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Abstract

We introduce CUT&RUNTools as a flexible, general pipeline for facilitating the identification of chromatin-associated
protein binding and genomic footprinting analysis from antibody-targeted CUT&RUN primary cleavage data.
CUT&RUNTools extracts endonuclease cut site information from sequences of short-read fragments and produces
single-locus binding estimates, aggregate motif footprints, and informative visualizations to support the high-resolution
mapping capability of CUT&RUN. CUT&RUNTools is available at https://bitbucket.org/qzhudfci/cutruntools/.

Introduction
Mapping the occupancy of DNA-associated proteins, in-
cluding transcription factors (TFs) and histones, is central
to determining cellular regulatory circuits. Conventional
ChIP sequencing (ChIP-seq) relies on the cross-linking of
target proteins to DNA and physical fragmentation of
chromatin [1]. In practice, epitope masking and insolubil-
ity of protein complexes may interfere with the successful
use of conventional ChIP-seq for some chromatin-
associated proteins [2–4]. CUT&RUN is a recently de-
scribed native endonuclease-based method based on the
binding of an antibody to a chromatin-associated protein
in situ and the recruitment of a protein A-micrococcal nu-
clease fusion (pA-MN) to the antibody to efficiently cleave
DNA surrounding binding sites [5]. The CUT&RUN
method has been successfully applied to a range of TFs in
yeast [5, 6] and mammalian cells [7, 8]. The procedure
achieves higher-resolution mapping of protein binding
since endonuclease digestion generates shorter fragments
than physical fragmentation. In our experience, existing
tools to analyze such data proved inadequate due to the
lack of an end-to-end computational pipeline specifically
tailored to this technology. Therefore, we have developed
a new pipeline, designated CUT&RUNTools, that stream-
lines the processing, usage, and visualization of data gen-
erated by CUT&RUN (Fig. 1a).

Results
Overview
CUT&RUNTools takes paired-end sequencing read
FASTQ files as the input and performs a set of analytical
steps: trimming of adapter sequences, alignment to the
reference genome, peak calling, estimation of cut matrix
at single-nucleotide resolution, de novo motif searching,
motif footprinting analysis, direct binding site identifica-
tion, and data visualization (Fig. 1b). The outputs of the
pipeline (Fig. 1c) are (1) an aggregate footprint capturing
the characteristics of chromatin-associated protein bind-
ing (Fig. 1c, (i)), (2) binding log-odds values for individ-
ual motif sites informative for direct binding site
identification (Fig. 1c, (ii)), and (3) visualization of a cut
frequency profile at nucleotide resolution (Fig. 1c, (iii)).
Specifically, CUT&RUNTools performs sequence

alignment with special attention to short-read trimming
and read alignment (Fig. 1b, step 1) (the “Methods”
section). Due to the predominance of short fragments
(25–50 bp) generated by CUT&RUN, the typical settings
in the read trimming and sequence alignment does not
perform well. We introduce a two-step read trimming
process to improve the quality. First, the sequencing data
are processed with Trimmomatic [9], a commonly used
template-based trimmer. Next, a second trimming step
was included to remove any remaining adapter overhang
sequences not removed due to fragment read-through.
CUT&RUNTools further adjusts the default alignment
settings by turning on dovetail alignment [10], designed
to accept alignments for paired-end reads when there is
a large degree of overlap between two mates of each
pair. Together, this improved trimming and alignment
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procedure increased the alignment percentage from 68 to
98% compared to a setting with no trimming and align-
ment adjustments (Additional file 1: Table S1). With the
reads aligned, CUT&RUNTools employs MACS [11] to
perform peak calling based on the coverage profile,
followed by de novo motif searching within the peak re-
gions with MEME suite [12] (Fig. 1b, step 2).

Cut matrix estimation
An important element of CUT&RUN analysis is the esti-
mation of cut sites, which enables higher-resolution
mapping of binding locations than peak calling. The cut
sites derive from the two ends of individual DNA frag-
ments generated upon cutting of chromatin by the pA-
MN fusion recruited to the antibody binding sites. The
regions of lower cut frequency tend to be protected due
to chromatin-associated protein binding, whereas flank-
ing regions without binding display higher cut frequen-
cies (Additional file 2: Figure S1a). CUT&RUNTools
accurately tabulates the frequency with which cleavage is
observed at each base pair (the “Methods” section).

