b).
Given the imbalance in the proportions of colorectal can-
cer, the high area under the precision-recall curve and
small confidence intervals indicate that scPred is robust to
class imbalance in the training data. The high specificity
of the model under this scenario implies that a single-cell

Table 2 Prediction of dendritic cells from Breton et al. test data. The first column corresponds to the sample origin of the dendritic
cells analyzed by Breton et al. The second column shows the class label assigned by scPred. The accuracy is reported by sample
origin. Importantly, only 10 dendritic cells out of 461 were classified as monocytes. This demonstrates the high accuracy achieved by
scPred to distinguish dendritic cells from monocytes from peripheral blood. For umbilical cord derived-cells, only 14 out of 420 cells
were classified as monocytes and 60 were unassigned as their probability to belong to any of the classes from the training set was
low. As discussed in the main text, we argue that these cells correspond to other cell subtypes
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prediction method would be able to accurately diagnose
disease status using scRNA-seq data from a limited num-
ber of cells. For example, here, the mean sensitivity for
tumor cells is 0.761 and the specificity is 0.958. Thus, if in
a patient sample 100 cells were single-cell sequenced, the
probability of incorrectly classifying 10 cells as a tumor
cell from a healthy individual would be 6.3 × 10−7. Con-
versely, once 10 cells are correctly classified tumor cells in
a true tumor biopsy, the probability of accurately diagnos-
ing the disease state is approximately 1.

Discussion
Single-cell RNA sequencing has provided the ability to
analyze the transcriptomic profile of individual cells, leading
to the identification of novel cell types and the
characterization of heterogeneous cell populations. Here,
we introduced scPred, a novel method to classify single cells
based on singular value decomposition and a support vec-
tor machine model. scPred takes advantage of the inform-
ative signals spread across orthonormal linear
combinations of the gene expression values and minimizes
the incorporation of noise to the prediction model by ex-
cluding principal components with a low contribution to

the variance explained. scPred uses support vector ma-
chines as a default machine learning approach as it is suit-
able for large datasets and accounts for various sources of
data [49]. Supervised machine learning methods have been
used in previous studies to classify various cell types such
as retinal bipolar cells [50] and embryonic stem cells [51].
Here, we have shown that scPred shows high accuracy in a
variety of relevant biological and clinical scenarios which
include predicting pathological cell states from gastric and
colorectal cancer as well as characterizing the cell-type
composition of peripheral blood mononuclear cells. Col-
lectively, our results show that scPred is able to accurately
classify individual cells from an independent sample to
those used to train the prediction model. However, the abil-
ity to do so even when using a training cohort of cells
whose scRNA-seq data is assayed from different platforms
has important implications for a practical implementation
of scPred. The ability to build a single-cell training cohort
using data generated from multiple platforms means that
composite reference datasets can be generated, which will
increase the predictive accuracy of scPred through a more
accurate estimate of the model effects. One of the advan-
tages of scPred is that by reducing the dimensions of the

Fig. 5 Prediction of human dendritic cells. a The training dataset (Villani et al.) of dendritic cells and monocytes was eigendecomposed (orange
and yellow points and density lines). b Dendritic cells from the test dataset (Breton et al) were projected onto the training eigenspace (purple
points). scPred predicted 98% of dendritic cells derived from peripheral blood correctly and 82% from umbilical cord (Breton et al.). Blue points
correspond to cells that were misclassified and black points to unassigned cells
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gene expression matrix via singular value decomposition
we also decrease the number of features to be fit, reducing
both the computational requirements for prediction and
the prediction model parameter space. While we have
used a support vector machine method, the scPred soft-
ware can be easily adjusted to use other classification algo-
rithms [52], allowing a user to choose the models that suit
the effect distributions of their data best.

Methods
The scPred method is split into two major steps. First, a
prediction model is built using a training dataset of
scRNA-seq data. The second step is the application of this
prediction model to scRNA-seq data obtained from inde-
pendent sample, with each cell then assigned a probability
of belonging to a given class based on the fit of its scRNA-
seq expression levels in the prediction model. Below, we
have outlined the methods for each of these steps. We
start with a single-cell gene expression matrix CTrain

(CPM values—count per million mapped reads) obtained
from different characterization classes: for example, from
different cell subtypes, cells obtained from disease versus
control samples, or cells defined as different states.

