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the tree provides a new characterization of
phylogenetic distances
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Abstract

Background: Phylogenetically informed distances are commonly used in the analysis of microbiome data, and
analysts have many options to choose from. Although all phylogenetic distances share the goal of incorporating the
phylogenetic relationships among the bacteria, they do so in different ways and give different pictures of the
relationships between the bacterial communities.

Results: We investigate the properties of two classes of phylogenetically informed distances: the Unifrac family,
including weighted, unweighted, and generalized Unifrac, and the DPCoA family, which we introduce here. Through
several lines of evidence, including a combination of mathematical, data analytic, and computational methods, we
show that a major and heretofore unrecognized cleavage in the phylogenetically informed distances is the relative
weights placed on the deep and shallow parts of the phylogeny. Specifically, weighted Unifrac and DPCoA place
more emphasis on the deep parts of the phylogeny, while unweighted Unifrac places more emphasis on the shallow
parts of the phylogeny. Both the Unifrac and the DPCoA families have tunable parameters that can be shown to
control how much emphasis the distances place on the deep or shallow parts of the phylogeny.

Conclusions: Our results allow for a more informed choice of distance and give practitioners more insight into the
potential differences resulting from different choices of distance.
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Background
The sequencing revolution has given us a much more
detailed picture of the bacteria that inhabit the world
around us. Since the 1990s, biologists have used marker
gene studies to investigate the type and number of bac-
teria anywhere they care to look [1]. In these studies, a
gene, assumed to be common to all the bacteria of inter-
est, is amplified by PCR from the total DNA present in
the sample and sequenced. In studies of bacterial commu-
nities, the marker gene is often the 16S rRNA gene, as it
has both conserved regions that can be used to identify
it and more variable regions that allow for differentia-
tion between taxa. The resulting sequences are used as
operational taxonomic units, and their abundances are
used to describe the abundance of the respective taxon
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in the community. These marker gene studies represent a
considerable advance over previous culture-based meth-
ods of characterizing microbial communities because of
their ability to identify unculturable bacteria and themuch
larger number of bacterial taxa they can identify.
However, a major limitation of this type of study is that

the sequence of the 16S gene does not necessarily give us
the correct assignment of taxa into functional units. In
some cases, the sequence of the 16S gene does not give us
enough resolution to distinguish between taxa that have
very different functions. In other cases, taxa with different
16S sequences can be functionally the same and our anal-
ysis would have more power and be more interpretable if
we treated them as such.Within the context of a 16S study,
nothing can be done to help with a lack of resolution. The
opposite problem, of marker gene studies splitting func-
tionally similar taxa into too many independent units, is
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in principle solvable, and in practice, it is dealt with indi-
rectly by using phylogenetically aware methods for data
analysis. To this end, several phylogenetically informed
distances has been developed, all of which aim to quantify
the similarities or dissimilarities among microbial com-
munities. Each one encodes in some way the intuition
that communities containing closely related taxa should
be considered more similar to each other than communi-
ties containing only distantly related taxa, even all of those
taxa are technically distinct.
Once the analyst has settled on a definition of dis-

tance, he can compute it for each pair of communities
in the study, and the distances can then be used for
any number of downstream tasks: testing for differences
between communities from different environments, clus-
tering communities into groups, looking for gradients in
the communities that are associated with other covariates
in the study, and so on. The extent to which these methods
succeed depends in large part how appropriate the dis-
tance is to the underlying biology, and so it is important
to understand how exactly the distance measure uses the
phylogeny.
In this paper, we shed light on the properties of these

distances. We focus in particular on two classes of phylo-
genetically informed distances: the Unifrac distances and
new a set of distances based on double principal coor-
dinates analysis (DPCoA). The Unifrac distances include
unweighted Unifrac [2], weighted Unifrac [3], and gener-
alized Unifrac [4]. Weighted and unweighted Unifrac are
among the most popular distances for exploratory analy-
sis of microbiome data (e.g., [5–7]) and are often paired
together, as for instance in [8, 9]. Generalized Unifrac has
also been used in many studies [10–12], more often in the
context of association testing than for exploratory analy-
sis. Double principal coordinates analysis comes from the
macroecology literature, but both it and distances derived
from it have been used to good effect in the analysis of
microbiome data [13–16].
Our main result, which we show through a combina-

tion of mathematical, data analytic, and computational
methods, is that within both classes, there is a gradi-
ent in the level at which the phylogeny is incorporated.
Weighted Unifrac and DPCoA sit at one end of the gra-
dient and rely more heavily on the deep structure of the
phylogeny when compared with unweighted Unifrac and
the non-phylogenetic distances, which rely more heavily
on the shallow structure in the phylogeny.We can think of
weighted Unifrac and DPCoA as agglomerating taxa into
large groups or as having only a small number of degrees
of freedom, while the distances at the other end of the
spectrum do less agglomeration and have more degrees of
freedom.
This result is surprising and is backed up by several

different lines of evidence. We first show that we can

decompose the Unifrac distances by branch in the tree,
and that in both real and simulated datasets, weighted
Unifrac relies more heavily on the deep branches than
unweighted Unifrac. We then show analytically that the
unweighted Unifrac distance on using the full phyloge-
netic tree is equivalent to the distance computed using
a “forest” in which many of the connections between
the deep branches in the phylogeny have been removed.
This result is complemented by computations showing
that weighted Unifrac and DPCoA, but not unweighted
Unifrac, are insensitive to “glomming” together leaves in
the tree.
Before turning to our results, we review the two classes

of phylogenetic distances under consideration: the Unifrac
distances and the DPCoA distances.

The Unifrac distances
The Unifrac distances are a group of phylogenetically
informed distances, all of which incorporate the phyloge-
netic structure by considering the abundances of groups
of taxa corresponding to the branches of the phylogenetic
tree in addition to individual taxon abundances. Here we
will consider both unweighted Unifrac [2] and the gener-
alized Unifrac family [4], which includes as a special case
weighted Unifrac [3]. More formal definitions are given
in the “Methods” section, but for now, let pib denote the
proportion of bacteria in sample i that are descendants of
branch b.

