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Abstract

Cellular heterogeneity within and across tumors has
been a major obstacle in understanding and treating
cancer, and the complex heterogeneity is masked if
bulk tumor tissues are used for analysis. The advent of
rapidly developing single-cell sequencing technologies,
which include methods related to single-cell genome,
epigenome, transcriptome, and multi-omics sequencing,
have been applied to cancer research and led to exciting
new findings in the fields of cancer evolution, metastasis,
resistance to therapy, and tumor microenvironment.
In this review, we discuss recent advances and
limitations of these new technologies and their
potential applications in cancer studies.

Introduction
A single cell is the ultimate unit of life activity, in which
genetic mechanisms and the cellular environment inter-
play with each other and shape the formation and func-
tion of such complex structures as tissues and organs.
Dissecting the composition and characterizing the inter-
action, dynamics, and function at the single-cell resolution
are crucial for fully understanding the biology of almost
all life phenomena, under both normal and diseased con-
ditions. Cancer, a disease caused by somatic mutations
conferring uncontrolled proliferation and invasiveness,
could in particular benefit from advances in single-cell
analysis. During oncogenesis, different populations of can-
cer cells that are genetically heterogeneous emerge, evolve,
and interact with cells in the tumor microenvironment,
which leads to host metabolism hijacking, immune eva-
sion, metastasis to other body parts, and eventual

mortality. Cancer cells can also manifest resistance to vari-
ous therapeutic drugs through cellular heterogeneity and
plasticity. Cancer is increasingly viewed as a ‘tumor eco-
system’, a community in which tumor cells cooperate with
other tumor cells and host cells in their microenviron-
ment, and can also adapt and evolve to changing condi-
tions [1–5].
Detailed understanding of tumor ecosystems at

single-cell resolution has been limited for technological
reasons. Conventional genomic, transcriptomic, and epi-
genomic sequencing protocols require microgram-level
input materials, and so cancer-related genomic studies
were largely limited to bulk tumor sequencing, which does
not address intratumor heterogeneity and complexity. The
advent of single-cell sequencing technologies [6–8] has
shifted cancer research to a new paradigm and revolution-
ized our understanding of cancer evolution [7–22], tumor
heterogeneity [23–46], and the tumor microenvironment
[47–59]. Development of single-cell sequencing technolo-
gies and the applications in cancer research have been as-
tonishing in the past decade, but many challenges still
exist and much remains to be explored. Single-cell cancer
genomic studies have been reviewed previously [60–63].
In this review, we summarize recent progress and limita-
tions in cancer sample single-cell sequencing with a focus
on the dissection of tumor ecosystems.

Overview of single-cell sequencing and analysis
Single-cell sequencing technologies have improved consider-
ably from the initial proof-of-principle studies [6–8]. Modifi-
cation of the underlying molecular biology and chemistry of
single-cell library preparation has provided diverse ap-
proaches to obtain and amplify single-cell nucleic acids for
subsequent high-throughput sequencing [64–72] (Fig. 1).
Because an individual cancer cell typically contains only ∼6–
12 pg of DNA and 10–50 pg of total RNA (depending on
the cell types and status) [73], amplification is essential for
single-cell library preparation to fulfill the sequencing input
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requirements, although both false positive and false negative
errors may arise in the process [74]. Single-cell DNA and
RNA sequencing, epigenomic sequencing [68, 70, 72, 75],
and simultaneous sequencing of the genome, transcriptome,
epigenome, and epitopes of the same single cell [32, 35, 76–
80] are all now possible, and can facilitate exploration of the
connection between cellular genotypes to phenotypes. Fur-
thermore, the throughput of single-cell sequencing tech-
nologies has improved vastly, with some methods allowing
simultaneous sequencing of tens of thousands of single cells
in one run [81–86]. Methods that couple additional experi-
mental techniques with single-cell sequencing technologies
are also gaining traction [21, 87–91], to provide a more inte-
grated analysis of single cells.
Accompanying the tremendous progress of experimental

