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Bridging the gap between reference and

real transcriptomes

Antonin Morillon1 and Daniel Gautheret2*
Abstract

Genetic, transcriptional, and post-transcriptional variations
shape the transcriptome of individual cells, rendering
establishing an exhaustive set of reference RNAs a
complicated matter. Current reference transcriptomes,
which are based on carefully curated transcripts, are
lagging behind the extensive RNA variation revealed by
massively parallel sequencing. Much may be missed by
ignoring this unreferenced RNA diversity. There is
plentiful evidence for non-reference transcripts with
important phenotypic effects. Although reference
transcriptomes are inestimable for gene expression
analysis, they may turn limiting in important medical
applications. We discuss computational strategies for
retrieving hidden transcript diversity.
scripts when available. Specialized RefTs such as
Reference transcriptomes: the making of
Reference transcriptomes (RefTs) aim to provide a com-
prehensive picture of transcripts produced by an organ-
ism. Early RefTs were produced at the turn of the century
based on sanger sequencing of full-length cDNAs
(flcDNA) [1–3]. Later on, projects such as ENCODE,
modENCODE, and FANTOM5 harnessed the power of
massively parallel cDNA sequencing (RNA-seq) to accel-
erate transcript discovery in multiple species and tissues.
Due to limited RNA-seq read size (approximately 100 nu-
cleotides), these efforts had to include additional technolo-
gies to guarantee accurate full-length transcript assembly.
For instance, the FANTOM5 RNA-seq based human
cDNA collection was assembled with assistance of the
CAGE technology to identify RNA 5′ ends, ENCODE
transcript sets were based on RNA-seq and rapid amplifi-
cation of cDNA ends (RACE) technologies [4], and the fly
and Caenorhabditis elegans ModENCODE sets combined
RNA-seq, RACE, and expressed sequence tag (EST)
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sequencing [5, 6]. In yeast, major transcriptomics efforts
have involved CAGE, TIF-seq, high coverage paired-end
RNA-seq (both total and poly(A)+) and 3′-end tags, cov-
ering both stable and cryptic transcripts [7–10] . A third
generation of transcriptomics projects now combines
single-molecule, long-read sequencing technologies with
short-read sequencing. Long-read-based datasets are now
available for human [11, 12] and several plants [13, 14]
and new sets of high-quality full-length transcripts are ex-
pected for all model species
Major genome databases integrate sequence data from

the above sources into non-redundant, curated tran-
script datasets (Fig. 1). RefSeq [16] and Ensembl [15] are
pan-species databases that implement a homogenous
computational annotation workflow combining assem-
bled high-throughput data and manually curated tran-

Gencode for human and mouse [17, 22], Wormbase for
C. elegans [18], Flybase for Drosophila [19, 23], and Ara-
port for Arabidopsis [20], are produced through a com-
bination of manual curation of full-length transcript
collections from various origins and dedicated
short-read assembly software. The Saccharomyces Gen-
ome Database [21] does not provide a set of full-length
transcript sequences; however, RefSeq and Ensembl pro-
vide RefTs for yeast.
The most striking lessons drawn from large-scale tran-

script sequencing have been the widespread expression
of long non-coding RNA genes and the abundance of al-
ternative transcripts. This is well reflected in the number
of genes and transcripts in current genome annotations
(Fig. 1). For instance the human Gencode RefT now har-
bors 58,721 genes (that is, three times more than coding
genes) and a transcript-to-gene ratio of 3.52.
Enter direct RNA-seq assembly
While current transcript counts in RefTs may seem im-
pressive, these datasets have actually grown relatively
slowly, constrained by their rigorous curation process.
For instance, Gencode has grown from 161,000 human
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Fig. 1 Contents of major reference transcriptomes for human and model eukaryotes. Versions of databases used: Ensembl [15], V95; RefSeq [16],
human rel 109, mouse rel 106, worm rel WS268, fly rel 6.18, arabidopsis rel TAIR10.1, yeast rel R64–2-1; Gencode [17], Human V29, mouse M20;
Wormbase [18], WS268; Flybase [19], r6.26; Araport [20], V11; Saccharomyces Genome Database (SGD) [21], V20150113. Database URLs and
additional curation information are provided in Additional file 1: Table S1
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transcripts in 2012 to 207,000 now, i.e., a 29% growth in
7 years. In the meantime, projects generating raw
RNA-seq data have exploded. Three projects alone, The
Cancer Genome Atlas (TCGA) [24], GTEX [25], and
Human Protein Atlas (HPA) [26], have produced 31,000
RNA-seq libraries covering normal and cancerous tis-
sues from thousands of individuals (Additional file 1:
Table S2). Raw RNA-seq datasets have been reanalyzed
by direct RNA-seq assembly projects such as miTran-
scriptome [27], BigTranscriptome [28], and CHESS [29].
These computational protocols, which do not implement
the strict validation process used for RefTs, led to a 55–
85% growth of the number of annotated human tran-
scripts (Fig. 1; Additional file 1: Table S1). Nevertheless,
the largest sets used in direct computational assembly
are still 40 times smaller than public RNA-seq databases
(over 400,000 human libraries in SRA [30] and ENA
[31]). This vast wealth of RNA-seq data contains exten-
sive transcript variation that is not yet included in RefTs.
Therefore, a deep information gap may be building up
between slow moving RefTs and yet undiscovered RNA
variants from short read data.
We describe below the different types of transcript