Using the cut matrix, footprinting analysis [13, 14] is
then applied to identify high-resolution occupancy of
sequence-specific binding factors such as TFs. To detect
footprints from CUT&RUN data, CUT&RUNTools first
generates an aggregated cut frequency profile based on all
± 100-bp regions extending from each peak-embedded
motif site. Then, CUT&RUNTools estimates a probabilistic
bimodal clustering model derived from the CENTIPEDE
package [15] and assigns a binding probability score,
expressed as log-odds, to each motif occurrence based on
the model. This log-odds score quantifies the similarity be-
tween the cuts at each motif occurrence and the aggregate
footprint pattern. By ranking the sites by the log-odds
score, CUT&RUNTools generates a rank-ordered list of
likely direct binding sites. Of note, this approach is only ap-
plicable to factors with distinct sequence specificity.
We illustrate the functionality of CUT&RUNTools

through analysis of CUT&RUN data acquired for
GATA1, a master regulator in erythroid lineage cells
[16]. We performed CUT&RUN using GATA1 antibody
in primary human stem/progenitor CD34+ cells after 7
days of erythroid differentiation (Fig. 2). The results

Fig. 1 a Schematic of CUT&RUN. pA-MN is recruited to TF-bound antibody and cleaves around TF binding site, liberating DNA fragments for
sequencing. Subsequent steps require a specially designed computational pipeline to extract maximal information from the data. b Overview of
CUT&RUNTools. Step 1: input paired-end raw reads are aligned to the reference genome with special care for short-read trimming and alignment.
Step 2: peaks are called based on fragment pileup. A fixed window around the summit of each peak is used to perform de novo motif finding.
Step 3: the cut matrix is calculated for each motif of interest and used to generate the three outputs: (i) motif footprint, (ii) direct binding site
identification, and (iii) visualization. c The output of CUT&RUNTools at the chr3:98302650-950 region as an example
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were compared initially to published GATA1 ChIP-seq
data for cells under the same conditions [7]. Peaks iden-
tified in CUT&RUN align very well with ChIP-seq at
over 35,000 GATA1 sites across the genome (Fig. 2a).
Replicate correlation was over 0.92 (Additional file 2:
Figure S2). Furthermore, the pileup signal in CUT&RUN
is more enriched in a narrower window in the peak

center than ChIP-seq (50 bp vs. > 150 bp), reflecting
higher resolution (Fig. 2b). As expected, CUT&RUN-
Tools correctly identified the HGATAA GATA1 recog-
nition motif de novo (E = 1e−200). Next, we performed
GATA1 footprinting using the cut matrix generated on
the HGATAA motif by CUT&RUNTools and the sur-
rounding 150-bp regions for all 35,000 sites in the peak

Distance to motif center (bp)

motif center motif center

Fig. 2 a GATA1 CUT&RUN and ChIP-seq comparison. GATA1 motif is scanned across CUT&RUN and ChIP-seq peaks. The signal pileup of − 150-bp
to + 150-bp region surrounding each motif site is plotted. b CUT&RUN signal is enriched in a narrower window than ChIP-seq, consistent with a
higher resolution of the CUT&RUN method. c CUT&RUN footprint for the HGATAA motif. Enzyme cut protection is noted in motif core and deprotection
in the flanking regions. d The distribution of log-odds score for genome-wide HGATAA motif sites. A threshold value of 5 is used to determine direct
binding sites. e Strand-specific cut frequency profile at individual HGTAA motif sites, illustrated as a heatmap
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regions (Fig. 2c). Such footprints cannot be obtained
from ChIP-seq analysis. Indication of protection at the
motif core was particularly strong (Fig. 2c, e). Based on
the estimated log-odds scores (Fig. 2d) (Additional file 1:
Table S2), CUT&RUNTools identified 25,900 of the 35,
000 motif sites as direct binding sites. Comparison with
literature data validates these estimates at the locus level
(Additional file 2: Figure S3), and a systematic comparison
with ChIP-seq is shown in Fig. 2a. Of note, a stereotypical,
center-depleted cutting pattern is identifiable not only
from the average profile but also at individual motif sites.