single-cell sequencing technologies, specialized bioinfor-
matics and algorithmic approaches have also been devel-
oped to best interpret the single-cell data while reducing
their technological noise. Examples of these approaches
include the imputation of dropout events [92–95],
normalization and correction of batch effects [96–100],
clustering for identification of cell types [98, 101–108],
pseudo-temporal trajectory inference [109–112], spatial
position inference [87, 88, 90], and data visualization [102,
113–115]. Progress in this area requires the application of
statistics, probability theory, and computing technologies,
which lead to new algorithms, software packages, data-
bases, and web servers. Detailed information of specific

single-cell technologies and the underlying principles of
the algorithms have been elegantly discussed in other re-
views [61, 64–70, 72, 116–123]. This myriad of experi-
mental and computational methods is becoming the new
foundation for uncovering the mystery of cancer complex-
ity at the single-cell resolution.
Despite the dramatic advances, substantial limitations

and challenges still exist in single-cell sequencing. The
first challenge lies in the technological noise introduced
during the amplification step. Notable allelic dropouts
(i.e., amplification and sequencing of only one allele of a
particular gene in a diploid/multiploid cell) and non-uni-
form genome coverage hinder the accurate detection of
single nucleotide variants (SNVs) at the genome or exome
level. These problems can be partially alleviated by the
LIANTI (linear amplification via transposon insertion)
method [40], which implements a linear genomic amplifi-
cation by bacterial transposons and reportedly reaches im-
provements in genome coverage (~ 97%), allelic dropout
rates (< 0.19) and false negative rates (< 0.47). Similarly, in
single-cell RNA sequencing (scRNA-seq), lowly expressed
genes are prone to dropout and susceptible to techno-
logical noise even when detected, although they often
encode proteins with important regulatory or signaling
functions. These technological issues are more profound
for scRNA-seq technologies designed to offer higher
throughput [81, 84]. Although many computational
methods are available to model or impute dropout events
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Fig. 1 State of the art of single-cell sequencing technologies. Single-cell sequencing technologies have been designed for almost all the molecular
layers of genetic information flow from DNA to RNA and proteins. For each molecular layer, multiple technologies have been developed, all of which
have specific advantages and disadvantages. Single-cell multi-omic technologies are close to comprehensively depicting the state of the same cells.
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[92, 94, 95], their performances vary and may introduce
artificial biases. Much effort is needed to fully address this
challenge.
The second challenge is that only a small fraction of

cells from bulk tissues can be sequenced. Bulk tissues con-
sist of millions of cells, but present studies can often only
sequence hundreds to thousands of single cells because of
technological and economic limitations [9–11, 20, 25,
124–126]. To what extent the sequenced cells represent
the distribution of cells in the entire tissue of interest is
not clear. A plausible solution to address this challenge
would be to further improve the throughput of cellular
captures, e.g., MARS-seq [82] and SPLiT-seq [86], or al-
ternatively to combine bulk and single-cell sequencing to-
gether and then conduct deconvolution analysis [127].
Deconvolution analysis for bulk RNA-seq data uses
cell-type signature genes as inputs [128–130], which can
be substituted by single-cell sequencing results, although
critical computational challenges still exist, such as collin-
earity among single cells. If marker genes for known cell
types are orthogonal to each other, the proportions of each
cell type in a bulk sample can be reliably estimated. How-
ever, collinearity of gene expression exists widely among
single cells, which complicates the deconvolution process.
At present, successful deconvolution of bulk RNA-seq
data based on scRNA-seq-defined signatures has been re-
ported only in cases where orthogonal molecular signa-
tures and fine cluster structures are well balanced [131].
The wide usage of scRNA-seq based deconvolution will
hinge upon the availability of comprehensive single-cell
clusters and the development of general methods for
selecting orthogonal signatures for each cell type.
Spatial information of single cells in the tissue is often

