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Abstract

Current genomics methods are designed to handle tens to thousands of samples but will need to scale to millions
to match the pace of data and hypothesis generation in biomedical science. Here, we show that high efficiency at
low cost can be achieved by leveraging general-purpose libraries for computing using graphics processing units
(GPUs), such as PyTorch and TensorFlow. We demonstrate > 200-fold decreases in runtime and ~ 5–10-fold
reductions in cost relative to CPUs. We anticipate that the accessibility of these libraries will lead to a widespread
adoption of GPUs in computational genomics.

Background
Current methodologies for analyzing genomic data were
designed for datasets with tens to thousands of samples,
but due to the continuing decrease in sequencing costs
and growth of large-scale genomic projects, datasets are
reaching sizes of millions of samples or single cells. The
need for increased computational resources, most not-
ably runtime, to process these growing datasets will be-
come prohibitive without improving the computational
efficiency and scalability of methods. For example,
methods in population genetics, such as genome-wide
association studies (GWAS) or mapping of quantitative
trait loci (QTL), involve billions of regressions between
genotypes and phenotypes. Currently, the state-of-the-
art infrastructures for performing these tasks are large-
scale clusters of central processing units (CPUs), often
with thousands of cores, resulting in significant costs [1]
(960 cores on a standard Google Cloud machine cur-
rently costs $7660.80 per day of compute). In contrast to
CPUs, a single graphics processing unit (GPU) contains
thousands of cores at a much lower price per core (Nvi-
dia’s P100 has 3584 cores and currently costs $35.04 per
day of compute).
Previous work has already demonstrated the benefits

of using GPUs to scale bioinformatics methods [2–6].

However, these implementations were often complex
and based on specialized libraries, limiting their extensi-
bility and adoption. In contrast, recent open-source li-
braries such as TensorFlow [7] or PyTorch [8], which
were developed for machine learning applications but
implement general-purpose mathematical primitives and
methods (e.g., matrix multiplication), make the develop-
ment of GPU-compatible tools widely accessible to the
research community. These libraries offer several major
advantages: (i) they implement most of the functional-
ities of CPU-based scientific computing libraries such as
NumPy, and thus are easy to use for implementing vari-
ous algorithms; (ii) they easily handle data transfer from
the computer’s memory to the GPU’s internal memory,
including in batches, and thus greatly facilitate computa-
tions on large datasets (e.g., large genotype matrices)
that do not fit into the GPU’s memory; (iii) they are triv-
ial to install and run, enabling easy sharing of methods;
and (iv) they can run seamlessly on both CPUs and
GPUs, permitting users without access to GPUs to test
and use them, without loss of performance compared
with other CPU-based implementations (Additional file 1:
Figure S1). Moreover, users do not need to explicitly
specify how to parallelize algorithms across the GPU
cores. We hypothesized that the use of these libraries
would result in significant improvements in computa-
tional efficiency and enable scaling computational gen-
omics methods to millions of samples.
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Results and discussion
To study the efficiency and benchmark the use of Ten-
sorFlow and PyTorch for large-scale genomic analyses
on GPUs, we re-implemented methods for two com-
monly performed computational genomics tasks: (i)
QTL mapping [9, 10] (which we call tensorQTL [11])
and Bayesian non-negative matrix factorization (NMF)
[12] (named SignatureAnalyzer-GPU [13]). We executed
the same scripts in identical environments (configured
with and without a GPU) and also compared them to
previous CPU-based implementations. As a baseline, we
also benchmarked the performance of individual math-
ematical operations such as matrix multiplication, for
which we observed up to ~ 1000-fold faster runtimes on
a GPU vs. a single CPU core (Additional file 1: Figure S1
and Additional file 2). For SignatureAnalyzer-GPU (SA-
GPU) [13], we used the mutation counts matrix gener-
ated by the Pan-Cancer Analysis of Whole Genomes
(PCAWG) Consortium, which contains 2624 tumors
represented by 1697 mutational features of somatic
single-nucleotide variants as well as short insertions and
deletions (defined based on their sequence contexts)

[14]. Our PyTorch implementation ran approximately
200 times faster on a GPU than the current implementa-
tion of SignatureAnalyzer (SA) in R (run on a single
CPU core), with mean times for 10,000 iterations of
1.09 min using SA-GPU vs. 194.8 min using SA (Fig. 1a).
Using simulated data, we showed that SA-GPU scales
linearly with the number of samples (Additional file 1:
Figure S2A). When applied to previously published mu-
tational signatures generated by SA [15], we found the
results of the 2 methods were essentially identical, taking
into account the stochastic nature of the underlying al-
gorithm (mean R2 = 0.994, min R2 = 0.960; Fig. 1b). Add-
itionally, we tested the performance of SA-GPU on
multiple GPUs, a task that is easily achieved in PyTorch
and enables, for example, faster hyperparameter
optimization. For 20 decompositions using the same data
as above, we found that performance scaled linearly with
the number of GPUs and yielded equivalent results
(Additional file 1: Figure S2B–C).
To further demonstrate the scalability of the Bayesian