Application to GATA1 CUT&RUN dataset
In addition, de novo analysis of GATA1 CUT&RUN
returned several additional motifs that may correspond to
co-factors (Additional file 1: Table S3). These co-factor mo-
tifs (also termed secondary) can be distinguished via an
asymmetrical motif footprint profile (Additional file 2: Fig-
ure S4), in contrast to the symmetrical profile of the pri-
mary HGATAA motif (Fig. 2c). We use a “footprint
symmetry score” (FSS) to discriminate primary from sec-
ondary motif footprints (the “Methods” section, Fig. 3a, b)
(Additional file 1: Table S4). HGATAA has the highest FSS
score (Fig. 3c). Identified co-factor motifs GCCCCG
CCCTC, CMCDCCC, and RTGASTCA (Fig. 3d)

correspond to SP1, KLF1, and NFE2 TFs, respectively,
which are known to cooperate with GATA1 [17]. Each pro-
file displays a noticeably higher rate of descent on one side
of the motif than the other (Additional file 2: Figure S4).
Importantly, de novo analysis also identified an ex-

tended motif for co-binding of GATA1 and TAL1 [18].
GATA1 forms a multiprotein complex with TAL1 along
with LMO2 and Ldb1 [18, 19]. The GATA1-TAL1 com-
plex recognizes HGATAA and a half E-box (TAL1) sepa-
rated by a gap of ten nucleotides [20]. Despite the length
of this motif, CUT&RUNTools displays a strong footprint
for the extended motif. The high value of FSS indicates
that this is a primary motif, as expected from the
GATA1-TAL1 complex binding model (Additional file 2:
Figure S5). The motif footprinting result is consistent
between de novo and known GATA1-TAL1 motifs
(Additional file 2: Figure S5). Therefore, in cases where
the recognition sequence of TF is not known in advance,
de novo analysis in combination with genomic footprint-
ing should be helpful in establishing the primary motif
and searching for novel co-factors.
To validate these predictions, we applied CUT&RUN to

profile TAL1 and KLF1 (Additional file 2: Figure S6). Of
the 19,871 predicted GATA1-TAL1 co-binding sites from
GATA1 CUT&RUN, 12,841 (64.6%, Jaccard index = 0.51,

Fig. 3 Footprint symmetry analysis reveals the primary and secondary motifs. a Symmetry analysis calculates the ascent and descent rates for the
two sides of footprint via fitting an exponential decay curve to each part. b An example of exponential decay curve that is fit on real data. c A
perfect symmetry indicates a primary motif (HGATAA). d A substantial difference between ascent and descent rates would indicate a motif footprint
with an asymmetric footprint shape, as shown by CMCDCCC, MGGAAR, and RTGASTCA secondary motifs. Asymmetry is quantified by the footprint
symmetry score (FSS)
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P < 10−5, bootstrap test) are validated by the TAL1
CUT&RUN experiment. In the case of KLF1, 10,733 of 17,
826 (60.2%, Jaccard index = 0.26, P < 10−5, bootstrap test)
predicted GATA1-KLF1 co-binding sites are confirmed by
KLF1 CUT&RUN analysis. These results suggest that
CUT&RUNTools is useful for uncovering combinatorial
regulatory modules.

Applicability in additional CUT&RUN datasets
To illustrate the broad applicability of our tool, we com-
pared CUT&RUN with ChIP-seq datasets that have been
generated for several factors from other labs. For ex-
ample, we compared the CUT&RUN data for MAX and
MYC that were performed previously [5] with the corre-
sponding ChIP-seq experiments from K562 cells in the
ENCODE database. Analyses of MAX and MYC experi-
ments using CUT&RUNTools identified 23,153 and
6996 peaks, respectively, which are well enriched in the
respective TF motifs—9207 motif sites for MYC and 20,
086 motif sites for MAX have been identified, see Fig. 4.
As expected, CUT&RUN has improved resolution over
ChIP-seq (Fig. 4a, e). We found 6073 out of 9207 in-
stances where MYC and MAX share binding sites or
have very close binding locations (< 10 bp) (Fig. 4i), con-
firming the known dimerization between these two fac-
tors. Interestingly, MAX CUT&RUN revealed a 10-bp
periodic cut pattern in its summary footprint profile
(Fig. 4b). A previous study has found via DNase I foot-
printing of MAX the enhanced cleavage in nucleosomal
DNA separated by areas of increased protection at 10-bp
periodicity [21], validating our footprint profile. Like
MAX, we believe that CUT&RUN is useful for investi-
gating the nucleosomal binding of transcription factors,
in addition to binding at the nucleosome-free regions. It
should be noted that to locate nucleosomal binding, the
> 120-bp fraction should also be used in CUT&RUN-
Tools as we have done for MYC and MAX.