Unweighted Unifrac
With this notation, the unweighted Unifrac distance
between sample i and sample j is

du(i, j) =
∑B

b=1 lb|1(pib > 0) − 1(pjb > 0)|∑B
b=1 lB

(1)

where lb is the length of branch b, B is the number of
branches in the tree, and the notation 1(pjb > 0) means
the function that evaluates to 1 if pjb > 0 and 0 other-
wise. Therefore, the term |1(pib > 0) − 1(pjb > 0)| in
the numerator of (1) describes whether the descendants
of branch b are present in only one of the two communi-
ties: it is equal to 1 if true and 0 otherwise. We see that
the numerator of (1) sums the lengths of the branches
which are unique to one of the two communities and the
denominator is the sum of the branch lengths, with the
result that the entire quantity can be described as the frac-
tion of branches in the tree that are unique to one of the
two communities. Note that this quantity depends only on
the presence or absence of the taxa, not on their relative
abundances.
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Weighted Unifrac
Weighted Unifrac [3] was designed as a variation of
unweighted Unifrac that took into account relative abun-
dances instead of relying solely on the presence or absence
of each taxon. As with unweighted Unifrac, it can be
written in terms of a sum over the branches of the phylo-
genetic tree.
Using the same notation as before, the raw weighted

Unifrac distance between samples i and j is

dw(i, j) =
B∑

b=1
lb|pib − pjb| (2)

A normalizing factor can be added to raw weighted
Unifrac to account for different areas of the phylogeny
being closer to or farther from the root, in which case the
distance between samples i and j is defined as

dwn(i, j) =
∑B

b=1 lb|pib − pjb|∑B
b=1 lb(pib + pjb)

(3)

Although weighted Unifrac was initially described as the
sum over branches given above, it was shown in [17] that
it can also be written as an earth-mover’s distance. If we
imagine the bacteria in two samples as piles of earth posi-
tioned at their corresponding leaves on the phylogenetic
tree, the weightedUnifrac distance between those samples
is theminimum amount of work required tomove one pile
to the other pile.

Generalized Unifrac
The final category of Unifrac distances we will consider
are the generalized Unifrac distances. They were intro-
duced in [4] in an effort to modulate the emphasis placed
on more or less abundant lineages and thereby interpolate
between unweighted and weighted Unifrac. The general-
ized Unifrac distance with tuning parameter α ∈[ 0, 1] is
defined as follows:

dg(i, j,α) =
∑B

b=1 lb(pib + pjb)α
∣∣∣ pib−pjb
pib+pjb

∣∣∣∑B
b=1 lb(pib + pjb)α

(4)

The generalized Unifrac distances do not exactly inter-
polate between weighted and unweighted Unifrac, but
they come close. Generalized Unifrac with α = 1 is exactly
weighted Unifrac. As α gets closer to 0, the (pib + pjb)α
term serves to upweight branches that have a smaller pro-
portion of descendants. The intuition behind the design
was that unweighted Unifrac places more weight on the
branches that have lower abundances, and so distances
interpolating between the two should have a parameter
that allows more or less weight to be placed on the low-
abundance branches. Generalized Unifrac with α = 0
is not exactly unweighted Unifrac, but it would be if all
of the pib terms were changed to 1(pib > 0), that is,
if we thought of performing generalized Unifrac on a

matrix containing branch descendant indicators intstead
of branch descendant proportions.

Generalized DPCoA distances
The second class of phylogenetically informed distances
under consideration are the generalized DPCoA dis-
tances. As with the generalized Unifrac distances, the
generalized DPCoA distances have a tunable parameter
defining a family of distances, and the distances at the
endpoints are special cases. For the generalized DPCoA
distances, one endpoint is the standard Euclidean dis-
tance, which does not incorporate the phylogeny at all,
and the other endpoint is the DPCoA distance. We give
a brief review of DPCoA and then describe the family of
generalized DPCoA distances.

DPCoA
Double principal coordinates analysis (DPCoA, origi-
nally described in [18]) is a method for obtaining low-
dimensional representations of species abundance data,
taking into account side information about the similar-
ities between the species. For us, the similarity mea-
sure is given by the phylogeny, but in principle, it could
be anything. To obtain this low-dimensional representa-
tion, points corresponding to species are positioned in
a high-dimensional space so that the distance between
the species points matches the phylogenetic distances
between the species. Then, each bacterial community is
conceptualized as a cloud of species points weighted by
how abundant the species is in that community. Each
community is positioned at the center of mass of its cloud
of species points, and principal components is used to
obtain a low-dimensional representation of the species
points.
The procedure is motivated by definitions of α and β

diversity introduced Rao in [19]: the inertia of the point
clouds corresponding to each bacterial community is his
measure of α diversity of that community, and the dis-
tance between the community points is his measure of β

diversity. The framework allows for a unified treatment
of diversity, with a decomposition of total α diversity into
per-site α diversity and between-site β diversity, all while
taking into account species similarities.
DPCoA was later characterized as a generalized PCA

[20], and from that characterization, we can write the dis-
tances in the full DPCoA space between communities i
and j as

dd(i, j, r) = (xi − xj)TQ(xi − xj) (5)

where xi is a vector giving the taxon abundances in sample
i and Q ∈ R

p×p is the covariance matrix for a Brownian
motion along the tree [21], meaning that Qij denotes the
length of the ancestral branches common to taxon i and
taxon j.
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Generalized DPCoA
We turn next to the generalized DPCoA distances. This
family of distances was used implicitly in developing adap-
tive gPCA [22], a phylogenetically-informed ordination
method. Here we will define the family explicitly: the
generalized DPCoA distance with parameter r is:

dgd(i, j, r) = (6)
(xi − xj)T (r−1Ip + (1 − r)−1Q−1)−1(xi − xj)

with the same notation as in Eq. (5) and r ∈ (0, 1).
In adaptive gPCA, the parameter r controls how much

prior weight to give to the phylogenetic structure, but we
can dispense with that interpretation and simply think of
the different values of r as giving us different distances
between the samples, just as the parameter α does for
generalized Unifrac.
As with the generalized Unifrac distances, the distances

given at the endpoints, with r = 1 and r = 0, help us
to understand the family as a whole. In the limit as r →
0, the DPCoA distance reduces to the standard Euclidean
distance (the straight-line distance between two points),
which has no dependence on the phylogeny. At the other
extreme, in the limit as r → 1, the distance reduces to the
distance in double principal coordinates analysis [18].
A final technical note: although we defined the DPCoA

distances as distances, the initial description was as an
inner product, with the distance being derived from that
definition. The formulation as an inner product has some
useful implications: for example, if we want to use the
distances for ordination (to make a low-dimensional rep-
resentation of the data), we can use generalized PCA
instead of multi-dimensional scaling, with the result that
the directions in the low-dimensional plot have interpre-
tations in terms of the taxa in the dataset.