Training step
The training expression matrix is log2-transformed
log2(GTrain+1) to linearize the expression values for each

gene and stabilize the variance across a large expression
range. Let GTrain be the log2-transformed expression
matrix CTrain with n single cells and m genes:

GTrain ¼
x11 x12 x13 ⋯ x1m
x21 x22 x23 ⋯ x2m
⋮ ⋮ ⋮ ⋱ ⋮
xn1 xn2 xn3 ⋯ xnm

2
664

3
775

We subsequently center and scale GTrain using the
mean and standard deviation of gene expression values
of each gene, calculated using the following formulas:

μ ¼ 1
n

Xn
i¼1

x1 σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

Xn
i¼1

xi−μð Þ2
s

Each mean is subtracted from all mth elements of their
corresponding nth row, and the result is divided by the
respective standard deviation as follows:

M ¼

ðx11−μ1Þ=σ1 ðx12−μ2Þ=σ2 ðx13−μ3Þ=σ3 ⋯ ðx1m−μmÞ=σm

ðx21−μ1Þ=σ1 ðx22−μ2Þ=σ2 ðx23−μ3Þ=σ3 ⋯ ðx2m−μmÞ=σm

⋮ ⋮ ⋮ ⋱ ⋮

ðxn1−μ1Þ=σ1 ðxn2−μ2Þ=σ2 ðxn3−μ3Þ=σ3 ⋮ ðxnm−μmÞ=σm

2
66664

3
77775

We next calculate orthogonal vectors for the gene ex-
pression values using a singular value decomposition

Fig. 6 Prediction results of colorectal cancer epithelial stem/TA-like cells. The performance of the prediction was measured using the receiver
operating characteristic area under the curve (ROC AUC) and the precision-recall area under the curve (PR AUC). 95% confidence bands are shown in
both cases for 50 bootstrap replicates. a ROC AUC. The area under the curve shows the relationship between the cells incorrectly assigned to that
come from tumor samples versus the ones that were correctly assigned by the prediction model as tumor cells using a series of different threshold
points. b PR AUC. The area under the curve measures the relationship between the cells correctly classified as tumor cells versus the fraction of cells
correctly assigned as tumor cells from the total number of cells classified as tumor cells. An AUC value of 0.992 shows robustness to class imbalance
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(SVD) method. To do so, the matrix M needs to be fac-
torized into the product of three matrices as follows:

M ¼ U
X

VT

where U and V are orthonormal matrices and Σ a diag-
onal matrix.
First, we compute the product MMT. To find U, we

orthogonally diagonalize MMT.

MMT ¼ U
X

VT
� �

V
XT

UT
� �

¼ U
XXT

UT ¼ UDU−1

Then, U contains the eigenvectors of MMT (or left sin-
gular vectors of M) and D its eigenvalues.

U ¼
c11 ⋯ c1n
⋮ ⋱ ⋯
c1n ⋯ cnn

2
4

3
5

Similarly, to calculate V, we compute the product MTM
and diagonalize MTM to calculate its eigenvectors and
eigenvalues.

MTM ¼ V
XT

UT
� �

U
X

VT
� �

¼ V
XT X

VT ¼ VDV −1

V contains the eigenvectors of MTM (or right singular
vectors of M) and D its eigenvalues.

V ¼
v11 ⋯ v1m
⋮ ⋱ ⋮

v1m ⋯ vmm

2
4

3
5

Σ is a diagonal matrix with the squared root eigenvalues
of MTM (or singular values of M) along the diagonal.

X
¼

s11
⋱

snm

2
4

3
5

The matrix product UΣ gives the principal compo-
nents (PCs) or “scores”, which are a new set of un-
correlated linear variables that capture the maximum
variance from the single-cell expression matrix M.
The individual squared values of the diagonal entries
of Σ divided by the sum of all squared values give the
variance explained by each principal component. PCs
are in descending order according to the variance
each of them explains.