lost during the isolation step and thus single-cell sequen-
cing data typically do not show how cells are organized to
implement the concerted function within a tissue of inter-
est. Many new techniques have been developed to keep or
restore the spatial information of sequenced single cells
such as fluorescence in situ hybridization (FISH), single-
molecule fluorescence in situ hybridization (smFISH),
laser capture microdissection, laser scanning microscopy,
including two-photon laser scanning microscopy, and
fluorescence in situ sequencing [21, 30, 87–91, 132–143].
However, at present all of these techniques have inherent
limitations and only apply to specific spatial architecture.
For example, while FISH-based technologies can map the
spatial distribution of a set of selected genes upon which
the spatial information of single cells subject to RNA-seq
can be reconstructed via probabilistic inference, the
methods are limited to two dimensions and the inference
is primarily dependent on the availability of marker genes
that can properly discriminate the spatial characteristics
with sufficient resolutions. Other conditions for valid
marker genes include accurate and robust estimation of

their expression levels, but this requirement can be greatly
compromised by inherent dropout in scRNA-seq proto-
cols. Accurate restoration of single cell spatial positions
via FISH-based inference also requires replicable tissues
for parallel FISH and scRNA-seq, which can be only ap-
proximately fulfilled on model organisms. For human can-
cers, however, such requirements usually cannot be met
and spatial-recording methods have thus been proposed.
With laser capture microdissection, single cells are ob-
tained simultaneously when their spatial information is re-
corded. However, the cellular throughput of such methods
is extremely limited due to operation difficulties, and the
biological interpretation of the recorded spatial positions
are confined because adjacent cells cannot be properly
dissected for scRNA-seq, whereas sequenced cells are
often distantly distributed. Low molecular throughput is
also problematic with these recently developed in situ se-
quencing methods. Typically, only tens or hundreds of
known genes can be in situ labeled or sequenced, far from
the requirement of fully understanding the molecular
landscapes of single cells of interest. Furthermore, the rep-
licability of such complicated experiments also imposes
barriers for their practical applications to human samples.
Because single-cell sequencing captures individual cells

at a particular time point, other factors such as cell cycle
and functional state must be considered. By contrast,
these factors are often ignored in bulk sequencing due
to the average effect. Cell cycle phases can be discerned
by phase-specific expression analysis [144–146], but cell
types and cell states can be hard to distinguish. Some-
times even cancer cells cannot be easily distinguished
from normal cells, although inferred DNA copy numbers
are often used for this purpose [22, 47, 51]. More robust
methods are needed for cell type determination in silico.
Compared to traditional bulk sequencing technologies,

which characterize samples via a gene-by-sample matrix,
single-cell sequencing adds a cellular layer between genes
and samples, which results in a gene-by-cell-by-sample
data structure. Addition of the cellular dimension allows
simultaneous characterization of samples at both the mo-
lecular and cellular level. However, bioinformatics and al-
gorithmic methods for single-cell sequencing data analysis
are generally developed for gene-by-cell data, which essen-
tially have the same structure with the gene-by-sample
matrices. Although methods exploiting the cellular dimen-
sion for phenotype classification have been proposed
[147], tools sufficiently employing all the molecular, cellu-
lar, and sample information of the new data structure are
still needed.
Given the maturation of single-cell sequencing tech-

nologies, especially scRNA-seq, the scale of datasets of
one study soon increases from hundreds to tens of thou-
sands and even millions of cells. For large programs, e.g.,
the Human Cell Atlas project [148], the volume of data
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demands more robust computer hardware and software.
Although a few down-sampling or convolution-based
methods have been proposed to manage large-scale
scRNA-seq data for clustering and differential expression
analysis [149–151], efficient and effective algorithms are
of pressing need to circumvent these difficulties.

Complexity of tumor ecosystems
Cancer is known for its heterogeneity, at the inter- and
intra-tumor levels [152]. Within a tumor, different
spatial sites have different composition of cancer cell
clones (Fig. 2), which results in spatial heterogeneity
[152]. As cancer cells evolve, temporal variations also
arise during the course of cancer genesis and progres-
sion, causing temporal heterogeneity [152]. In addition
to cancer cells, tumors are also infiltrated with stromal,
immune, and other cell types. The diversity of these cells
forms the basis of the heterogeneity of the tumor micro-
environments [1, 4, 153]. The complex and dynamic na-
ture of cancer heterogeneity within tumors is analogous
to ecosystems. Thorough understanding of the compos-
ition, interactions, dynamics, and operating principles of
tumor ecosystems is key to understanding cancer evolu-
tion and the emergence of drug resistance. Multi-region