Relationship between Unifrac and DPCoA distances
Although the Unifrac and DPCoA distances have very dif-
ferent derivations, the mathematical representation of the
DPCoA distance is quite similar to the mathematical rep-
resentation of raw weighted Unifrac. As shown in [23], the
DPCoA distance can be written as

ddpcoa(i, j) =
[ B∑
b=1

lb
(
pib − pjb

)2]1/2

(7)

This representation of the distances between the commu-
nity points in DPCoA suggests that DPCoA and weighted
Unifrac should give fairly similar descriptions of the rela-
tionships between the community points, as the differ-
ences between them are analogous to the differences
between the L1 and L2 distances. In practice and in the
datasets we have investigated, this has held true.

Non-phylogenetic distances
We will also compare the phylogenetic distances with
the Bray-Curtis dissimilarity and the Jaccard index, two
non-phylogenetic measures of community similarity com-
monly used in ecology. Both measures are defined in the
“Methods” section, but for the purposes of this paper, it
suffices to know that the Bray-Curtis dissimilarity uses
information on species abundance, while the Jaccard
index uses only the presence or absence of the species at
each site.

Illustrative dataset
We will use data taken from an experiment studying the
effects of antibiotic treatment on the human gut micro-
biome [24] to illustrate the ideas developed in this paper.
In the study, fecal samples were taken from three indi-
viduals over the course of 10 months, during which time
each subject took two 5-day courses of the antibiotic
ciprofloxacin separated by six months. Each individual
was sampled daily for the 5 days of the antibiotic treat-
ment and the five following days, and weekly or monthly
before and after, for a total of 52 to 56 samples per indi-
vidual. Operational taxonomic units (OTUs) were created
using Uclust [25] with 97% sequence identity, and the 16S
sequences were aligned to the SILVA reference tree [26],
as described previously [24]. All 2582 OTUs were retained
for analysis (no abundance filtering was performed). The
abundances were transformed using a started log trans-
formation [27], x �→ log(1 + x) as a way of approximately
stabilizing the variance [28] and reducing the outsize
effect the most abundant OTUs would otherwise have.

Results
Weighted Unifrac favors deep branches, unweighted
Unifrac favors shallow branches
All of the Unifrac distances can be decomposed by branch
of the phylogenetic tree, and we can use this decomposi-
tion to investigate deep vs. shallow branch contributions
to these distances. The formulas used are given in the
“Methods” section, but we give a brief description here.
Recall from Eq. (2) that raw weighted Unifrac is defined

as a sum over branches in the tree. Therefore, the contri-
bution of branch b to either raw or normalized weighted
Unifrac distance between samples i and j is just the corre-
sponding element in the sum, lb|pib −pjb|. For generalized
Unifrac, the analogous quantity is lb(pib + pjb)α

∣∣∣ pib−pjb
pib+pjb

∣∣∣.
For unweighted Unifrac, branch b contributes lb/

∑B
j=1 lB

if the branch has descendants in both communities, and
contributes zero otherwise. We refer to these as the
unnormalized branch contributions. Note that the unnor-
malized branch contribution depends both on the posi-
tion of the branch in the tree and its length. Since we
are interested in understanding the relative importance of
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different regions in the tree, and not in branches in them-
selves, we also normalize by branch length. This involves
dividing each of the quantities defined above by lb, giving
us the contribution per unit branch length instead of the
overall contribution of a branch. From there, we obtain the
normalized contribution of each branch over the entire
dataset by averaging these contributions over all pairs of
samples in the dataset.
Since we are interested in the relative contributions of

the deep and shallow branches, we computed cumula-
tive average contributions of the shallowest p fraction of
branches, in the tree, for p in a range between .5 and 1.
Shallowness is represented by the number of descendants,
so the shallowest branches are those with only one descen-
dant, and they correspond to p = .5. The deepest branch,
at the root, corresponds to p = 1. We then plotted these
quantities for unweighted Unifrac, weighted Unifrac, and
generalized Unifrac with α = 0, .25, .5, and .75, as shown
in Fig. 1.
Looking first at the two extremes, we see that almost

90% of the unweighted Unifrac distance is contributed on
average by branches with 9 or fewer descendants (approx-
imately the shallowest 85% of the branches), while only
about 25% of the weighted Unifrac distance is contributed
by such branches. The deepest 5% of the branches con-
tribute about 50% in weighted Unifrac but almost nothing
in unweighted Unifrac. Although it is not possible to read
it off of the plot in Fig. 1, a substantial proportion—over
10%—of the weighted Unifrac distance is contributed by
branches with 1000 or more descendants, even though
there are only 23 such branches out of a total of 5162
total branches in the tree. The generalized Unifrac dis-
tances have behavior in between: generalized Unifrac with
values of α close to 1 have relatively larger contributions
from the deeper branches, and as α → 0 the deeper
branches contribute less and less. Note however that gen-
eralized Unifrac with α = 0 still puts more weight on the
deep branches than unweightedUnifrac. This is consistent

with the definition of generalized Unifrac not exactly
interpolating between unweighted and weighted Unifrac.
That the deep branches are more important to weighted

Unifrac and the shallow branches more important to
unweighted Unifrac is even more apparent when we plot
the branch contributions along the tree.We used the same
branch contribution computations but this time plotted
them along the phylogenetic tree for the two extreme
points, unweighted Unifrac and weighted Unifrac. A sub-
tree containing a randomly selected set of 200 leaves and
their ancestral branches is shown in Fig. 2. The subtree
is shown because the full phylogenetic tree with 2500
leaves is too big to be easily inspected. We see that for
weighted Unifrac, the shallow branches (those with few
descendants) contribute very little to the distance, and as
wemove towards the root, the deeper branches contribute
larger and larger amounts. Unweighted Unifrac shows the
opposite pattern: the shallow branches contribute more
to the distance, and the deep branches often contribute
nothing at all (the dark purple branches in the left panel of
Fig. 2 have zero contribution).