Comparison with existing software packages
Several tools are available for estimating cut matrices
from ATAC-seq and DNase-seq data [22, 23]. However,
the direct application of such tools to analyze
CUT&RUN data often leads to incorrect estimates due
to the differences in the experimental protocol
(Additional file 2: Figure S7, S8). One reason is that the
two ends of each mate of paired reads both do not indi-
cate the ends of a fragment (Additional file 2: Figure S9),
making the accounting of cut positions challenging. An-
other important difference is that Tn5 transposase in
ATAC-seq leaves a 4-bp overhang in sequenced frag-
ments [24], whereas pA-MN enzyme in CUT&RUN
cleaves surrounding the location of binding sites with no
overhang. Specific adjustments are thus required and
have been made in the enumeration of the cut matrix to

take into account this feature of CUT&RUN (the
“Methods” section). Recognizing these differences, we pro-
vide an option to tune the cut site offset to make
CUT&RUNTools applicable to both CUT&RUN and
ATAC-seq footprinting analyses (Additional file 2: Figure
S10) and in doing so allow flexibility of experiment type.
Finally, CUT&RUNTools includes several quality con-

trol metrics, including fragment size distribution, read
duplication rate, library size, adapter content percentage,
and alignment percentage to assist users in quality
control evaluation of CUT&RUN experiments (the
“Methods” section). By further using the number of
peaks and the enrichment of the expected motif, users
can evaluate the overall success of experiments and val-
idate a given antibody. Additionally, CUT&RUNTools
generates publication-quality visualizations to aid biolo-
gists in interpreting cleavage data and to substantiate
evidence of binding (Fig. 5). The cut frequency track, for
example, displays the number of cuts at each nucleotide
position within a specified genomic range. A broad-level
visualization (300 bp) (Fig. 5a) highlights the location of
the motif and other footprints within the region. At 100-
bp resolution (Fig. 5b), a genomic sequence view is
enabled and the exact locations of cleavage can be seen.
These visualizations can be executed simply through
user-friendly commands. CUT&RUNTools supports
SLURM-based [25] cluster environment and permits sim-
ple specification of inputs/outputs, tools, and resource-
related parameters through a JSON-formatted configur-
ation file. A detailed usage manual is provided online.
Quality control measures such as alignment rate and

fragment duplication rate may be used to evaluate
CUT&RUN, but we note that due to the differences in the
mappability and sequence composition of the antibody-
bound DNA, some factors inherently have a low complex-
ity of the binding regions and an increased fragment dupli-
cation rate. Users, therefore, need to make judgment calls,
for example, whether or not to remove duplicates, on a
factor-dependent basis. We also advise an interpretation of
the data that is aided by motif and replicate analysis.

Methods
CUT&RUN experiments
CUT&RUN experiments were carried out following the
nuclei isolation version of the protocol as described [5,
7]. Nuclei from 2 × 106 cells were isolated with NE buffer
that consisted of 20 mM HEPES-KOH pH 7.9, 10 mM
KCl, 0.5 mM spermidine, 0.1% Triton X-100, 20% gly-
cerol, and 1× protease inhibitor cocktails. The nuclei
were captured with BioMagPlus Concanavalin A and in-
cubated with 2 μg primary antibody (α-GATA1,
ab11852, Abcam) in 200 μL wash buffer (20 mM
HEPES-NaOH pH 7.5, 150 mM NaCl, 0.5 mM spermi-
dine, 0.1% BSA, and 1× protease inhibitor cocktails) for
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2 h. Then, unbound antibody was washed away with
400 μL wash buffer twice. Then pA-MN was added at 1:
1000 ratio to 200 μL wash buffer and incubated for 1 h.
The nuclei were washed again and resuspended in
150 μL wash buffer. CaCl2 was next added at a final con-
centration of 2 mM to activate the enzyme. The reaction
was carried out at 0 °C and stopped by 150 μL of 2X

STOP buffer (200mM NaCl, 20 mM EDTA, 50 μg/mL
RNase A, and 40 μg/mL glycogen). Protein-DNA com-
plex was released by centrifugation and digested by
proteinase K at 50 °C overnight, followed by DNA pre-
cipitation by ethanol. The pellet was washed with 70%
ethanol and dissolved in 25 μL 0.1× TE (1 mM Tris-HCl
pH 8.0, 0.1 mM EDTA). Antibody used for TAL1 and

Fig. 4 a–d MAX comparison. e–h MYC comparison. a MAX CUT&RUN cut frequency matrix, fragment pileup, and MAX ChIP-seq pileup (all public
experiments). b MAX motif footprinting generated by CUT&RUNTools. c Enriched MAX motif used to do the motif footprinting analysis. d Overlap
of MAX motif sites in ChIP-seq and CUT&RUN peaks. e MYC CUT&RUN cut frequency matrix, fragment pileup, and MYC ChIP-seq pileup (all public
experiments). f–h Same as b–d except that the transcription factor is MYC. i Overlap of MAX and MYC motif sites in CUT&RUN experiments
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KLF1 CUT&RUN were ab155195 (Abcam) and
HPA051850 (Sigma), respectively.

