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Genomic GPS: using genetic distance from
individuals to public data for genomic
analysis without disclosing personal
genomes
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Abstract

Genomic global positioning system (GPS) applies the multilateration technique commonly used in the GPS to genomic
data. In the framework we present here, investigators calculate genetic distances from their samples to reference
samples, which are from data held in the public domain, and share this information with others. This sharing enables
certain types of genomic analysis, such as identifying sample overlaps and close relatives, decomposing ancestry, and
mapping of geographical origin without disclosing personal genomes. Thus, our method can be seen as a balance

between open data sharing and privacy protection.
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Main text

It is crucial to balance privacy protection and data shar-
ing in genomics [1-3]. Full disclosure of genomic data
benefits the research community through productive
data reuse but increases the chances of privacy breaches.
Full closure, by contrast, ensures privacy but discourages
collaborative science.

Here we present a method called genomic GPS that aims
to achieve a balance between data sharing and privacy
protection. It allows sharing of information to a degree
sufficient for approximating relative genetic distance of an
individual from either another individual or a group. Iden-
tification of closer relatives and population genomic ana-
lyses, such as ancestry decomposition and geographical
origin mapping, are possible. Importantly, though, the
shared information conceals individual genotypes, making
it extremely difficult to reconstruct the personal genomes.

Our method builds upon multilateration, a localization
technique for wireless sensor networks in which spatial
coordinates of a node with an unknown position are
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inferred by measuring the distances from the node to sev-
eral reference nodes at known positions [4]. For example,
in the GPS navigation system of an aircraft, the distances
from the aircraft to satellites are calculated from time lags
in transmitted radio signals. These distances are then used
to calculate the aircraft’s position (Fig. 1a).

To apply multilateration in a genomic context, we first
evaluated this technique’s characteristics in a multidimen-
sional space. We derived a mathematical proof showing
that in N-dimensional space, and with K reference nodes
with known positions, an unknown node’s coordinates can
be unequivocally identified if K> N (Additional file 1: Sup-
plementary Note). Perhaps more importantly, we derived
another proof showing that an unknown node’s coordinates
can never be exactly specified if K< N -1 (Additional file 1:
Supplementary Note). This was encouraging because it sug-
gested that the distances to known nodes convey limited in-
formation under this condition and can be safely shared
without disclosing the actual location.

Encouraged by this proof, we applied multilateration
to genomic data. We considered an individual’s genotype
data to be a node in N-dimensional space where each
coordinate represents each of N polymorphic loci. In this
space, the pairwise Euclidean distance between nodes
represents the genetic distance between individuals
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Fig. 1 Genomic GPS and its application to sample overlap detection. a The concept of conventional GPS. Distances to satellites are used to compute
an aircraft's location. b The concept of genomic GPS. The genetic distances of an individual to reference individuals in public datasets are calculated to
create a distance vector. ¢ Distance vectors can be shared, for example, by using a public data hub. d Sample overlap detection using distance vectors.
The distance vectors of two individuals are compared using a statistic that follows a x? distribution. e The power of the sample overlap detection
method as a function of the number of loci and the number of reference individuals used to calculate the genetic distances. f P values of the sample

overlap detection method for overlapping pairs and unrelated pairs in the simulations using the WTCCC data

(Fig. 1b). We then measured genetic distances from that
individual to K reference individuals in open datasets
such as 1000Genomes [5]; these datasets are analogous
to satellites with known positions. We call the length-K
vector of distances the “distance vector”. The core idea
of our approach is to share a distance vector that would
allow certain types of genomic analysis without disclos-
ing the personal genome data (Fig. 1c).

If we imagined that genotypes were real numbers, it is
theoretically impossible to reconstruct the genotypes as
long as N> K, as shown by our proof. Unfortunately,
genotype data resides in a very restricted space, {0, 1, 2}".
Nevertheless, the search space is still large enough to pre-
vent data reconstruction in practice. We designed a greedy
algorithm that tries to reconstruct the genotype data given
a distance vector and reference data (Additional file 1:
Supplementary Note) and applied it to simulated data. To
avoid local optima, we allowed multiple restarts of the al-
gorithm to find the best possible solution. The predicted
genotypes were not much better than a coarse prediction

based on allele frequency (Additional file 1: Figure S1).
These empirical simulations showed that it was impracti-
cal to reconstruct genotypes from a distance vector.