Weighted Unifrac favors deep branches in simulation
experiments
The pattern of unweighted Unifrac relying more heav-
ily on the shallow branches than weighted Unifrac is
not specific to the dataset shown in Fig. 1. To inves-
tigate the robustness of this finding, we looked at the
branch contributions under three simulation strategies.
The first two simulations investigate branch contributions
in realistic setups, when there is some structure to the
communities that is either unrelated to the phylogeny
(the first simulation) or related to the phylogeny (the sec-
ond simulation). In simulation 1, the samples fall into
two groups, each of which has its own set of character-
istic taxa, and the sets are unrelated to the phylogeny. In
simulation 2, the samples fall along a gradient, with the
endpoints corresponding to under- or over-representation

Fig. 1 Cumulative average contribution (vertical axis) of the shallowest p fraction of the branches in the tree (horizontal axis) to unweighted and
generalized Unifrac distances in the antibiotic data. A very large proportion of the unweighted Unifrac distance is contributed by branches with only
a few descendants, while that proportion is much smaller for weighted Unifrac
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Fig. 2 Average contributions of each branch to unweighted (left) vs. weighted (right) Unifrac distance. Color represents log10 of the contribution, so
numbers closer to zero (more yellow) indicate larger contributions, and large negative numbers (more purple) indicate smaller contributions

of a certain clade. The branch contribution curves are
shown in Additional file 1: Figures S1 and S2, and details
of the simulation are available in Additional file 1. In
each case, for a wide range of numbers of samples, num-
bers of taxa, numbers of characteristic taxa, and noise
in the abundance matrix, we see the same pattern that
unweighted Unifrac places more emphasis on the shallow
branches than weighted Unifrac does and that the gener-
alized Unifrac distances fall on a spectrum in between.
The last simulation is based on an edge case in which all

of the Unifrac distances depend solely on the shallowest
branches, those directly above the leaves. The phylogeny
is structured as a full binary tree, that is, a tree in which
each node has two children, and the tree is taken to have
all branches of the same length. The samples are divided
into two groups, and for any pair of leaves that share a par-
ent, one leaf is present in the first group and absent in the
second, and the other leaf is present in the second group
and absent in the first group. In this situation, if we have a
total of p taxa, the distance between samples in the same
group is zero, the unweighted Unifrac distance between
samples in different groups is p

2p−2 , the raw weighted
Unifrac distance between samples in different groups is
2, and all of the Unifrac distance, unweighted, weighted,
and generalized, is contributed by the branches directly
above the leaves. The corresponding branch contribution
plot is shown in the upper left panel of Fig. 3. This is
the only case we will see where unweighted Unifrac does
not place strictly more weight on the shallow branches
than weighted Unifrac does, and even so we have equal-
ity between the two distances and not a reversal of the
pattern.
Next, we looked at what happens to the branch con-

tributions when we add noise to this simulation, as we
would see in real data. Instead of letting the taxa we are
simulating as being truly present in a sample be deter-
ministically non-zero, we sample counts for those taxa
from a double Poisson distribution [29] with a mean of

10 and standard deviations between .01 and 4.5. More
details about the simulation strategy and the double Pois-
son family are given in the “Methods” section, but briefly,
the double Poisson is a distribution over the non-negative
integers that allows for both under- and over-dispersion
relative to the Poisson. When we add even a small amount
of noise to the simulation, we immediately recover the pat-
tern of weighted Unifrac placing strictly more weight on
the deep branches than unweighted Unifrac, as shown in
Fig. 3. As a final note, the amount of noise in panels 2–5
of Fig. 3 is less than we would expect in real experiments.
Microbiome counts tend to be overdispersed relative to
the Poisson, but the simulations shown in panels 2–5 are
substantially under-dispersed. This simulation indicates
that even in extreme cases where the Unifrac distances
should be determined entirely by the shallowest branches
in the tree, when we add any noise to the problem, we
recover the pattern of unweighted Unifrac relying more
heavily on the shallow branches and weighted Unifrac
relying more heavily on the deep branches.

Unweighted unifrac is independent of the deep structure
of the tree
In the previous section, we saw that the deep branches
contributed less to the unweighted Unifrac distance than
the shallow ones do, and many had zero contribution.
Here we strengthen that observation, showing that under
conditions that often hold in practice, we can com-
pletely remove some of the connections between the
deep branches in the tree without changing the set of
unweighted Unifrac distances between our samples. This
indicates that the set of unweighted Unifrac distances on a
given dataset is often completely independent of the deep
branching structure of the phylogeny.
Specifically, consider any branch in the tree that has at

least one descendant in all of the samples. Note that all
the branches ancestral to this branch share the same prop-
erty. This branch and its ancestors never contribute to
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Fig. 3 Cumulative average contribution (vertical axis) of the shallowest p fraction of the branches in the tree (horizontal axis) to unweighted and
generalized Unifrac distances for simulated data. Top left panel is the noiseless case, and in subsequent panels, “present” taxa are sampled from a
distribution with mean 10 and standard deviation given in the facet label

the unweighted Unifrac distance, and so “breaking” the
tree at these branches into unconnected subtrees does
not change the set of distances. An illustrative example is
shown in Fig. 4, and a more formal proof and description
of the equivalence is given in the “Methods” section.
To see how extensively the phylogeny can be broken

up and yield the same unweighted Unifrac distances in
real data, we performed the procedure of breaking the
tree along shared branches on our illustrative dataset. We
were interested in the number of subtrees resulting from
this procedure and in how many leaves the subtrees con-
tained. In Fig. 5, we see the distribution of the sizes of the
156 resulting trees: out of 2582 taxa, we obtain just under
50 trees with only one leaf. Most of the trees have fewer

Fig. 4 Illustration of two sets of trees which give the same
unweighted Unifrac distances between a pair of samples. Yellow
branches are those with descendants in both communities, and blue
or green branches are unique to the square or the diamond
communities, respectively. If all the branches have the same length,
both the tree on the left and the three-tree forest on the right lead to
unweighted Unifrac distances of .5 between the square and diamond
communities

than 50 leaves, but we also see some trees with a couple
hundred leaves. The large number of small trees is likely
responsible for the similarity between the unweighted
Unifrac distance and several non-phylogenetic distances,
which is explored further in the last part of this section.