CUT&RUN library preparation and sequencing
The NEBNext Ultra II DNA Library Prep Kit was used
with modifications described previously [7] which aims to
preserve short DNA fragments (30–80 bp). Briefly, 6 ng of
CUT&RUN DNA were treated with endprep module at
20 °C for 30min and 50 °C for 1 h to reduce the melting of
short DNA. Ligation was performed by adding 5 pmol of
NEB adapter and ligation mix and incubated at 20 °C for
15min. To clean up the reaction, add 1.75× volume of
Agencourt AMPure XP beads (Beckman Coulter) to cap-
ture short ligation products. PCR amplification was per-
formed for 12 cycles. The resulting libraries were purified
with 1.2× volume of AMPure beads then analyzed and
quantified by Qubit and Tapestation. The detailed step-
by-step protocol can be found at protocol.io (https://doi.
org/10.17504/protocols.io.wvgfe3w). Libraries with differ-
ent indexes were pooled, and Illumina paired-end sequen-
cing was performed using Nextseq 500 platform with

NextSeq 500/550 High Output Kit v2 (75 cycles) (2 ×
42 bp, 6-bp index).

Detailed implementations
Broadly, CUT&RUNTools consists of trimming, alignment,
peak calling, motif finding, cut matrix generation, and
motif footprinting steps. The pipeline incorporates specific
changes to some of the steps to accommodate the short-
read and short fragment characteristics of CUT&RUN. Its
cut matrix generation ensures an accurate accounting of
cut positions for footprint analyses. These steps are de-
scribed below.

Raw read trimming and alignment
Short fragments are frequently encountered in
CUT&RUN experiments due to the fine cutting by pA-
MN enzyme. As a result, it is common to expect both
mates of DNA fragment to overlap. When the fragment
is shorter than the length of a read, then we can expect
that adapter run-through will occur. It is thus critical to
remove adapter sequences at the end of the reads. To
deal with the issues caused by the alignment of short

Fig. 5 a CUT&RUNTools visualization of an example region chr11:72767100-72767300. The top two tracks show the strand-specific cut frequency
profiles. The third track is the signal pileup plot. The fourth track is the fragment plot, showing the location and start and end positions of each
DNA fragment. Forward cut frequency refers to the end of R1 mate and reverse refers to the end of R2 mate, where the designation of R1 and
R2 is based on whether the mate alignment contains the motif or the motif’s reverse complement. b A zoom-in view of the same region as a.
The view contains an additional sequence view (1) and highlighting of HGATAA motif (2)
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fragments, we made two important modifications to the
typical adapter trimming and alignment protocol:

1. An initial trimming was first performed with
Trimmomatic [9], with settings optimized to detect
adapter contamination in short-read sequences.
Trimmomatic is a template-based trimmer.
However, reads containing 6 bp, or less, of adapters
are not trimmed. Therefore, a separate tool Kseq was
developed to trim up to 6-bp adapters from the 3′
end of each read that was not effectively processed by
Trimmomatic. Note that this trimming does not
affect the cut site calculation, which counts only the
5′ end of sequences. After trimming, a minimum
read length of 25 bp was imposed, as reads smaller
than this were hard to align accurately.

2. Dovetail alignment policy. Bowtie2 [10] aligns each
mate of a pair separately and then discards any
pairs that have been aligned inconsistently. Dovetail
refers to the situation when mates extend past each
other. In the default setting, these alignments are
discarded. Dovetail is unusual but encountered in
CUT&RUN experiments. The --dove-tail setting
[10] was enabled to flag this situation as normal or
“concordant” instead of elimination of such reads.