S ¼ U
X

We next identify the PCs whose scores have signifi-
cant differences between the classification cell classes.
We initially create a subspace of S (namely R with n
rows and r columns -dimensions-), such that each

dimension explains at least 0.01% of the variance of
the matrix M. However, it is important to note that
at this stage, we do not select features to fit in a pre-
diction model. To identify the informative dimensions,
a two-tailed Wilcoxon rank-sum test is performed for
each PC to assess whether there is a significant differ-
ence in the distributions of PC scores for cells in dif-
ferent classes. The resulting p values are adjusted for
multiple testing using a Benjamini-Hochberg false dis-
covery rate correction. Columns from R are ranked in
ascending order based on their corresponding p
values. This step allows us to identify PCs with the
largest difference in their distributions of the scores
between the classes, and thus is expected to be the
most informative as features used as input predictors
in a classification model.
From R, we create a subspace F with only f col-

umns with associated adjusted p values less than
0.05. The columns of F are used as features to train
a support vector machine model with a radial kernel.
A support vector classifier consists of a subspace
(called hyperplane) of dimension h-1 with regard to
its ambient high dimensional space H with h dimen-
sions, which linearly separates the observations
(cells) according to the class they belong to. A mar-
gin around the hyperplane is defined in order to
minimize the misclassifications. The width of the
margin is determined by observations called support
vectors. Here, we find a hyperplane that separates
single cells based on their PC scores into the classi-
fication classes. Those cells that define the margin
can be thought of as supporting cells of the
hyperplane.
When the observations cannot be separated in the fea-

ture space using a linear boundary, a “kernel trick” is used
to map observations into a high-dimensional space where
they can be linearly separated by a hyperplane. Let Φ be a
function that maps single cells from a F space of f dimen-
sions to a higher dimensional space H.

Φ : F→H

And k(x, x1) be a kernel function that returns the inner
product of the images of two cells (based on the values
of the f principal components in F).
k(x, x1) = 〈Φ(x),Φ(xi)〉
However, instead of computing a feature map Φ for all

observations, the following shortcut is possible using a
Gaussian radial basis kernel [53]:

Φ xð Þ;Φ xið Þh i ¼ exp −σ∥x−x1∥
2� �
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where σ is a constant greater than zero estimated via
cross-validation. Thus, Eq. (7) can be rewritten as:

k x; xið Þ ¼ exp −σ∥x−xi∥
2� �

Hence, the coordinates of the cells in H are not
computed.
Then, we can define a function f(x) that returns a deci-

sion value which indicates whether a cell belongs to a
class or the other using the kernel function.

f xð Þ ¼
Xn
i¼1

αik x; xið Þ

αi parameters are estimated by solving the following
minimization problem:

t w; ξð Þ ¼ 1
2
∥w∥2 þ C

n

Xn
i¼1

ξ i

subject to

∀i∈ 1;…; nf g yi xi;wh i þ bð Þ≥1−ξ i
ξ i≥0

And being the hyperplane defined by the following set:

x∈H j w; xh i þ b ¼ 0f g
w is a weight vector in the feature space N perpendicular
to the hyperplane which helps to define the margin, ξ is
a slack variable that allows each cell to be on the wrong
side of the hyperplane or the margin in order to deal
with outliers, n is the number of observations (cells), yi
is a variable that indicates whether the cell xi belongs to
one class (y = 1) or the other (y = − 1), and C is a cost
parameter that penalizes the sum of ξi . As C increases,
the margin becomes wider and more tolerant of viola-
tions by cells. By enlarging the feature space using a
polynomial kernel, the cells are linearly separated in H
[54]. To train the model, we determine the cost C and σ
parameters via cross-validation and select the values that
maximize the prediction performance. Finally, class
probabilities are calculated using a sigmoid function fit-
ted on the decision values returned by the classifier f(x)
[53].

Pr y ¼ 1j fð Þ ¼ 1
1þ eAfþB

The final trained model consists of a set of parameters
that maximizes the margin between the training

observations and the hyperplane in order to separate sin-
gle cells according to their classification class. K-fold
cross-validation is performed as described in the caret
package [52]. If the number of classes is more than two
for the response variable, then n binary classification
models are trained. For each classification model, we
categorized all cells into two classes depending on the
class being studied: positive class (cell type(s) of interest)
and negative class (remaining cell types), “one-versus-all”
approach.