Sensitivity to taxon agglomeration shows that the Unifrac
and DPCoA distances are characterized by their reliance on
the deep branches
To complement our finding that unweighted Unifrac has
no dependence on the deep branching structure, we can
show that weighted Unifrac and DPCoA rely primarily
on the deep branches by showing that they are relatively
insensitive to “glomming” the bacterial taxa together to
higher levels on the phylogenetic tree1. As with the results
for the branch decompositions, we will see that that the
generalized Unifrac distances and generalized DPCoA
distances show a range of sensitivities to glomming, with
DPCoA and weighted Unifrac at the least sensitive end
and unweighted Unifrac and the standard Euclidean dis-
tance (a non-phylogenetic distance) at the most sensitive
end.
When we refer to glomming taxa together here, we

mean taking a pair of sister taxa and replacing them with
one pseudo-taxon whose abundance is the sum of the
abundances of the two taxa which were replaced and
whose position on the tree is at the parent node of the
two sister taxa. By doing this multiple times, we obtain
smaller, lower-resolution datasets with any number of
pseudo-taxa between one (all the taxa glommed together
into one pseudo-taxon) and the number of taxa in the
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Fig. 5 Number of leaves in the subtrees created when the phylogenetic tree is broken along shared branches

initial dataset (no glomming). When we glom together
taxa, we lose the fine-scale information about the taxon
abundances and are left only with information about the
abundances of larger clades. If a method gives the same
results on heavily glommed data as on the full data, it
indicates that the method is not using the fine-scale abun-
dance information.
To quantify the sensitivity of each distance to glomming,

we used DISTATIS [30], a method which computes an
RV coefficient [31] between distance matrices defined on
the same sets of objects. The RV coefficient (described in
the “Methods” section) is a generalization to the multi-
dimensional setting of the correlation between vectors,
and as for the correlation, higher values indicate that the
distances are more similar to each other.
For each distance, we computed the RV coefficient

between a dataset glommed to 16, 32, 64, . . . , 1024 taxa
and the full dataset (with 2582 taxa). These computations
were done for members of the Unifrac family, including
unweighted Unifrac and generalized Unifrac with α =
0, .1, .5, .9, 1, and members of the DPCoA family with val-
ues of r between 0 and 1. The results are are shown in
Fig. 6, which shows that within each family, there is a
range of sensitivity to glomming, with weighted Unifrac
(generalized Unifrac with α = 1) and standard DPCoA
(generalized DPCoA with r = 1) being the least sensitive.
Within each family, as the tuning parameters decrease,
the sensitivity to glomming increases, as we would have
expected from our previous results and from the def-
inition of the DPCoA family of distances. DPCoA in
particular is quite insensitive to glomming, with the RV
coefficient remaining above .98 until we have glommed
the initial 2582-taxon tree to under 30 taxa. Weighted
Unifrac and some of the generalized Unifrac family mem-
bers are also relatively insensitive to glomming: a tree an
order of magnitude smaller than the full tree still gives

RV coefficients above .95 for all of the generalized Unifrac
distances we considered.
The DPCoA distances show more of a range of sen-

sitivities, and by implication in the depth at which they
incorporate the phylogeny, than the Unifrac distances do.
Standard DPCoA is the least sensitive to glomming out of
all the distances under consideration, and the Euclidean
distance (generalized DPCoA with r = 0) is the most
sensitive. That generalized DPCoA with r = 0 is the
most sensitive to glomming is expected, since it com-
pletely ignores the phylogeny. That expectation combined
with the result that standard DPCoA is the least sensi-
tive leads us to believe that in general, the DPCoA family
of distances will show more of a range in their sensitiv-
ity to glomming or the level at which they incorporate the
phylogeny than the Unifrac family of distances.

Comparison of distances to each other shows the same
gradient in the Unifrac and DPCoA families
So far, we have seen evidence that within both the Unifrac
and DPCoA families, the tunable parameter controls the
level at which the phylogeny is incorporated: generalized
DPCoA with r close to 1 and generalized Unifrac with α

close to 1 both rely heavily on the deep branches of the
tree and are remarkably insensitive to glomming together
leaves of the phylogeny. On the other end, generalized
DPCoA with r close to 0, generalized Unifrac with α close
to 0, and unweighted Unifrac have the opposite behavior:
they are less dependent on (or in the case of unweighted
Unifrac and the standard Euclidean distance, completely
independent of ) the deep structure in the tree, and they
are much more sensitive to glomming together related
taxa. The final question we address here is whether the
two families follow the same gradient, or whether they
give fundamentally different distances between the sam-
ples despite exhibiting similar sensitivity to glomming.
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Fig. 6 The DPCoA and Unifrac distances both exhibit a gradient in their sensitivity to taxon agglomeration. We plot the RV coefficient (vertical axis)
between distances computed on the full dataset and distances computed on a dataset glommed to some number of taxa (horizontal axis). We
show a set of DPCoA distances (top panel) with different values of r (indicated by color) and a set of Unifrac distances (bottom panel) with different
values of α (indicated by color)

To this end, we computed generalized Unifrac distances
(α = 0, .1, .25, .5, .9, 1), the unweighted Unifrac distance,
generalized DPCoA distances (r = 0, .1, . . . , .9, 1), the
Bray-Curtis dissimilarity ([32]), and the Jaccard dissimilar-
ity ([33]) between the samples in our illustrative dataset.
The Bray-Curtis dissimilarity and the Jaccard dissimilar-
ity were included as examples of non-phylogenetic dis-
similarities that use either abundance (Bray-Curtis) or
solely presence-absence (Jaccard) information about the
taxa. We then computed the RV coefficient between each
pair of the resulting 20 distances and used DISTATIS to
make a low-dimensional visualization of the relationships
between the distances.
In Fig. 7, we see that the two families do indeed seem

to follow the same gradient. In the representation of the
distances along the first two principal axes, we see that
the distances corresponding to different values of the tun-
ing parameter (α for generalized Unifrac, r for generalized
DPCoA) fall along a “horseshoe”, within which they are
ordered according to the value of α and r. We also note
that unweighted Unifrac and the non-phylogenetic dis-
tances are positioned at the α = 0/r = 0 end of the
gradient, as we would expect if the gradient is explained by
the emphasis the distances place on the deep vs. shallow

branches of the tree. The “horseshoe” phenomenon is a
common occurrence in low-dimensional embeddings and
is generally considered a mathematical artifact resulting
from the projection of a non-linear manifold into a lower-
dimensional space (see [34, 35] for mathematical models
leading to horseshoes).
We also note that the fraction of variance explained by

the first principal axis is over 90%, and the first two prin-
cipal axes, in which the horseshoe falls, account for more
than 96% of the variance explained. This suggests to us
that within both families, the differences between the dif-
ferent tuning parameters can be attributed to differences
in the level at which the phylogeny is incorporated, and
that to a first approximation, the generalized Unifrac and
generalized DPCoA families incorporate the phylogeny in
the same way.
Although it only accounts for a small fraction, 2.1%,