NMF to millions of data points, we used SA-GPU to
identify the cell types and their associated transcriptional

Fig. 1 Performance of GPU implementations for QTL mapping and signature analysis. a Average runtime to compute 10,000 iterations of
Bayesian NMF using SignatureAnalyzer (SA) in R (gold) and SignatureAnalyzer-GPU (SA-GPU; purple). b Correlation heat map of mutation
signatures derived from the R and GPU implementations of SignatureAnalyzer using the same input mutation counts matrix. c t-distributed
stochastic neighbor embedding (t-SNE) of 1 million embryonic mouse brain cells. Colors indicate clustering based on SA-GPU decomposition
performed in ~ 15min. d Comparison of runtimes for cis-QTL (FastQTL on CPU (gold) and tensorQTL on GPU (purple)) and trans-QTL (tensorQTL
on CPU and GPU). e GPU runtime of tensorQTL for the indicated numbers of samples and phenotypes. f Empirical cis-eQTL p values from the V7
GTEx release replicated using tensorQTL. Error bars indicate standard deviation of the mean
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programs from single-cell RNA sequencing of 1 million
mouse brain cells (SRA: SRP096558, Fig. 1c). The aver-
age time per SA-GPU run was 14.5 min (using a V100
Nvidia GPU; average over 10 runs) corresponding to an
average of 6853 matrix updates per run. A similar ana-
lysis on a CPU would require > 2 days per run. Our ana-
lysis was able to identify 32 distinct transcriptional
programs.
For tensorQTL [11] benchmarking, we generated ran-

dom data representing up to 50,000 people, each with
107 genotypes representing common variants. For each
individual, we also simulated up to 50,000 phenotypes,
resulting in 500 × 109 all-against-all association tests
(each calculated for up to 50,000 individuals). Our im-
plementation of cis-QTL mapping with permutations to
estimate the empirical false discovery rate was > 250
times faster than the current state-of-the-art implemen-
tation (FastQTL [10]; Fig. 1d). Likewise, trans-QTL
mapping (i.e., 500 billion regressions) took less than 10
min, a ~ 200× increase in speed compared to running on
a CPU (Fig. 1d and Additional file 1: Figure S3A). Our
current implementation does not scale linearly as a func-
tion of samples (Additional file 1: Figure S3B) due to
limitations in data transfer from the memory of the CPU
to the GPU, rather than computational capacity; we
leave this additional optimization for future work (Fig. 1e,
Additional file 1: Figure S3B). We used data from the
V6p and V7 releases of GTEx [16] generated using
Matrix eQTL [9] and FastQTL [10], respectively, to
demonstrate the reproducibility of our implementation
(Fig. 1f and Additional file 1: Figure S3C).
In addition to the savings in computation time, imple-

mentation in TensorFlow or PyTorch also results in sig-
nificant cost savings—at the time of writing, GPU
compute time cost ~ $0.50–0.75/h on multiple cloud plat-
forms compared to ~ $0.01–0.05/h for a CPU core. Thus,
the same analyses were ~ 5–10-fold cheaper on GPUs.

Conclusions
In summary, the implementation of many commonly used
methods in genomics based on new GPU-compatible li-
braries can vastly increase runtime and reduce costs com-
pared to CPU-based approaches. Indeed, by simply re-
implementing current methods, we were able to achieve an
order-of-magnitude higher increase in speed than may be
achieved through sophisticated approximations for optimiz-
ing runtimes on CPUs [17, 18]. Our findings indicate that
the scale of computations made possible with GPUs will
enable investigation of previously unanswerable hypotheses
involving more complex models, larger datasets, and more
accurate empirical measurements. For example, our GPU
implementation enables the computation of empirical p
values for trans-QTL, which is cost-prohibitive on CPUs.
Similarly, our results show that GPU-based approaches will

enable scaling of single-cell analysis methods to millions of
cells. Given the availability of libraries that obviate the need
for specialized GPU programming, we anticipate a transi-
tion to GPU-based computing for a wide range of compu-
tational genomics methods.

Methods
tensorQTL
The core of tensorQTL is a reimplementation of FastQTL
[10] in TensorFlow [7] and relies on pandas-plink (https://
github.com/limix/pandas-plink) to efficiently read geno-
types stored in PLINK [19] format into dask arrays [20].
The following QTL mapping modalities are implemented:

– Cis-QTL: nominal associations between all variant–
phenotype pairs within a specified window (default
± 1Mb) around the phenotype (transcription start
site for genes), as implemented in FastQTL.

– Cis-QTL: beta-approximated empirical p values,
based on permutations of each phenotype, as
implemented in FastQTL.

– Cis-QTL: beta-approximated empirical p values for
grouped phenotypes; for example, multiple splicing
phenotypes for each gene, as implemented in
FastQTL.

– Conditionally independent cis-QTL, following the
stepwise regression approach described in [16].

– Interaction QTLs: nominal associations for a linear
model that includes a genotype × interaction term.