Sharing of distance vectors facilitates several applica-
tions. First, we can use the similarity of two distance
vectors to find sample overlaps or close relatives. Intui-
tively, if genomes from two individuals resemble each
other, their distance vectors will also be similar. To sys-
tematically interpret the similarity in distance vectors,
we designed the following statistic. Let X, ,, €10, 1,2} be
the reference allele count of individual ¢ at SNP n. The
squared Euclidean distance between individuals ¢ and u
is Dy, = qu\[:l (Xt,n_Xu,n)2- Let D, ; be the distance
between ¢ and reference individual k. Given K reference
individuals, the distance vector of individual ¢ is v, = (D;,
1Dy, 2. Dy ). Then, we define a statistic that compares
two distance vectors, v, and v,:

Soverlap = (Vt_Vu)TZ_l (Vt_Vu)
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where X is the covariance matrix of v, -v,. We showed
(Additional file 1: Supplementary Note) that the (i, j)th
element of X is

N
> 24p}-48p; + 20p;, + 4p, (i =))
Zij — n;l
> -8p} + 16p5-12p +4p, (i%))
pa

=1

where p, is the population allele frequency of SNP .
The statistic Soyertap follows a )(2 distribution with K de-
grees of freedom if ¢ and u are unrelated (Fig. 1d); thus,
we can test whether two individuals are related by calcu-
lating a P value from the lower tail. The false positive
rate was well controlled (Additional file 1: Table S1 and
Figure S2), and high power was achievable for reason-
able numbers of N and K (Fig. 1le). This statistic can be
useful if researchers at different institutions want to
check whether there are overlapping individuals in their
samples, because sample overlaps can contaminate the
result of aggregate studies such as meta-analyses. Instead
of the squared Euclidean distance, one can also use gen-
etic relatedness metric as the measure of genetic dis-
tance. Given the standardized allele count

Xin = (Xen=2p,)/\/2p,(1-p,), the genetic relatedness
between individuals ¢ and u is G, = %Zﬁ[zl)_( tnXun [6].
Using genetic relatedness, the results were similar (Add-
itional file 1: Supplementary Note and Figure S3). We per-
formed real data-based analysis using the Wellcome Trust
Case Control Consortium (WTCCC) data [7] by designing
studies with overlapping samples (Additional file 1: Sup-
plementary Note). Our method could detect overlapping
samples with perfect sensitivity and specificity (Fig. 1f),
when using the 1000Genomes data [5] as reference.

We then examined whether close relatives were also
distinguishable using our statistic. We simulated differ-
ent degrees of relatives and predicted the true relation-
ship for a given pair using our statistic. Among first-
degree relatives, 79% were correctly predicted as first de-
gree (Additional file 1: Figure S4 and S5). Relatives be-
yond the first degree were less distinguishable, where
39% and 21% of second- and third-degree relatives were
correctly predicted, respectively. In sum, distance vectors
contain sufficient information to determine overlapping
samples and to give clues for close relatives, which can
be useful for certain types of analyses. However, such a
disclosure could be considered a leak of information in
some situations. In those situations, alternatives such as
secure hashing [3] can be considered for detecting sam-
ple overlaps.

The second application for sharing a distance vector is
population genomic analyses. The distance vector con-
tains information that can infer the genetic spatial
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structure of individuals. Recent studies showed that gen-
etic data enabled the geographical origin of an individual
to be located on a two-dimensional (2D) map [8, 9].
Novembre et al. [8] applied principal component analysis
(PCA) to the genomic data of 3192 Europeans from 36
countries (the POPRES dataset [10]), where the two main
principal components (PC) matched the geographical map
of Europe with great accuracy. We designed a procedure
that converts a distance vector into an approximate pos-
ition in the PC space (Additional file 1: Supplementary
Note). Consider that we have K reference individuals. We
first apply eigendecomposition to their genetic relatedness
matrix (GRM) to obtain the top two eigenvectors (PCs) in
a 2D space, P. Given a target individual, we want to ap-
proximate its position in P. Suppose that we have the tar-
get’s distance vector to K references based on the genetic
relatedness metric. Then, we can construct the GRM of
the K+ 1 individuals (the references and the target) by
appending the distance vector to the GRM. We decom-
pose this (K+ 1) x (K +1) GRM to obtain a PC map of
K + 1 individuals in a new 2D space, P'. The positions of
the K references in P’ are not identical to their positions
in P, because adding one more datapoint in PCA can dis-
tort the positions of the other points (Additional file 1:
Figure S6). Because of this subtle difference, in order to
project the target’s point from P’ to P, we apply another
layer of “multilateration”. Using the map in P’, we calcu-
late the 2D Euclidean distances between the target and
the references to create a distance vector. Using the stand-
ard multilateration technique, this distance vector can be
used to map the target’s position in P by the least-square
minimization [4]. After repeating this procedure for each
target, the approximated PC map of all target individuals
is obtained by removing reference datapoints from P.