Peak calling and motif finding
After alignment, fragments were divided into ≤ 120-bp
and > 120-bp fractions. For the rest of the analyses, we
used the ≤ 120-bp fraction which is likely to contain TF
binding sites [5]. Then, MACS2 was applied with the de-
fault narrowPeak setting [11]. Afterward, sequences
within 100 bp from the summit of each peak were ob-
tained, and any sequences containing a substantial
amount of repeats (as reported by RepeatMask) were re-
moved. These remaining sequences were next used to
perform de novo motif searching using MEME [12]. The
top 20 motifs were saved for subsequent analyses. FIMO
(part of MEME suite [12]) was applied to enumerate all
motif sites in the peak regions.
Like other techniques, some fraction of sequenced read

pairs appears as duplicates (i.e., with identical start and end
positions between duplicates). However, it is argued that
nuclease cleavage of chromatin by its stereotypical nature
is influenced by conformation of chromatin and/or nucle-
ase bias [26], and shorter DNA fragments also increased
the likelihood of identical reads that originated from differ-
ent cells [27]. Thus, removing duplicates from CUT&RUN
experiments should be dealt with caution if the library
complexity is not too low (due to extremely low input and/
or high PCR cycle numbers). Thus, the default action in
CUT&RUNTools is to retain duplicate reads, and users
can choose to remove duplicates at their own discretion.
We recommend users to be aware of the low complexity of

libraries with high duplication rates, as these may indicate
a poor quality preparation. Users may repeat peak calling
analysis on both duplicate and duplicate-removed in-
stances. By comparing the peak number, motif enrichment,
enrichment of expected motifs, and other quality metrics,
users may decide whether it makes sense to use the dupli-
cate version for subsequent analysis.

Cut matrix generation
For any motif of interest, its corresponding cut matrix
was generated as follows. The rows of the cut matrix are
the motif sites. The columns are the individual nucleo-
tides in the − 100-bp motif and + 100-bp regions. Cut
matrix requires all motif sites to be in a consistent orien-
tation. That is, if the motif occurrence is located on the
minus strand in the reference genome, all the cut fre-
quencies in that motif site are flipped, so that − 100-bp
position from the old profile becomes the + 100-bp pos-
ition in the new profile. By convention, a value at ith nu-
cleotide means the cut is situated just before ith
nucleotide. The cut matrix tabulates the frequency of
fragments ending in each nucleotide.
To compute strand-specific cut matrix, the ends of

DNA fragments that overlap with the motif were assigned
to forward and reverse strand cut matrices as follows. For
each fragment, define R1 and R2 as two mates. The ends
of the fragment are the start of R1 (s1) and the end of R2
(e2). If a given motif occurrence appears on the positive
strand of the reference genome, then s1 belongs to the
“forward” strand cut and e2 belongs to the “reverse” strand
cut. Otherwise, if the motif occurrence is on the negative
strand, then s1 belongs to the “reverse” strand cut and e2
belongs to the “forward” strand cut. Likewise, tabulation
was repeated for all paired reads and for all motif occur-
rences, each time separately for each strand.

Motif footprinting analysis
A motif footprint is a plot that shows the enzyme cleavages
around the motif region, presumably due to the protection
of TF-bound DNA. It is typically characterized by a low-
cut frequency (or low posterior probability of cut) in the
motif core and a high-cut frequency in the motif flanking
regions. Prior to footprint analysis, blacklisted regions were
excluded from the peak list. Any chromosome M peaks
were also excluded. Next, CENTIPEDE [15] was applied to
fit a probabilistic bimodal clustering model on the strand-
specific cut matrix data which has aligned and centered all
motif-containing regions. CENTIPEDE was run with de-
fault settings and specifying the length of the motif.

Footprint symmetry analysis for identification of primary
and secondary motifs
CUT&RUNTools has built in a feature to determine
whether a motif footprint is primary or secondary, based
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on a “footprint symmetry score” (FSS) defined as follows.
The footprint profile is first divided in the middle into
two halves, and to capture shape information, each half
is fitted by an exponential decay curve (of the form Aleft

exp (Bleft × x) and Aright exp (Bright) × x, respectively)
(Fig. 3). The parameter Bleft (and Bright) reflects the as-
cent rate for the left arm (and the “descent rate” for the
right arm). The goodness of fit is quantified using the R2

statistic, represented by R2
left and R2

right. The FSS score
is defined as Bleft × R2

left + − 1 × Bright × R2right. Intuitively,
the FSS score measures the rate of increase of cut prob-
abilities in the footprint plot, as the position approaches
the motif. This rate should match the respective rate of
decrease of cut probabilities as the position is further
away from center. A FSS score of > 0.3 and a small dif-
ference between Bleft and − 1 × Bright indicate symmetry
of motif footprint. Such a motif is designated primary.

Determining direct binding sites
The criteria we used for direct binding sites were as fol-
lows: (1) the site must contain a primary motif, (2) the
site must fall within a CUT&RUN peak, and (3) the site
must have a high binding log-odds, which assesses the
compatibility of the cut frequencies at the site with the
binding model. Binding log-odds, estimated by CENTI-
PEDE, is defined as log(p/(1 − p)) where p is the overall
posterior probability of binding at each site. The poster-
ior probability for bound case (p) is estimated from a
multinomial distribution and uses information from the
spatial distribution of reads around the motif:

p ¼ R!
YS

s¼1

λXs
s

Xs!