Prediction step
Once the model has been trained and evaluated, it can
be used to classify single cells from an independent data-
set from which the cell classes are unknown. Here, we
apply the trained model(s) to classify cells from a testing
dataset.
Given a test expression matrix CTest with n single cells

as rows and m genes as columns, let GTest be the log2-
transformed expression matrix CTest:

GTest ¼
x11 x12 x13 ⋯ x1m
x21 x22 x23 ⋯ x2m
⋮ ⋮ ⋮ ⋱ ⋮
xn1 xn2 xn3 ⋯ xnm

2
664

3
775

The matrix is centered and scaled using the means and
variances calculated from GTrain:

MTest ¼
x11−μ1ð Þ=σ1 x12−μ2ð Þ=σ2 x13−μ3ð Þ=σ3 ⋯ x1m−μmð Þ=σm
x21−μ1ð Þ=σ1 x22−μ2ð Þ=σ2 x23−μ3ð Þ=σ3 ⋯ x2m−μmð Þ=σm

⋮ ⋮ ⋮ ⋱ ⋮
xn1−μ1ð Þ=σ1 xn2−μ2ð Þ=σ2 xn3−μ3ð Þ=σ3 ⋯ xnm−μmð Þ=σm

2
664

3
775

and MTest is projected onto the training PCA coordinate
basis using the rotation matrix V after log2-transforming
and scaling the data according to the training feature
space:

P ¼ MtestV

P contains the projection of the single cells from test
dataset onto the PCs from the training data. Informative
PCs listed in the R training subspace are extracted from
R and used as features to predict the classification clas-
ses of the cells from the test dataset using the trained
support vector machine model (see Fig. 1).
If more than two models were trained, all cells in P

are classified using the c trained models. If the max-
imum probability obtained across all models is greater
than a threshold (0.9 by default), the cell is labeled ac-
cording to the positive class corresponding to model the
highest probability; otherwise, the cell is labeled as
“Unassigned.”
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Predicting cell type from scRNA-seq data using scPred
Our scPred method provides a generalized framework to
classify a given cell based on its gene expression values.
Importantly, our method is designed to solve the prob-
lem of individual gene feature selection and enable sub-
tle effects spread across many genes to be utilized
through orthogonal components of variance. In doing
so, we anticipate an increase in the prediction perform-
ance over current gene-centric feature selection, as
scPred will incorporate the small effects of many genes.
To demonstrate both the utility and performance of
scPred, we first validated the performance against an or-
thogonal molecular assay and then addressed three dis-
tinct biological examples of classification of single cells:
firstly, by predicting specific α, β, δ, and γ cell subtypes
from pancreas islets of Langerhans; secondly, classifying
dendritic cells using a heterogeneous mix of single cells
as a reference; and finally, identifying the presence of
cancer cells from a heterogeneous composition of cells
from whole tissue in both tumors and matched healthy
controls. For all datasets, we removed all cells above or
below 3 median absolute deviations (MAD) from the
median library size, mitochondrial, and ribosomal gene
expression. Furthermore, all genes with zero counts
across all cells and genes not expressed in at least 1% of
the whole population were discarded. Finally, all count
matrices were transformed to CPM values, and genes
being expressed more than five CPM were preserved.
scPred predicts cells using a default probability threshold
of 0.9 to ensure high confidence in the classification. All
cells below this threshold for each cell type are labeled
as unassigned. Here, we define sensitivity as the propor-
tion of cells that were correctly classified for the cell type
of interest, based on the default threshold with respect
to the remaining cells that do not belong to this cell type
(i.e., number of cells correctly classified from the positive
class/(cells correctly classified from the negative class +
unassigned cells that belong to the positive class). Like-
wise, specificity is the proportion of the cells from the
negative class that were correctly classified with respect
to the remaining cells from that class and the unassigned
cells that belong to the negative class). Therefore, for the
case of binary classification, sensitivity and specificity
can both be zero if all cells from the positive and nega-
tive classes had a probability lower than 0.9 for each
class respectively. The area under the AUROC and
AUPRC were determined using the MLmetrics R pack-
age from CRAN https://cran.r-project.org/web/pack-
ages/MLmetrics/index.html.