of the explained variance, we also investigated the third
principal axis for evidence of either systematic distances
between the generalized Unifrac and generalized DPCoA
families or between the presence/absence and abundance-
based methods (i.e., Jaccard and unweighted Unifrac vs.
all the others). In the bottom panel of Fig. 7, we see that
the third principal axis separates the generalized Unifrac
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Fig. 7 DISTATIS representation of the relationships between the generalized Unifrac distances, generalized DPCoA distances, unweighted Unifrac
distance, Bray-Curtis dissimilarity, and Jaccard dissimilarity, as computed on the illustrative dataset. Top panel represents the distances on the first
two principal axes, bottom panel represents the distances on the top three principal axes

distances from the generalized DPCoA distances and that,
furthermore, the separation increases as the value of the
tunable parameter decreases and we go towards distances
that rely more on the shallow parts of the phylogeny.
There is a certain logic to this pattern: distances relying
on the deep branches have fewer degrees of freedom, and
so there is less room for difference between those dis-
tances. The scores on the third axis also fail to separate the
presence/absence-based measures and the abundance-
based measures: unweighted Unifrac is actually closer to
the abundance-based Bray-Curtis measure than it is to the
presence/absence-based Jaccard measure, although in the
full space the RV coefficients are approximately the same.

Discussion
Our finding that phylogenetic distances differ in how
much they weight different parts of the phylogeny is use-
ful to practitioners who use these distances. The case
of unweighted Unifrac compared with weighted Unifrac
is especially important, as these two distances are com-
monly used and often paired together in the same analysis.
It is usually assumed that any difference between the two
methods is a result of unweighted Unifrac using only pres-
ence/absence data and weighted Unifrac using abundance

data, but our results here show that the difference in
the emphasis placed on the deep or shallow parts of the
phylogeny is perhaps even more important.
Our results are also related to and clarify some previous

findings on phylogenetic distances. Parks and Beiko, in
[36], catalogued a large number of phylogenetic distances,
categorized them according to the set of branches that
enter into the mathematical formula for the distances, and
examined the empirical similarities between the distances.
Their categorization of the distances was as most recent
common ancestor (MRCA, distances between two sam-
ples depend on only on the most recent common ancestor
subtree spanned by the pair of samples), complete lineage
(CL, distance is influenced the subtree spanned by the
samples and all the branches between that subtree and the
root of the tree), and complete tree (CT, the distance is
influenced by all of the branches in the tree).
According to this categorization, weighted Unifrac is an

MRCA measure, while unweighted Unifrac is a CT mea-
sure. This at first seems to be at odds with our results,
since a CT measure on a deeper set of branches than
an MRCA measure and our results show that in prac-
tice, unweighted Unifrac depends more on the shallow
branches than weighted Unifrac. However, our results
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actually solve something that is a bit puzzling in Parks and
Beiko. They find that the categorization of the distances
into MRCA/CL/CT does not fit well with the empirical
clustering of the distances: the CT classification spans the
four clusters they find, and the MRCA and CL classifi-
cation span three of the four clusters. The results here,
both mathematical and empirical, suggest a reason for the
lack of alignment: even though unweighted Unifrac tech-
nically depends on all of the branches, the form of the
distance means that in practice, the deep branches will be
less important.
There are of course some limitations to our work. A few

of our results are logically entailed by the definitions of the
distances, but many will be dataset specific. For instance,
branch contributions to unweighted Unifracmust be zero
for any branch that has descendants in all the samples,
but the difference in the fraction of the distance con-
tributed by deep vs. shallow branches and the difference
between those contributions for weighted vs. unweighted
Unifrac does not have to be as extreme as it is in the
dataset we looked at. Additionally, in the datasets we
looked at, many of the deep branches could be removed
entirely for unweighted Unifrac. We have shown that we
can make one break in the tree for every branch that has
descendants in all the samples without changing the set
of unweighted Unifrac distances. However, this does not
mean that in a different dataset we will be able to break
the phylogeny up into as many independent pieces as we
were able to here.
There is an easy fix for these problems though: simply

perform the same calculations on the dataset of interest.
If, for example, there is a large difference in the results
from unweighted Unifrac vs. weighted Unifrac, the ana-
lyst can calculate howmuch the branches are contributing
to the two distances. A big difference in the contribu-
tions of the deep vs. shallow branches for the twomethods
suggests that the difference in results could be due to the
difference in how the phylogeny is incorporated.

Conclusion
We described a new way of characterizing phylogenetic
distances, showing that the tunable parameters in both
the generalized Unifrac and generalized DPCoA distances
control the emphasis placed on the deep vs. shallow
branches of the phylogeny. We showed this in several
ways: by computing and comparing branch contributions
within the Unifrac family, by showing that the families
exhibit a gradient in their sensitivity to glomming, and by
examining how similar the sets of distances are to each
other in real data. In addition to the genereralized Unifrac
and generalized DPCoA families, we considered the spe-
cial case of unweighted Unifrac, showing that that it falls
on the end of the spectrum that places more emphasis on
the shallow branches of the tree and that it in fact has an

equivalent representation in which the phylogenetic tree
is replaced by a “forest” of many independent phylogenies.
Our results give an improved understanding of several

phylogenetic distances. This understanding is vital for a
valid interpretation of the data and for shaping scientific
intuitions about the underlying biology. Our hope is that
the properties of these methods that we have outlined
will be valuable for the applied researchers who use these
tools.

Methods
Proof of invariance of unweighted Unifrac to breaking the
phylogeny
We first give formal definitions of the tree-related con-
cepts and functions we need to describe manipulations of
the phylogenetic tree. We need a definition of a forest to
describe how we can break the phylogenetic tree into a
forest without changing the unweighted Unifrac distances
between the samples.

Definition 1 A rooted forest is a triple F = (V ,E,R).
V is a set of vertices, E is a set of edges on V, so that E ⊂
{(v1, v2) : v1, v2 ∈ V }, and R ⊂ V is a set of roots. F is such
that:

– (V ,E) is a (possibly disconnected) acyclic graph.
– If Vk represents the vertex set of the kth connected

component of (V ,E), then R is such that |R∩Vk| = 1
for k = 1, . . . ,K (each component has one root).