� �

where R is the total of reads in the region (modeled with
a negative binomial distribution), s is a position index in
the motif, λs is the per position posterior probability of
cutting, and Xs is the per position number of reads. In
the null case (no binding), λs is equal to 1/S or uniform.
Because posterior log-odds log(p/(1 − p)) is a likelihood
ratio, its estimation can use a shorter derived form for
simpler numerical computation (see CENTIPEDE [15]).
Running CENTIPEDE on a primary motif would satisfy
the first two of three criteria already, since footprinting
is performed on CUT&RUN peak regions only. Based on
the CENTIPEDE result, we set a stringent cutoff of log-
odds > 5 to obtain direct binding sites for the motif.

Implementation
CUT&RUNTools was implemented using Python, R, and
BASH scripts. Visualizations of motif footprints were
implemented using matplotlib library in Python.
Visualization of single-locus cut profile was imple-
mented using the Gviz R package [28]. Integration of

next-generation sequencing tools was achieved using
Python and BASH scripts. Configuration of pipeline, in-
cluding inputs/outputs and prerequisite paths, is speci-
fied by a JSON-formatted file. CUT&RUNTools works
under the SLURM [25] job submission environment. A
usage manual is provided online at the repository link:
https://bitbucket.org/qzhudfci/cutruntools.

Comparison with existing tools
There are two currently available tools for enumerating
cut matrices from enzyme cleavage data. One is Atactk,
designed for ATAC-seq data, and the other is CENTIPE-
DE.tutorial, targeted towards DNase-seq. These tools were
each applied to CUT&RUN data for the purpose of show-
ing the advantage of CUT&RUNTools. Make-cut-matrix
tool from the Atactk package [22] v0.1.5 was downloaded
from https://github.com/ParkerLab/atactk, and the CEN-
TIPEDE.tutorial package v1.0 was downloaded from
https://github.com/slowkow/CENTIPEDE.tutorial. Make-
cut-matrix was run with default settings on GATA1
CUT&RUN data, using HGATAA as the motif. The centi-
pede_data() function of CENTIPEDE.tutorial package was
used to generate cut matrix with default parameters. To
evaluate the quality of the cut matrix generated by these
tools, CENTIPEDE motif footprinting was performed on
the generated cut matrices, and the quality of the motif
footprint plot was inspected for differences. Two loci were
selected to more specifically compare the cut frequency
profile estimated by these tools and CUT&RUNTools and
illustrate their differences.
To make sure that the cut matrix is accurately estimated

for CUT&RUN data, CUT&RUNTools adapts the follow-
ing changes starting with the make-cut-matrix implemen-
tation. Adjustments are written in the form of a “patch,”
which is available in the pipeline. First, the default setting
of 4-bp cut site offset was removed as it was usually re-
quired for ATAC-seq data (due to Tn5 transposase impos-
ing a 4-bp overhang on the sequences [24]). CUT&RUN
cuts approximately at the TF binding site, so no cut site
offset is required (offset = 0). Second, the position of the re-
verse strand cut site is noted to be shifted by 1 bp even
after setting cut site offset to be 0 (Additional file 2: Figure
S11a). This shift has been a remnant feature of ATAC-seq
where forward strand has a cut offset of 4 bp while the re-
verse strand has a cut offset of 5 bp. So, an adjustment of
the cut position has been further made to correct this be-
havior (Additional file 2: Figure S11b). With both of these
changes adapted, the cut matrix was independently verified
with the fragment end positions produced by bamtobed
tool from BEDTools [29] to ensure its accuracy.