– Trans-QTL: nominal associations between all
variant–phenotype pairs. To reduce output size,
only associations below a given p value threshold
(default 1e−5) are stored.

– Trans-QTL: beta-approximated empirical p values
for inverse-normal-transformed phenotypes, in
which case the genome-wide associations with
permutations of each phenotype are identical. To
avoid potentially confounding cis effects, the
computation is performed for each chromosome,
using variants on all other chromosomes.

Benchmarking
To benchmark tensorQTL, we compared its trans-QTL
mapping performance on a machine with and without an
attached GPU, and cis-QTL mapping relative to the CPU-
based FastQTL [10] (an optimized QTL mapper written
in C++). For FastQTL, we computed the runtime per gene
by specifying the gene and cis-window using the --in-
clude-phenotypes and --region options, respectively. The
cis-mapping comparisons were performed using skeletal
muscle data from the V6p release of GTEx [16]. To facili-
tate the comparison of GPU vs. CPU performance when
mapping trans-QTLs across a wide range of sample sizes,
we used randomly generated genotype, phenotype, and
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covariate matrices. All tensorQTL benchmarks were con-
ducted on a virtual machine on Google Cloud Platform
with 8 Intel Xeon CPU cores (2.30 GHz), 52 GB of mem-
ory, and an Nvidia Tesla P100 GPU. For CPU-based com-
parisons, computations were limited to a single core.

SignatureAnalyzer-GPU
SA-GPU is a PyTorch reimplementation of Signature-
Analyzer [21], a method for the identification of somatic
mutational signatures using Bayesian NMF [22]. Signa-
tureAnalyzer was originally developed in R and is avail-
able for download at https://software.broadinstitute.org/
cancer/cga/. Currently, SA-GPU requires the input data
matrix and decomposition matrices (W and H) to fit
into the GPU memory; however, since high-memory
GPUs are readily available (e.g., Nvidia Tesla v100 has
16GB), we do not foresee this limiting its practical use.
In case data sizes were to exceed this limit, the method
is easily extensible to multiple GPUs using shared mem-
ory with built-in PyTorch methods.
SA-GPU can run a single Bayesian NMF or an array of

decompositions in parallel, leveraging multiple GPUs.
Users should specify a data likelihood function (Poisson
or Gaussian) and either exponential or half-normal prior
distributions on the elements of W and H, correspond-
ing to L1 or L2 regularization, respectively.

Benchmarking
To benchmark the performance of SA-GPU, we compared
SA-GPU with the previous implementation in R. We ran
the R implementation using R 3.2.3 with the “Matrix” pack-
age for efficient matrix operations. All SA-GPU bench-
marks were conducted on a virtual machine on Google
Cloud Platform with 12 Intel Xeon CPU cores (2.30GHz),
20 GB of memory, and a Nvidia Tesla V100 GPU. For
CPU-based comparisons, a single core was used.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-019-1836-7.

Additional file 1: Figure S1. Performance of matrix multiplication on a
single CPU core (2.30GHz Intel Xeon) vs. a GPU (Nvidia Tesla P100), using
NumPy (compiled with OpenBLAS) and PyTorch. Runtimes were
measured for multiplication of two random (uniform ~U[0,1]) square
matrices (in 32-bit floating point) with the indicated dimensions. For the
‘PyTorch GPU’ runtimes, only the matrix multiplication itself was timed.
For the ‘PyTorch GPU w/ copy’ runtimes, the copy of the two input
matrices from CPU to GPU memory was included in the timing. Runtimes
are shown as the median and median absolute deviation of 15 iterations
each. Figure S2. Performance scaling of SignatureAnalyzer-GPU. (a) Sig-
natureAnalyzer-GPU runtime scales linearly as a function of the number of
samples. (b) Cumulative runtime for 20 runs of SignatureAnalyzer-GPU on a
virtual machine configured with one or two GPUs (Nvidia Tesla V100). (c)
Average number of signatures detected with one or two GPUs, indicating
that the results are equivalent. The PCAWG mutation counts matrix was
used for all comparisons. Error bars: standard deviation. Figure S3. GPU
performance scaling of tensorQTL. (a) GPU-to-CPU runtime ratio for

tensorQTL, across the indicated phenotype and sample sizes, for 107

common variants. The ratio is non-constant due to data load and CPU-to-
GPU memory input/output times (“i/o”) that are more limiting for large
sample sizes (number of individuals). (b) CPU runtime of tensorQTL for the
indicated range of sample and phenotype sizes (left panel). CPU runtimes
scale linearly, demonstrated by the collapse of the compute time when
measured as a function of number of operations (approximated as
phenotypes × samples × variants; middle panel), whereas GPU runtimes do
not show this collapse for large sample sizes due to i/o limitations (right
panel). (c) Nominal significant trans-eQTL p values from the V6p GTEx
release replicated using tensorQTL.

Additional file 2. Benchmarking code from Additional file 1: Figure S1

Additional file 3. Review history.

Review history
The review history is available as Additional file 3.
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