The leaf vertices of a forest F are the vertices that only
have one neighbor and are not in the root set R. The leaf
edges of a forest F are the edges that connect to a leaf ver-
tex. The children of a non-leaf vertex v are the vertices that
are connected to v by an edge and that are farther from the
root. The children of a non-leaf edge e are the edges that
share a vertex with e and that are farther from the root.
For notational purposes, we will also assume that the

vertex set is V = {1, . . . , |V |} and that if the forest has
p leaf vertices they are {1, . . . , p}. We further assume that
for each edge, if e = (v1, v2), v1 closer to the root than v2
implies that v1 > v2. One way of ensuring these conditions
is to use the scheme described in [37].
Unweighted Unifrac requires us to define branch or

edge abundances, which we do here with the ndesc
function:

Definition 2 Let F = (V ,E,R) be a rooted forest with
p leaf vertices, and let x ∈ N

p represent leaf abundances.
The convention that the leaf nodes are {1, . . . , p} and the
remaining vertices are {p + 1, . . . , |V |} means that (1) xj
corresponds to the abundance at leaf vertex j and (2) if edge
e is an edge connecting to a leaf node, min(e) will be the
leaf node.
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The ndesc function takes an edge, a leaf abundance vec-
tor, and a forest and gives an edge abundance. We define it
as:

ndesc(e, x, F) = (8){
xmin(e) e a leaf edge∑

e′∈children(e) ndesc(e′, x, F) o.w.
(9)

Note that this definition implies that if ndesc(e) > 0,
ndesc(e′) > 0 for any e′ ancestral to e.
Next, we need a function that describes the tree-

breaking operation. The main result will be to show the
invariance of the unweighted Unifrac distance to this
function under certain conditions.

Definition 3 Suppose we have a forest F = (V ,E,R)

with vertex set V = 1, . . . , |V |. Let e = (v1, v2) ∈ E.
The tree-breaking function tb takes a forest and an

edge in the forest and gives a new forest. We define
tb((V ,E,R), e) = (V ′,E′,R′), where

V ′ = V ∪ |V | + 1 (10)
E′ = (E \ (v1, v2)) ∪ (|V | + 1,min(v1, v2)) (11)
R′ = R ∪ |V | + 1 (12)

In words, the edge between v1 and v2 is removed and
replaced with a new root node. See Fig. 8 for an illustra-
tion, and note that this way of defining the new edge, root,
and vertex keeps the vertex assignments consistent with
our convention that leaf vertices are labeled 1, . . . , p and
the remaining vertices are labeled p + 1, . . . , |V |.
The following lemma is the main insight into

unweighted Unifrac and is fundamentally the reason why

Fig. 8 Illustration of the tree breaking function. We start off with the
six-node tree T on the left. If vertex 6 is the root of T, its leaves are
vertices 1, 2, and 3. When we apply the tree-breaking operation to the
(5, 4) edge, we obtain the forest on the right F = tb(T , (5, 4)). The
roots are now vertices 7 (added when we broke the tree) and 6 (the
root in the initial tree) for the two trees in the forest. The leaves
remain vertices 1, 2, and 3

we can break the tree in certain ways without changing
the unweighted Unifrac distance between the samples.

Lemma 1 Let s(e, F) be the sister branch of edge e in
forest F. If s(e, F) is such that ndesc(s(e, F), x, F) > 0, then

1(ndesc(e′, x, F) > 0) = 1(ndesc(e′, x, tb(F)) > 0)
∀e′ ∈ E(tb(F)) ∩ E(F) (13)

1(ndesc(e, x, F) > 0) = 1(ndesc(e′′, x, tb(F)) > 0)
e′′ = E(tb(F)) \ E(F) (14)

where E(F) denotes the edge set of forest F.

Proof Consider any edge e′ ∈ E(F)∩E(tb(F)). There are
two possibilities: e is a descendant of e′ in F, or it is not.

– If e is not a descendant of e′ in F, then

ndesc(e, x, F) = ndesc(e, x, tb(F)).

– If e is a descendant of e′ in F, then so is s(e, F). In that
case, 1(ndesc(e, x, F) > 0) = 1 because
ndesc(s(e, F), x, F) > 0. s(e, F) is a descendant of e′ in
tb(F) as well, and so

ndesc(s(e, F), x, tb(F)) > 0

which means that

1(ndesc(s(e, F), x, tb(F)) > 0) = 1.

Therefore, we have (13) for all e′ ∈ E(tb(F)) ∩ E(F).
For Eq. (14), let e′′ be the new edge in tb(F), that

is, the sole element of E(tb(F)) \ E(F). In that case,
ndesc(e′, x, tb(F)) = ndesc(e, x, tb(F)), which implies
Eq. (14)

In Theorem 1, we use lemma above to show that the
tree-breaking function does not change the unweighted
Unifrac distance between two samples, denoted x1 and
x2, if we apply it to the sibling of a branch that has
descendants in both samples.

Theorem 1 Let s(e, F) denote the sister branch of edge e
in forest F. Then, if s is such that ndesc(x1, s, F) > 0 and
ndesc(x2, s, F) > 0, then du(x1, x2, F) = du(x1, x2, tb(F , s))

Proof Our lemma tells us that the tree-breaking func-
tion leaves invariant the values of ndesc(e) > 0 for every
e ∈ E ∩ E′, and that ndesc(e) > 0 = ndesc(e′) > 0 for the
comparison between the edge that was removed and the
new edge.

In Theorem 2, we simply extend Theorem 1 from the
unweighted Unifrac distance between a pair of samples to
the set of unweighted Unifrac distances between a collec-
tion of samples. It describes howwe can break the tree and
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leave an entire collection of unweighted Unifrac distances
among the samples unchanged.

Theorem 2 Let x1, . . . , xn denote leaf abundances for a
set of n samples.
As before, let s(e, F) denote the sister branch of edge e in

forest F. If s is such that ndesc(xi, s, F) > 0, i = 1, . . . , n,
then

du(xi, xj, F) = du(xi, xj, tb(F , s)) (15)
∀i = 1, . . . , n − 1, j = i + 1, . . . , n

Proof This follows by applying Theorem 1 to every pair
of samples and noting that our assumption that s has
descendants in all the samples implies that s has descen-
dants in every pair of samples.