variations that may be missing from RefTs. We contend
that the information gap between RefTs and high-
throughput data is not going to be closed. Based on
multiple evidence gathered from medical transcriptome
studies, we argue that non-reference transcript informa-
tion is highly significant and its neglect limits our under-
standing of genotype–phenotype relationships. This
underlines the need for computational methods that can
extract non-reference events from RNA-seq data.
Shall we ever reach a complete reference
transcriptome?
Each cell of an organism produces a distinct set of tran-
scripts. Transcriptome differences between cells stem
from three mechanisms that are potentially cumulative
(Fig. 2). First, genetic variation occurs across individuals
in a population as well as within each individual through
aging and cancer. This includes a vast range of variation,
from single nucleotide substitutions and indels to mobile
element insertion and large chromosomal rearrange-
ments. Second, transcriptional regulation programs are
implemented during organism development and cell
differentiation. These comprise all variations of tran-
scription activity, whether in intensity, start site, or
strandedness. Third, post-transcriptional regulations, in-
cluding a wide array of RNA processing, editing, base
modification, and cleavage/degradation mechanisms, are
specific to cell type, cell compartment (e.g., splicing in
the nucleus), and environmental conditions. It is worthy
to note that transcriptomic complexity is not limited to
higher eukaryotes, as illustrated by the discovery of bi-
directional promoters [9, 32] and cryptic transcripts [7]
in yeast.
Most individual RNA variations do not find their way

into RefTs. An analysis of splice junctions in approxi-
mately 21,500 human RNA-seq libraries from SRA [33]
identified over three million junctions supported by at
least 20 reads, which is nine times more than found in
Gencode transcripts. Yet, the analysis did not include
the restricted access TCGA [24] dataset. Considering the
importance of aberrant splicing in cancer [34] and other
diseases [35], one may expect RNA-seq data from



Fig. 2 The sources of transcript diversity shown on a typical eukaryotic gene. Genetic: 1 single nucleotide variation or short indel, 2 microsatellite
variation, 3 transposition, 4 gene fusion. Transcriptional: 5 bidirectional transcription start site (TSS), 6 antisense transcript, 7 enhancer RNA, 8
alternative TSS. Post-transcriptional: 9 alternative 5′ splice site (SS), 10 alternative 3′ SS, 11 alternative 3′ SS, 12 skipped exon, 13 alternative poly(A)
site, 14 editing and modification, 15 processed pre mi/snoRNA, 16 circular RNA
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pathological samples to yield large quantities of novel
variations. National medical genomics projects will de-
liver millions more individual sequence sets, including
RNA-seq, raising the question of whether these data
should eventually be incorporated into RefTs.
One last important factor limiting RefT completeness

stems from the nature of RNA libraries analyzed (Add-
itional file 1: Table S3). RefTs are based primarily on
poly(A) + libraries, which are far from encompassing all
transcripts and present quantitative and qualitative bias
related to poly(A) retention efficiency [36]. Alternative
RNA selection protocols, including ribo-depleted
RNA-seq, nascent RNA-seq, capture-seq, small RNA-
seq, M6A-seq, and compartment-specific RNA-seq [37–
40], have already revealed large quantities of previously
hidden RNAs. The ability to sequence modified RNA
bases will add yet another dimension to transcriptomics.
As RNA modifications cause abortive reverse transcrip-
tion, specific protocols are needed to either allow bypass
of modified bases or recovery of aborted cDNAs [41].
Alternative strategies involving direct sequencing of
modified RNA with the Nanopore technology are still
under development.
The above observations are in line with recent studies