Gastric cancer tumor versus non-tumor prediction
The collection of this data was conducted in compliance
with the Helsinki Declaration. The institutional review
board at Stanford University School of Medicine

approved the study protocol (19071), and informed con-
sent was obtained. We collected two matched sets of
two samples including gastric primary cancer, and nor-
mal stomach tissue. Tissue biopsies were obtained from
surgical resection of a primary gastric adenocarcinoma
and matched adjacent normal tissue. Immediately 10
min after resection, the tumor sample was stored in
RPMI medium on ice for less than 1 h. The samples
were then microdissected and dissociated into a cellular
suspension by the gentleMACS Octo Dissociator as per
the manufacturer’s recommendations and the 37C_h_
TDK_3 program (Miltenyi Biotec, Bergisch Gladbach,
Germany). Single-cell RNA-seq was performed after
thawing cryopreserved sample stored in liquid nitrogen
in DMSO. Histopathology of this gastric cancer revealed
moderate to poorly differentiated features with a 60–
70% tumor fraction. Immunohistochemistry demon-
strated a loss of MLH1 and PMS2 expression. The loss
of these proteins indicated that this tumor had microsat-
ellite instability (MSI) where cancer cells have a hyper-
mutable state because of loss of DNA mismatch repair.
The tumor tissue was disaggregated into a single-cell
suspension and analyzed scRNA-seq. We used the Chro-
mium Controller instrument (10X Genomics Inc., Pleas-
anton, CA) and the Single Cell 3′ Reagent kit (v2) to
prepare individually barcoded scRNA-seq libraries fol-
lowing the manufacturer’s standard protocol. Briefly,
single-cell suspensions were loaded on a Chromium and
were partitioned in droplets. Reverse transcription is
performed, followed by droplet breaking, and cDNA
amplification. Each cDNA molecule thus contained the
read 1 sequencing primer, a 16-bp cell-identifying bar-
code, and a 10-bp UMI sequence. We performed enzym-
atic fragmentation, end-repair, and A-tailing followed by
ligation of a single-end adapter containing the read 2
priming site. Finally, sequencing libraries were quantified
by qPCR before sequencing using 26 × 98 paired-end
reads. The Cellranger software suite was used to process
scRNA-seq data, sample demultiplexing, barcode pro-
cessing, and single-cell 3′ gene counting. Cellranger pro-
vided a gene-by-cell matrix, which contains the read
count distribution of each gene for each cell. The gene
expression matrix was split according to the disease sta-
tus of each cell (defined by the presence of microsatellite
instability) to create a training dataset. We selected only
class informative PCs explaining at least 0.01% of the
variance and using an adjusted alpha threshold of 0.05.
Tenfold cross-validations were performed to train a sup-
port vector machine model with a radial kernel. The
trained model was applied to independent cells to evalu-
ate classification accuracy. To train two of the baseline
models using SVM, we set all the coefficients of the hy-
perplane to 0 and 1 respectively. We trained a model
using all principal components to evaluate the
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performance of the feature selection of scPred. Differen-
tially gene expression analysis was performed using
edgeR [55] to obtain discriminant genes between tumor
and non-tumor cells to be used as predictors. Ten boot-
strap replicates were performed for all baseline models
using the same dataset partitions from the main predic-
tion analysis using scPred.

Prediction of islets of Langerhans subtypes
We considered three independent datasets to train a
prediction model to classify α (alpha), β (beta), δ (delta),
and γ (gamma) cell subtypes: Muraro et al. [25] consist-
ing of 1522 cells from a CEL-Seq2 protocol, Segerstolpe
et al. [3] consisting of scRNA-seq data from 1321 cells
generated using the Smart-Seq2 protocol, and 1349 cells
from Xin et al. [26] whose gene expression levels were
assayed using the SMARTer protocol (see Additional file
2: Table S1). We integrated the three datasets using the
intersection of genes between them and obtained a sin-
gle aggregated matrix. We applied the Seurat alignment
approach [30] to account for technical differences across
the different datasets used for the training dataset. First,
we determined the most variable genes (528) in at least
two of the three datasets to compute the loadings and
the first 30 PCs using the implicitly restarted Lanczos
bidiagonalization algorithm [56]. Then, we used the
loadings from the training eigendecomposition to project
the testing dataset (Baron et al.) and obtained the cell
embeddings. After the alignment, no batch effect was
observed (see Fig. 3). Then, we trained a prediction
model considering only class-informative PCs using a
multiple testing corrected alpha level of 0.05 using (see
scPred in the “Methods” section) using the scores from
the aligned training eigenspace only. Tenfold cross-
validations were performed to train a support vector ma-
chine model with a radial kernel. To assess the perform-
ance of our prediction model, we predicted the specific
cell types of 7932 cells using their scRNA-seq data gen-
erated using the inDrop protocol [31]. In addition to our
main analysis, we trained a prediction model using the
Baron dataset only as a training reference and applied
the model to classify cells from the Muraro, Segerstolpe,
and Xin datasets respectively using the same method-
ology described above. We then compared the predic-
tion performance of scmap [33], caSTLe [34],
singleCellNet [35], and scID [36] following the same ap-
proach. To train the classifiers using scmap, we used 500
genes as features. Cluster and cell projections were per-
formed using both algorithms. For the caSTLe cell classi-
fication, we reproduced the pipeline code from https://
github.com/yuvallb/CaSTLe using the Baron data as
source dataset and the Muraro, Segerstolpe, and Xin as
the target dataset. Code for singleCellNet and scID was