To evaluate the performance of our method, we used
the POPRES data [10] (Additional file 1: Table S2) using
60% of the individuals as samples and 40% as references
(Additional file 1: Supplementary Note). The mapping of
the origins of the samples using our method (Fig. 2a)
closely resembled the PC mapping based on actual geno-
type data (Fig. 2b). The output image resembled the geo-
graphic map of Europe, with geographically adjacent
populations found near to each other and geographically
distant populations found far apart. We then tried to
map the POPRES data using the 1000Genomes samples
[5] as reference data. Overall, the approximate locations
of the populations were similar to the European map
(Additional file 1: Figure S7). However, the distinction
between the Eastern/Russian populations and the Cen-
tral European populations was unclear, possibly because
there is sparse data from these populations in this refer-
ence dataset [5].

Another application for sharing distance vectors in
population genomics is the inference of an individual’s
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Fig. 2 Population genomic applications of distance vectors. a Two-dimensional mapping of the Europeans in the POPRES data using only distance vectors. We
mapped a subset (60%) of the POPRES individuals and used the rest of the individuals (40%) as references. See Additional file 1: Table S2 for the abbreviated
population names. b Mapping result of the same individuals using actual genomic data (the top two PCs). ¢ Estimation of admixture proportion using distance
vectors. We simulated admixed individuals from two distant populations (GBR: British in England and Scotland and JPT: Japanese in Tokyo, Japan) and two
close populations (GBR and TSI: Toscani in Italia) using the 1000Genomes data. d Admixture of three populations (GBR, CHS: Southern Han Chinese, and YRI:
Yoruba in lbadan, Nigeria). The proportions were estimated using distance vectors and ADMIXTURE
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ethnic admixture proportions. We designed a procedure
to estimate the admixture proportion of an individual
only using the distance vector (Additional file 1: Supple-
mentary Note). The idea is to approximate the location
of a target individual in the PC map of the multiple ref-
erence populations. We measure the Euclidean distance
of the individual to the centroid of each candidate popu-
lation and estimate the ancestry proportions as being in-
versely proportional to these distances. Using the
1000Genomes data, we simulated admixed individuals
from two populations, gradually varying the proportions.
When the two populations were genetically distant
(European and Asian), the estimated proportion was
close to the true proportion (r*=0.98, Fig. 2c). When

the two populations were genetically close (two Euro-
pean countries), the estimation was less accurate but
showed high correlation to the true proportion (r*=
0.86, Fig. 2c). We then combined data for three popula-
tions (European, Asian, and African) in varying propor-
tions. For comparison, we applied an existing method,
ADMIXTURE [11], which uses actual genotype data
(Additional file 1: Supplementary Note). Both ADMIX-
TURE and our method gave estimations that were highly
concordant with the true proportions (Fig. 2d).

We have presented a novel technique that applies mul-
tilateration to genomic data. Our method allows sharing
distance vectors with other investigators or institutions,
enabling certain types of genomic analysis while making



Kim et al. Genome Biology (2019) 20:175

it difficult to reconstruct the personal genomes. We ex-
pect that our approach will find interesting applications
in the future in addition to those described herein.

Methods
See Additional file 1: Supplementary Note for additional
methods not described above.

Additional file

Additional file 1: Supplementary Note, Tables S1, S2 and Figures. S1-512.
(PDF 3657 kb)
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