that have underlined the difficulty of ever completing a
mammalian transcriptome. Uszczynska-Ratajczak et al.
[42] showed large-scale lncRNAs catalogues are far from
converging while Deveson et al. [43] conclude from their
analysis of alternative splicing of non-coding exons that
“there does not exist a finite list of noncoding isoforms
that can be feasibly catalogued”.
Ignore non-reference transcripts at your own risks
It may be argued that non-reference transcripts are pre-
dominantly transient or expressed at a low level and
therefore can be ignored as transcriptional [44] or spli-
cing [45, 46] noise. The function of pervasive, intergenic
transcripts has been particularly disputed on this basis
[47–49]. Although pervasive transcription is now recog-
nized as a source of de novo gene birth [50, 51] and thus
may be important for a species as a whole, it is obviously
difficult to speculate or raise much interest about future
gene functions. A more sensible approach to establish
function is arguably that taken by evolutionary biologists
who use negative selection as an evidence for function.
Selection measures based either on phylogenetic conser-
vation [52] or allele frequencies in populations [53] are
converging towards 4–9% of the human genome under
selection, which is to be compared with the 1.5% coding
fraction. Predicted functional regions include about 130
Mb which are either expressed (mRNA and lncRNA
exons and introns) or potentially expressed (enhancers,
transposable elements, pseudogenes) [52]. One can
reasonably propose that any transcript variation altering
these regions, whether genetic, transcriptional, or
post-transcriptional, may impact phenotype.
An alternative way to appreciate the biological impact

of non-reference transcripts is to consider transcript al-
terations in human diseases. The list of disease-causing
or disease-related transcripts that are not part of the
RefT is a long one (Additional file 1: Table S2). Chimeric
transcripts [54] and viral transcripts from integrated or
free virus, such as human papillomavirus (HPV) [55],
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are important cancer drivers which are not included
in RefTs. Aberrant splicing is a source of key drivers
in cancer [56] and other diseases [35, 57]. Alternative
polyadenylation events contribute to human disease
and are connected with development, cell differenti-
ation, and proliferation [58]. Intron retention events
are considered as novel disease factors [59, 60]. Reac-
tivated transposable elements and retrotransposed
mRNAs are involved in tumorigenesis [61] and Alz-
heimer’s disease [62]. Rearranged T-cell receptor tran-
scripts are used to monitor T-cell clonal expansion in
tumors [63]. Both A-to-I RNA editing events and
M6A base modifications contribute to cancer progres-
sion [37]. Two abundant classes of non-reference
RNAs, circular and antisense RNAs, have been in-
volved in gene regulation [64] and used as disease
biomarkers [65]. Lastly, genetic polymorphism in
transcripts, whether in the form of single-nucleotide
variants, short indels, or microsatellite expansion, may
strongly impact RNA processing, stability, and transla-
tion. An extreme illustration is the CAG repeat ex-
pansion in the HD gene at the origin of Huntington’s
disease [66]. Although sequence polymorphisms are
generally ignored in transcriptome studies, taking into
account this dimension should lead to a better under-
standing of the potential impact of transcripts on
Fig. 3 RNA-seq pipelines for the discovery and quantification of transcripts
best suited to “small” input datasets (represented by an arbitrary size N < 2
libraries). Protocols are subdivided into four combinations of genome-guid
Local events include splice variants, transcribed regions, gene fusions, circu
(Additional file 1: Table S2). Results from assembly software can be used as
phenotypes, as the medical community enters the
“personal transcriptome” era [35, 67].

RNA-seq analysis in the personal transcriptome
era
RNA-seq data analysis commonly involves mapping
reads to an annotated genome or a RefT to quantify
transcript and gene expression [68]. These protocols do
not permit detection of novel transcripts and may lead
to inaccurate expression measures due to incomplete
transcript annotations [69]. A straightforward improve-
ment to quantification protocols is to replace a RefT
with an extended catalogue generated by direct
RNA-seq assembly, as available for human [27–29]. This
may work satisfyingly when studying datasets similar to
those from which the catalogue originated (TCGA,
GTEX, etc.). However, these catalogues have shown large
divergences [42] and thus do not guarantee that events
present in an arbitrary RNA-seq experiment are covered.
The only way to ensure this is to implement a RefT-free
strategy.
Figure 3 presents a selection of RefT-free software