Branch contributions
We note that both the weighted and unweighted Unifrac
distances are written as a sum over the branches in the
tree, and so for any branch, we can ask what fraction of the
distance it makes up. Suppose we have a tree or forest T
with p leaves, branches/edges E, and an abundance vector
x ∈ N

p. In the main text, we described quantities pib as
the proportion of bacteria in sample i that are descendants
of branch b. With the notation in the previous section, we
can make the definition

p(b, x, T ) = ndesc(b, x, T )∑p
j=1 xj

, (16)

and so if xi is the vector containing the abundances of
sample i, the pib in, e.g., Eqs. (1), (2), (3), (4), and (7) in the
main text would be p(b, xi,T ).
If we have communities x1 and x2 related by a tree or

forest T with B edges, the unweighted Unifrac distance
between x1 and x2 is

du(x1, x2, T ) =
B∑

b=1
lb

|1(p(b, x1, T ) > 0) − 1(p(b, x2, T ) > 0)|∑B
b=j lj

(17)

and the proportion of the unweighted Unifrac distance
contributed by branch b will be

ufcont(b, x1, x2, T ) =
lb

|1(p(b, x1, T ) > 0) − 1(p(b, x2, T ) > 0)|
(
∑B

b=j lj)du(x1, x2, T )

(18)

where lb denotes the length of edge b.

The raw weighted Unifrac distance between x1 and x2
will be

dw(x1, x2, T ) =
B∑

b=1
lb

∣∣p(b, x1,T ) − p(b, x2, T )
∣∣ (19)

the proportion of the raw weighted Unifrac distance con-
tributed by branch b will be

wufcont(b, x1, x2, T ) =
lb

∣∣p(b, x1, T ) − p(b, x2,T )
∣∣ /dw(x1, x2,T )

(20)

Finally, the generalized Unifrac distance with parameter
α between x1 and x2 is

dg(x1, x2,α, T ) =
B∑

b=1

(
lb

[
p(b, x1,T ) + p(b, x2,T )

]α

×
∣∣∣∣p(b, x1, T ) − p(b, x2, T )

p(b, x1, T ) + p(b, x2, T )

∣∣∣∣
)

(21)

and the proportion of the generalized Unifrac distance
contributed by branch b is

gufcont(b, x1, x2,α, T ) =
lb

[
p(b, x1,T ) + p(b, x2, T )

]α
×

∣∣∣∣p(b, x1, T ) − p(b, x2, T )

p(b, x1, T ) + p(b, x2, T )

∣∣∣∣ /dguf (x1, x2,α, T )

(22)

To account for the fact that the different branches have
different lengths, we can define the proportion of the dis-
tance per unit branch length, which will be the quantities
in (18), (20), and (22) divided by lb.
With these definitions, we can find how much on aver-

age each branch contributes to the distance. Given a set of
community points and a branch in the tree, we can find
howmuch the branch contributes to the distance between
every pair of community points. Doing this for every
branch gives us an idea of how much of the overall dis-
tance is contributed by each of the branches. Suppose that
we have a dataset with n communities whose abundances
are given in the vectors x1, . . . , xn. Then, the average con-
tribution of the bth branch to the unweighted Unifrac
distance, normalized by branch length, is

2
n(n + 1)

n−1∑
i=1

n∑
j=i+1

ufcont(b, xi, xj, T )/lb. (23)

For generalized Unifrac with parameter α, we use the
analogous expression:

2
n(n + 1)

n−1∑
i=1

n∑
j=i+1

gufcont(b, xi, xj,α, T )/lb. (24)
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RV coefficient
The RV coefficient is a generalization of the standard cor-
relation coefficient from vectors to matrices, and was first
described in [31]. Suppose that X ∈ R

n×p and Y ∈ R
n×q

are two sets of measurements on the same objects, and let
Sxx = XTX, Sxy = XTY, Syx = YTX, and Syy = YTY.
Then the RV coefficient between X and Y is defined as

RV(X,Y) = tr(SxySyx)√
tr(Sxx)2tr(Syy)2

(25)

If p = q = 1 and X and Y are both centered, it is easy to
see that the expression above is the square of the standard
correlation coefficient ρ(x, y) = cov(x,y)√

var(x)var(y)
.

Non-phylogenetic distances
For completeness, we give definitions of the Bray-Curtis
dissimilarity and the Jaccard index here.

Bray-Curtis
The Bray-Curtis dissimilarity [32] aims to describe the
compositional differences between pairs of communities,
and if x1 and x2 are vectors describing the species abun-
dances in two communities, the Bray-Curtis dissimilarity
between them is defined as

dBC(x1, x2) =
∑p

j=1 |x1j − x2j|∑p
j=1 x1j +

∑p
j=1 x2j

(26)

Jaccard
The Jaccard index [33] is based on the presence or absence
of species in each of the communities. If we let A be the
set of species present in one community and B be the set
of species present in the other, then the Jaccard index is
|A ∩ B|/|A ∪ B|. This is commonly transformed into a
dissimilarity measure by taking the complement, or

djacc = 1 − |A ∩ B|
|A ∪ B| (27)

which is what we will use. The Jaccard index is 1 or the
Jaccard dissimilarity is 0 when the two communities have
the same set of species, and the Jaccard index is 0 or the
Jaccard dissimilarity is 1 when the two communities have
completely disjoint sets of species.

Simulation setup
Simulation 3 investigated the case where all of the contri-
butions to the Unifrac distances come from the shallowest
branches if the abundances are measured without noise.
The simulated datasets contained p = 512 taxa and n =
100 samples. The phylogenetic tree describing the rela-
tionships among the species was a full binary tree, that
is, one in which every interior node has two descendants.
We let the taxa be numbered 1, 2 . . . , 512 and assign them
to the leaves of the tree so that pairs of taxa of the form

(2i − 1, 2i) for i = 1, . . . , 256 are sister taxa. The mean
matrixM ∈ R

n×p is then given by

Mij =

⎧⎪⎨
⎪⎩
10 i ≤ 50, j is even
10 i > 50, j is odd
0 o.w.

Taxon abundance matrices X ∈ R
n×p were gen-

erated as Xij ∼ Double Poisson(Mij, s), using the
rdoublepoisson function in the rmutil package in R
[38].
The notation Double Poisson(m, s) indicates a double

Poisson distribution with meanm and dispersion parame-
ter s. The double Poisson distribution [29] has probability
mass function

p(y) = c(m, s)sy/m
(
m
y

)y log s yy−1

y!

where c(m, s) is a normalizing constant, m is the mean
parameter, and s is the dispersion parameter. The sim-
ulation results shown in Fig. 3 correspond to s ∈
{200, 150, 100, 2, .5}. The mean and variance of the double
Poisson with mean m and dispersion s are approximately
m and m/s, respectively, but the standard deviations on
the plots were computed by Monte Carlo, as the approx-
imation of the variance as m/s breaks down for the very
large values of s used in the simulation.

Endnote
1 For another example of glomming in the context of the

Unifrac distances, see [39], where glomming was used to
cut computation time.
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