Quality control metrics
CUT&RUNTools reports a number of metrics to evalu-
ate the quality of a CUT&RUN dataset, including
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fragment size distribution, adapter content percentage,
library size, read duplication rate, alignment percentage,
number of peaks, and enrichment of expected motif.
The fragment size is measured by the start and end posi-
tions of a pair of reads in paired-end sequencing. Since
the experimental protocol enriches short fragments, it is
a routine to ensure that the fragment size is within the
expected range (e.g., ≤ 120 bp). The quality of sequence
reads is evaluated by the adapter content percentage,
which is the percentage of reads retained after the read
trimming step. For a good-quality dataset, the number
of reads removed by trimming should be less than 10–
15%, mostly corresponding to short fragments. A sub-
stantially higher number may indicate technical prob-
lems such as self-ligation. The library size, which is
defined the number of reads in the sample library,
should be at minimum 10 million and ideally at least ~
15–20 million. The read duplication rate is defined as
the fraction of paired reads that have identical starts for
the first mate and ends for the second mate. A good-
quality data should typically have a low read duplication
rate (10–15%), although the rate may be higher for fac-
tors with an affinity for low-complexity regions. The
alignment percentage is computed as the percentage of
reads that can be mapped concordantly to the reference
genome. For a good dataset, the alignment percentage
should be high (e.g., > 90%). CUT&RUNTools detects
peaks by applying MACS2 [11] after filtering out a num-
ber of uninteresting regions (including RepeatMasked
regions, chromosome M, and any blacklisted regions). In
case there is prior knowledge regarding the expected
number of peaks, this may also serve as a guide to evalu-
ate the quality of the data. For transcription factors with
known sequence specificity, the enrichment of the ex-
pected motif should be high at the detected peaks. As
there is no single score that captures the overall quality,
the users are encouraged to make their own judgment
call by considering the collective information.

Installation and usage
Installation instructions are provided at https://bitbucket.
org/qzhudfci/cutruntools/src/default/. To use the pipeline,
users first create a new job which entails modifying the
provided JSON configuration file with information about
the sample fastq file path, output path, SLURM resource
requirements, and various settings. Then, execute ./cre-
ate_scripts.py config.json to create a working directory
and a set of tailored SLURM submission scripts. Finally, to
start the analysis for a sample of interest, users simply exe-
cute ./integrated.all.steps.sh GATA1_R1_001.fastq.gz. This
script will perform the entire analysis pipeline via a 1-
command interface. Options are also available for running
the steps of the pipeline individually (see the manual on
the website for details).

Public dataset analysis
In the GATA1 study, GATA1, TAL1, KLF1, and NFE2
ChIP-seq experiments were downloaded from GEO. In
the MAX and MYC example, public CUT&RUN samples
were downloaded from GEO and compared against ChIP-
seq experiments from the ENCODE consortium, see the
“Availability of data and materials” section for accession
IDs. ChIP-seq raw reads were trimmed, aligned, and sub-
jected to peak calling following standard MACS2 narrow
peak settings (-q 0.01 -B –SPMR) [9–11]. CUT&RUN
datasets were processed using CUT&RUNTools using the
default trimming and alignment settings. For MYC and
MAX CUT&RUN, fragments of all sizes were kept so as
to capture both free DNA and nucleosomal DNA binding.
For TAL1 and KLF1 CUT&RUN, fragments of sizes ≤
120 bp were selected for downstream analysis. Then, frag-
ments in BAM files were subject to peak calling with
MACS2 (default narrow peak settings). To compare with
ChIP-seq, we subset the ChIP-seq experiment to most sig-
nificant peaks to the extent that the resulting peak num-
ber is similar to the total peak number in the
corresponding CUT&RUN experiment. Where the peak
coverage is higher in CUT&RUN than ChIP-seq, subset-
ting was done instead in CUT&RUN. Then, we performed
motif scanning using FIMO [12] to locate peaks contain-
ing enriched motif for the factor. The motif instances
within the peaks were next overlapped between
CUT&RUN and ChIP-seq, and a Venn diagram was
drawn [30]. The significance of the overlap was computed
using the Jaccard R package using the bootstrap method
with bootstrap iterations set to 100,000. Motif scanning
and footprinting analyses used the following reference
motifs from JASPAR database [31]: MA0140.2 (GATA1.-
TAL1), MA0493.1 (KLF1), MA0841.1 (NFE2), MA0035.2
(GATA1), MA0058.3 (MAX), and MA0147.3 (MYC).
FIMO motif scanning P value of 0.0005 was used for all
motifs, except MA0035.2 that used P = 0.001 due to the
motif’s short length.

Discussion
In summary, CUT&RUNTools provides a means of dir-
ectly detecting TF binding through assessment of the
protection of TF-bound DNA from enzyme cleavages
and should enable biologists to realize advantages pro-
vided by CUT&RUN. Thus, CUT&RUNTools represents
a valuable enabling tool for genomic biologists to
analyze and interpret CUT&RUN data and extend in-
sights into the regulatory mechanisms.

Additional files

Additional file 1: Supplementary Tables S1 - S4. (PDF 46 kb)

Additional file 2: Supplementary Figures S1 - S11. (PDF 4187 kb)
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