pipelines for RNA-seq analysis. As a guide for users, the
figure shows whether pipelines are limited to small num-
bers of initial libraries (here arbitrarily shown as < 20) or
can scale to hundreds of libraries. Two other highlighted
and processing events, unconstrained by a RefT. Software in black are
0) while software in blue can process large datasets (up to hundreds of
ed versus de novo and assembly-based versus local event discovery.
lar RNAs, sequence polymorphisms (SNV) and expressed transposons
RefTs in standard quantification pipelines (inset)
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differences between strategies are (i) whether or not they
attempt full-length transcript assembly and (ii) whether
they are genome-guided or de novo methods.
Assembly software predict full-length transcripts ei-

ther de novo from raw RNA-seq data [70–72] or fol-
lowing genome alignment [73–76]. Major motivations
for using assembly software are transcript quantifica-
tion and analysis of protein-coding potential. De novo
assembly is computationally demanding and is mostly
used with small datasets and when a reference genome
is unavailable. On the other hand, genome-guided as-
semblers can be applied iteratively to hundreds of
RNA-seq libraries. However, a major limitation in all
assembly processes stems for their reliance on splicing
graph analysis, which has a relatively high error rate
that grows with the number of reads analyzed [77–79].
As said by Hayer et al. [78], “with more reads, most al-
gorithms find more ways to go wrong”. The assembly
of large datasets is thus performed stepwise, first by as-
sembling individual libraries and then using meta as-
semblers [28, 29, 80] to merge results. Of note, some
assembly protocols are able to use transcript boundary
information from CAGE and 3′-seq data to improve as-
sembly quality [76, 80].
Transcript assembly is not the most adequate route in

many situations. First, individual transcript variations
such as alternative transcription start sites and splicing/
polyadenylation events are under-represented in pre-
dicted full-length transcripts [81]. Second, assembled
transcripts are especially unreliable with certain RNA
classes such as the weakly expressed, highly heteroge-
neous lncRNAs [82]. Third, certain RNAs, such as fu-
sion or circular RNAs, are generally absent from
genome-guided assemblies. Therefore, non-canonical or
alternative transcription is often best studied using strat-
egies that bypass assembly altogether and focus solely on
specific variations recovered from the genome mapping
(BAM) files. This category includes powerful software
such as LeafCutter [83] for splice site discovery and
DERfinder [84] for the characterization of lncRNAs and
alternative mRNA boundaries. Other software tools are
able to use partly mapped or unmapped reads for the re-
covery of gene fusions, circular RNAs, single-nucleotide
variants, and expressed transposons (Fig. 3; Additional
file 1: Table S4).
Genome-guided procedures assume that all samples

under study have the same genetic makeup. This does
not hold when RNA-seq data come from individuals
with significant genetic divergences or from samples
harboring somatic structural variations. Transcripts
expressed from variable regions may erroneously map to
the reference genome, leading to incorrect transcript as-
semblies and counts. An emerging class of software, in-
cluding Kissplice [85], ChimerScope [86], and DE-kupl
[87], avoid both genome alignment and transcript recon-
struction through direct mining of the k-mer (subse-
quence of fixed size) contents of the original sequence
files. These are promising approaches that apply particu-
larly to cases where a reference genome cannot be relied
upon.
Concluding remarks
In spite of continuous updates, RefTs are not catching
up on short-read RNA-seq data in their coverage of
transcript diversity. Single molecule (long-read) RNA se-
quencing will help improving RefTs faster than current
technologies that require capture of cDNA ends in com-
plement to short reads. However, the combinatorial na-
ture of transcript variation, the higher yield of short-read
sequencing, and the huge diversity of tissues, diseases,
and transcript classes probed by short-read sequencing
make it unlikely that RefTs will ever match the level of
diversity observed in short read data.
Of note, limitations of RefTs are in a large part

intentional. Indeed, these databases are manually curated
to exclude a majority of pervasive transcripts resulting
from expressed repeats, pseudogenes, or erroneous spli-
cing. Transcript catalogues computationally generated
from thousands of RNA-seq libraries apply less stringent
inclusion criteria and are poised to include a large frac-
tion of non-functional and pathological products, as well
as incorrect boundaries and exon structures [11, 77].
Well-curated RefTs are essential resources for measur-