obtained from https://github.com/pcahan1/singleCellNet
and https://github.com/BatadaLab/scID respectively.

Prediction of peripheral blood mononuclear cells
We used the dataset obtained by Zheng et al. [39] to
train and test prediction models to deconvolute the cell-
type identity of peripheral blood mononuclear cells. We
defined three layers of prediction based on the hierarchy
of PBMCs in the hematopoietic lineage and trained a
scPred model for each of them using a training partition
from the dataset. Then, every single cell from the test
fold was classified as follows: the first model classifies
the cell as myeloid, lymphoid, or blood progenitor based
on a feature eigenspace including all these cells. Further-
more, all cells classified as lymphoid are subcategorized
into B cell, T cell, or Natural Killer using a second classi-
fier trained to distinguish between these classes. Finally,
predicted T cells are subclassified into cytotoxic and
non-cytotoxic. Ten bootstrap replicates were performed
to calculate a 95% confidence interval of the accuracies
for every cell type.

Prediction of dendritic cells: training data of dendritic
cells and monocytes
scRNA-seq data was obtained using a Smart-Seq2 proto-
col [1]. After quality control, 660 dendritic cells and 335
monocytes were used to train a prediction model apply-
ing a 0.01% variance-explained filter and a corrected
alpha level of 0.05 to select the informative PCs. Tenfold
cross-validations were performed to train a support vec-
tor machine model with a radial kernel. We tested the
scPred prediction model against dendritic cells from an
independent study [41], whose scRNA-seq data had been
generated using the SMART-Seq 2 protocol. After qual-
ity control, 150 primary human conventional dendritic
cells (cDCs), 420 cord blood pre-cDCs, and 311 blood
pre-cDCs were kept. The final training model consisted
of only 11 discriminant PCs explaining 5.97% of the vari-
ance from the Villani et al. dataset. The training error of
the model was 0.018, and 232 cells were used as support
vectors. Differential expression analysis between the un-
assigned cells and remaining cells from cord blood was
performed using edgeR [55]. Genes with a log fold-
change greater or lower than 2 and an adjusted p value
less than 0.05 were considered as differentially
expressed. Gene ontology analysis was performed using
http://pantherdb.org/.

Prediction of colorectal cancer cells
We obtained the human colorectal cancer dataset under
the GEO accession number GSE81861. We analyzed
only the stemTA cell subtype as they are the most abun-
dant epithelial subpopulation. After quality control, 275
cells stemTA cells and 21,933 genes were kept. The gene
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expression matrix was split according to the sample ori-
gin of each cell (tumor or normal) to create a training
and testing dataset such that the former partition con-
tained 75% of cells and the latter 25%. To create the par-
titions, we used the SMOTE algorithm [48] to account
for class imbalance. We selected only class-informative
PCs explaining at least 0.01% of the variance and using
an adjusted alpha threshold of 0.05. Tenfold cross-
validations were performed to train a support vector ma-
chine model with a radial kernel. Finally, we obtained
the areas under the ROC and precision-recall curves to
measure the performance of scPred. Ten bootstrap repli-
cates were performed.
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63]. Data used for prediction of peripheral blood mononuclear cells may be
found from 10X Genomics [64]. Data used for prediction of dendritic cells
and monocytes may be found in the Single Cell Portal and GEO (GSE89232)
[65, 66]. Data used for prediction of colorectal cancer cells may be found in
GEO (GSE81861) [67].
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