ing gene expression. RefT-based gene expression ana-
lyzes are now highly efficient [88, 89], provide accurate
gene expression measures [90], and can be functionally
interpreted via multiple resources for gene ontology and
pathway analysis. For these reasons, RefTs will remain a
major tool for transcriptomics. Functional analysis of
non-reference transcripts is more hazardous as many are
non-coding and there is no commonly accepted way to
annotate their function. Yet, their impact should not be
underestimated. The aforementioned examples taken
from human diseases reveal a wide diversity of
non-reference transcripts with phenotypic effects. Even
though these transcripts might be of low abundance,
they can be essential in understanding genotype–pheno-
type relationships and should not be ignored.
There is no consensus on the most efficient RNA-seq

analysis protocols for characterizing and quantifying
non-reference transcripts. Strategies focusing on local or
regional transcript variations are a powerful way to cir-
cumvent limitations related to full-length assembly. Such
methods can be combined to conventional RefT-based
analysis to achieve a complete description of normal and
aberrant transcript forms present in a set of RNA-seq
libraries.
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Additional file

Additional file 1: Table S1. Overview of major eukaryotic transcriptome
databases. Table S2. Large-scale RNA-seq projects (human). Table S3.
Sequencing methods providing insight on specific events shown in Fig 2.
Table S4. Transcript variations related to cancer and other diseases; and
software for retrieving these variations from RNA-seq data. (XLSX 18 kb)
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RefT: reference transcriptome

Funding
This work was funded in part by ANR-18-CE45–0020 “Transipedia” to DG.
AM’s lab is supported by the European Research Council (ERC CoG -
GA616180 - DARK).

Authors’ contributions
AM and DG developed the idea and wrote the manuscript. Both authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1ncRNA, Epigenetic and Genome Fluidity, CNRS UMR 3244, Sorbonne
Université, PSL University, Institut Curie, Centre de Recherche, 26 rue d’Ulm,
75248 Paris, France. 2Institute for Integrative Biology of the Cell, CEA, CNRS,
Université Paris-Sud, Université Paris Saclay, Gif sur Yvette, France.

References
1. Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y, et al. Functional

annotation of a full-length mouse cDNA collection. Nature. 2001;409:685–90.
2. Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, et al. Functional

annotation of a full-length Arabidopsis cDNA collection. Science. 2002;296:
141–5.

3. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS,
et al. Generation and initial analysis of more than 15,000 full-length human
and mouse cDNA sequences. Proc Natl Acad Sci U S A. 2002;99:16899–903.

4. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The
encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids
Res. 2018;46:D794–801.

5. Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, et al.
Integrative analysis of the Caenorhabditis elegans genome by the
modENCODE project. Science. 2010;330:1775–87.

6. The modENCODE Consortium, Roy S, Ernst J, Kharchenko PV, Kheradpour P,
Negre N, et al. Identification of functional elements and regulatory circuits
by Drosophila modENCODE. Science. 2010;330:1787–97.

7. van Dijk EL, Chen CL, d’Aubenton-Carafa Y, Gourvennec S, Kwapisz M,
Roche V, et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-
coding RNA in yeast. Nature. 2011;475:114–7.

8. Pelechano V, Wei W, Steinmetz LM. Extensive transcriptional heterogeneity
revealed by isoform profiling. Nature. 2013;497:127–31.

9. Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A.
Widespread bidirectional promoters are the major source of cryptic
transcripts in yeast. Nature. 2009;457:1038–42.

10. Wery M, Descrimes M, Vogt N, Dallongeville A-S, Gautheret D, Morillon A.
Nonsense-mediated decay restricts LncRNA levels in yeast unless blocked
by double-stranded RNA structure. Mol Cell. 2016;61:379–92.

11. Lagarde J, Uszczynska-Ratajczak B, Carbonell S, Pérez-Lluch S, Abad A, Davis
C, et al. High-throughput annotation of full-length long noncoding RNAs
with capture long-read sequencing. Nat Genet. 2017;49:1731–40.

12. Sharon D, Tilgner H, Grubert F, Snyder M. A single-molecule long-read
survey of the human transcriptome. Nat Biotechnol. 2013;31:1009–14.
13. Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, et al. Unveiling the
complexity of the maize transcriptome by single-molecule long-read
sequencing. Nat Commun. 2016;7:11708.

14. Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, et al.
A survey of the sorghum transcriptome using single-molecule long reads.
Nat Commun. 2016;7:11706.

15. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al.
Ensembl 2016. Nucleic Acids Res. 2016;44:D710–6.

16. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O,
et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids
Res. 2014;42:D756–63.

17. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F,
et al. GENCODE: the reference human genome annotation for the ENCODE
project. Genome Res. 2012;22:1760–74.

18. Lee RYN, Howe KL, Harris TW, Arnaboldi V, Cain S, Chan J, et al. WormBase
2017: molting into a new stage. Nucleic Acids Res. 2018;46:D869–74.

19. St Pierre SE, Ponting L, Stefancsik R, McQuilton P, FlyBase Consortium.
FlyBase 102 – advanced approaches to interrogating FlyBase. Nucleic Acids
Res. 2014;42:D780–8.

20. Cheng C-Y, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town
CD. Araport11: a complete reannotation of the Arabidopsis thaliana
reference genome. Plant J Cell Mol Biol. 2017;89:789–804.

21. Skrzypek MS, Nash RS, Wong ED, MacPherson KA, Hellerstedt ST, Engel SR,
et al. Saccharomyces genome database informs human biology. Nucleic
Acids Res. 2018;46:D736–42 Former ref 24 removed.

22. Mudge JM, Harrow J. Creating reference gene annotation for the mouse
C57BL6/J genome assembly. Mamm Genome. 2015;26:366–78.

23. Matthews BB, dos Santos G, Crosby MA, Emmert DB, St Pierre SE, Gramates
LS, et al. Gene model annotations for Drosophila melanogaster : impact of
high-throughput data. G3 (Bethesda). 2015;5:1721–36.

24. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills
GB, KRM S, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer
analysis project. Nat Genet. 2013;45:1113–20.

25. Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A novel
approach to high-quality postmortem tissue procurement: the GTEx project.
Biopreservation Biobanking. 2015;13:311–9.

26. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A,
et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.

27. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The
landscape of long noncoding RNAs in the human transcriptome. Nat Genet.
2015;47:199–208.

28. You B-H, Yoon S-H, Nam J-W. High-confidence coding and noncoding
transcriptome maps. Genome Res. 2017;27:1050–62.

29. Pertea M, Shumate A, Pertea G, Varabyou A, Breitwieser FP, Chang Y-C, et al.
CHESS: a new human gene catalog curated from thousands of large-scale
RNA sequencing experiments reveals extensive transcriptional noise.
Genome Biol. 2018;19:208.

30. Leinonen R, Sugawara H, Shumway M, on behalf of the international
nucleotide sequence database collaboration. The Sequence Read Archive.
Nucleic Acids Res. 2011;39:D19–21.

31. Silvester N, Alako B, Amid C, Cerdeño-Tarrága A, Clarke L, Cleland I, et al. The
European nucleotide archive in 2017. Nucleic Acids Res. 2018;46:D36–40.

32. Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Münster S, Camblong J, et al.
Bidirectional promoters generate pervasive transcription in yeast. Nature.
2009;457:1033–7.

33. Nellore A, Jaffe AE, Fortin J-P, Alquicira-Hernández J, Collado-Torres L, Wang
S, et al. Human splicing diversity and the extent of unannotated splice
junctions across human RNA-seq samples on the sequence read archive.
Genome Biol. 2016;17:266.

34. Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. Aberrant RNA
splicing in cancer; expression changes and driver mutations of splicing
factor genes. Oncogene. 2016;35:2413–27.

35. Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR,
et al. Improving genetic diagnosis in Mendelian disease with transcriptome
sequencing. Sci Transl Med. 2017;9:eaal5209.

36. Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. Poly(A)-tail profiling
reveals an embryonic switch in translational control. Nature. 2014;508:66–71.

37. Lian H, Wang Q-H, Zhu C-B, Ma J, Jin W-L. Deciphering the epitranscriptome
in cancer. Trends Cancer. 2018;4:207–21.

38. van Dijk EL, Jaszczyszyn Y, Thermes C. Library preparation methods for next-
generation sequencing: tone down the bias. Exp Cell Res. 2014;322:12–20.

https://doi.org/10.1186/s13059-019-1710-7


Morillon and Gautheret Genome Biology          (2019) 20:112 Page 7 of 7
39. Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread
pausing and divergent initiation at human promoters. Science. 2008;322:
1845–8.

40. Deveson IW, Hardwick SA, Mercer TR, Mattick JS. The dimensions, dynamics,
and relevance of the mammalian noncoding transcriptome. Trends Genet.
2017;33:464–78.

41. Helm M, Motorin Y. Detecting RNA modifications in the epitranscriptome:
predict and validate. Nat Rev Genet. 2017;18:275–91.

42. Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R. Towards
a complete map of the human long non-coding RNA transcriptome. Nat
Rev Genet. 2018;19:535–48.

43. Deveson IW, Brunck ME, Blackburn J, Tseng E, Hon T, Clark TA, et al. Universal
alternative splicing of noncoding exons. Cell Syst. 2018;6:245–255.e5.

44. van Bakel H, Nislow C, Blencowe BJ, Hughes TR. Most “dark matter”
transcripts are associated with known genes. PLoS Biol. 2010;8:e1000371.

45. Pickrell JK, Pai AA, Gilad Y, Pritchard JK. Noisy splicing drives mRNA isoform
diversity in human cells. PLoS Genet. 2010;6:e1001236.

46. Saudemont B, Popa A, Parmley JL, Rocher V, Blugeon C, Necsulea A, et al.
The fitness cost of mis-splicing is the main determinant of alternative
splicing patterns. Genome Biol. 2017;18:208.

47. van Bakel H, Nislow C, Blencowe BJ, Hughes TR. Response to “The Reality of
Pervasive Transcription.”. PLoS Biol. 2011;9:e1001102.

48. Clark MB, Amaral PP, Schlesinger FJ, Dinger ME, Taft RJ, Rinn JL, et al. The reality
of pervasive transcription. PLoS Biol. 2011;9:e1000625 discussion e1001102.

49. Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E. On the
immortality of television sets: “function” in the human genome according
to the evolution-free gospel of ENCODE. Genome Biol Evol. 2013;5:578–90.

50. Carvunis A-R, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N,
et al. Proto-genes and de novo gene birth. Nature. 2012;487:370–4.

51. Vakirlis N, Hebert AS, Opulente DA, Achaz G, Hittinger CT, Fischer G, et al. A
molecular portrait of de novo genes in yeasts. Mol Biol Evol. 2018;35:631–45.

52. Rands CM, Meader S, Ponting CP, Lunter G. 8.2% of the human genome is
constrained: variation in rates of turnover across functional element classes
in the human lineage. PLoS Genet. 2014;10:e1004525.

53. Gulko B, Hubisz MJ, Gronau I, Siepel A. A method for calculating
probabilities of fitness consequences for point mutations across the human
genome. Nat Genet. 2015;47:276–83.

54. Li Z, Qin F, Li H. Chimeric RNAs and their implications in cancer. Curr Opin
Genet Dev. 2018;48:36–43.

55. Khoury JD, Tannir NM, Williams MD, Chen Y, Yao H, Zhang J, et al.
Landscape of DNA virus associations across human malignant cancers:
analysis of 3,775 cases using RNA-Seq. J Virol. 2013;87:8916–26.

56. Singh B, Eyras E. The role of alternative splicing in cancer. Transcription.
2017;8:91–8.

57. Cáceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms
and involvement in human disease. Trends Genet. 2002;18:186–93.

58. Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation:
extent, regulation and function. Nat Rev Genet. 2013;14:496–506.

59. Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B,
Gonatopoulos-Pournatzis T, et al. Widespread intron retention in mammals
functionally tunes transcriptomes. Genome Res. 2014;24:1774–86.

60. Wong JJ-L, Au AYM, Ritchie W, Rasko JEJ. Intron retention in mRNA: no
longer nonsense: known and putative roles of intron retention in normal
and disease biology. BioEssays News Rev Mol Cell Dev Biol. 2016;38:41–9.

61. Burns KH. Transposable elements in cancer. Nat Rev Cancer. 2017;17:415–24.
62. Lee M-H, Siddoway B, Kaeser GE, Segota I, Rivera R, Romanow WJ, et al.

Somatic APP gene recombination in Alzheimer’s disease and normal
neurons. Nature. 2018;563:639–45.

63. Gong Q, Wang C, Zhang W, Iqbal J, Hu Y, Greiner TC, et al. Assessment of T-
cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma
using RNA-seq data. Sci Rep. 2017;7:11301.

64. Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the
bench to the clinic. Pharmacol Ther. 2018;187:31–44.

65. Day JR, Jost M, Reynolds MA, Groskopf J, Rittenhouse H. PCA3: from basic
molecular science to the clinical lab. Cancer Lett. 2011;301:1–6.

66. A novel gene containing a trinucleotide repeat that is expanded and
unstable on Huntington’s disease chromosomes. The Huntington’s Disease
Collaborative Research Group. Cell. 1993;72:971–983.

67. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW.
Translating RNA sequencing into clinical diagnostics: opportunities and
challenges. Nat Rev Genet. 2016;17:257–71.
68. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson
A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol.
2016;17:13.

69. Zhao S, Zhang B. A comprehensive evaluation of ensembl, RefSeq, and
UCSC annotations in the context of RNA-seq read mapping and gene
quantification. BMC Genomics. 2015;16:97.

70. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-
seq assembly across the dynamic range of expression levels. Bioinformatics.
2012;28:1086–92.

71. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al.
De novo transcript sequence reconstruction from RNA-seq using the trinity
platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.

72. Chang Z, Li G, Liu J, Zhang Y, Ashby C, Liu D, et al. Bridger: a new
framework for de novo transcriptome assembly using RNA-seq data.
Genome Biol. 2015;16:30.

73. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L.
Differential analysis of gene regulation at transcript resolution with RNA-seq.
Nat Biotechnol. 2013;31:46–53.

74. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression
analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat
Protoc. 2016;11:1650–67.

75. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, et al.
Ab initio reconstruction of cell type-specific transcriptomes in mouse
reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol.
2010;28:503–10.

76. Boley N, Stoiber MH, Booth BW, Wan KH, Hoskins RA, Bickel PJ, et al.
Genome-guided transcript assembly by integrative analysis of RNA
sequence data. Nat Biotechnol. 2014;32:341–6.

77. Steijger T, Abril JF, Engström PG, Kokocinski F, Abril JF, Akerman M, et al.
Assessment of transcript reconstruction methods for RNA-seq. Nat Methods.
2013;10:1177–84.

78. Hayer KE, Pizarro A, Lahens NF, Hogenesch JB, Grant GR. Benchmark analysis
of algorithms for determining and quantifying full-length mRNA splice
forms from RNA-seq data. Bioinformatics. 2015;31:3938–45.

79. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet.
2011;12:671–82.

80. Niknafs YS, Pandian B, Iyer HK, Chinnaiyan AM, Iyer MK. TACO produces
robust multisample transcriptome assemblies from RNA-seq. Nat Methods.
2017;14:68–70.

81. Vaquero-Garcia J, Barrera A, Gazzara MR, González-Vallinas J, Lahens NF,
Hogenesch JB, et al. A new view of transcriptome complexity and
regulation through the lens of local splicing variations. eLife. 2016;5:e11752.

82. Hon C-C, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJL, Gough J,
et al. An atlas of human long non-coding RNAs with accurate 5′ ends.
Nature. 2017;543:199–204.

83. Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, et al.
Annotation-free quantification of RNA splicing using LeafCutter. Nat Genet.
2018;50:151–8.

84. Collado-Torres L, Nellore A, Frazee AC, Wilks C, Love MI, Langmead B, et al.
Flexible expressed region analysis for RNA-seq with derfinder. Nucleic Acids
Res. 2017;45:e9.

85. Sacomoto GAT, Kielbassa J, Chikhi R, Uricaru R, Antoniou P, Sagot M-F, et al.
KISSPLICE: de-novo calling alternative splicing events from RNA-seq data.
BMC Bioinformatics. 2012;13(Suppl 6):S5.

86. Li Y, Heavican TB, Vellichirammal NN, Iqbal J, Guda C. ChimeRScope: a novel
alignment-free algorithm for fusion transcript prediction using paired-end
RNA-Seq data. Nucleic Acids Res. 2017;45:e120.

87. Audoux J, Philippe N, Chikhi R, Salson M, Gallopin M, Gabriel M, et al. DE-
kupl: exhaustive capture of biological variation in RNA-seq data through k-
mer decomposition. Genome Biol. 2017;18:243.

88. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol. 2016;34:525–7.

89. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast
and bias-aware quantification of transcript expression. Nat Methods. 2017;
14:417–9.

90. Kanitz A, Gypas F, Gruber AJ, Gruber AR, Martin G, Zavolan M. Comparative
assessment of methods for the computational inference of transcript
isoform abundance from RNA-seq data. Genome Biol. 2015;16:150.


	Abstract
	Reference transcriptomes: the making of
	Enter direct RNA-seq assembly
	Shall we ever reach a complete reference transcriptome?
	Ignore non-reference transcripts at your own risks
	RNA-seq analysis in the personal transcriptome era
	Concluding remarks
	Additional file
	Abbreviation
	Funding
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