sampling coupled with bulk sequencing is a plausible ap-
proach to investigating intra-tumor heterogeneity on the
genome scale [36, 154, 155]. However, although this ap-
proach reveals intra-tumor heterogeneity, it cannot directly
dissect the cellular composition of tumors. Computational
deconvolution techniques could help infer the cellular com-
position of tumors, but such analyses are limited to a few
known cell types [128–130]. Single-cell sequencing repre-
sents a quantum technological leap, as it allows the most
precise dissection of the complex architecture of tumors
while capturing rare cell types. Here, we review recent
progress on understanding tumor ecosystems using
single-cell sequencing technologies (Table 1).

Decomposition of clonal and sub-clonal tumor
structure
Early success of single-cell sequencing applications in
cancer research came from the studies of clonal and
sub-clonal structure of primary tumors. DNA-based
single-cell sequencing has been applied to breast [7, 20,
21, 26, 156, 157], kidney [158], bladder [159], and colon
tumors [39, 160, 161], glioblastoma [162], and
hematological malignancies such as acute myeloid
leukemia and acute lymphoblastic leukemia [11, 33,
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Fig. 2 Spatial heterogeneity of tumors. A tumor is a complex ecosystem composed of various cell types which show heterogeneous spatial
distributions. The cell types within a tumor generally contain cancer cell clones, normal cells that have not been transformed, stromal cells, immune
cells, and endothelial cells. Because of the spatial heterogeneity, bulk sequencing from a specific specimen will produce an average signal of
thousands of cells with unknown composition, which forms a hidden confounding factor that interferes with the interpretations of cancer research
and diagnosis. Single-cell sequencing inherently has the power to dissect the cellular composition of tissues, providing a powerful tool to advance
cancer studies
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163–165]. These studies demonstrated the existence of
common mutations among different cancer cell clones
in individual cancer patients, which provided evidence
for the origin of common cancerous cells and subse-
quent clonal evolution. Meanwhile, the application of
scRNA-seq in glioma [22, 51, 166] demonstrated that
cell differentiation of neural stem cells also contributes
to tumor heterogeneity, thus supporting a cancer stem
cell model. Notably, a recent study of intra-tumor diver-
sification of colorectal cancers [42] integrated single-cell
technologies and tumor organoid culture to show that
cancer cells had several times more somatic mutations
than normal cells. The authors of this study also ob-
served that most of the mutations occurred during the
final dominant clonal expansion, contributed by muta-
tional processes absent from normal controls. In
addition to canonical mutations, transcriptomic alter-
ations and DNA methylation were cell-autonomous,
stable, and followed the phylogenetic tree of each cancer.
The study by Roerink et al. [42] provided a paradigm of
cancer evolution by characterizing clonal and sub-clonal
tumor structures, and indicated the potential dynamics
of cancer progression. These findings exemplify the
unique power of single-cell sequencing to characterize
the diversity of cancer cells, resulting in different evolu-
tionary models between cancers. In particular, single-cell
data challenged the cancer stem cell model by showing
that continued proliferation and clonal expansion
formed the majority of tumor cells. Furthermore,
scRNA-seq data supported the cancer stem cell model
by demonstrating the contribution of cell differentiation
to tumor heterogeneity. Copy number alternations
(CNAs) and point mutations of cancer cells were subject
to different evolutionary modes, with the former prefer-
ring punctuated evolution and the latter preferring

gradual accumulation. Outstanding disparities need to
be resolved before consistent models of cancer genesis
and evolution can be applied to a wide range of cancers.
Studies with larger sample size and higher molecular
and cellular resolution are needed to reconcile various
cancer evolution models. Sequencing analysis of
single-cell-derived organoids could provide a template
for investigating cancer evolution, but this should be ex-
tended to larger samples and other cancer types.

Monitoring cancer progress through characterization
of circulating tumor cells
Circulating tumor cells (CTCs) are extremely rare in
blood (1 in 106), with only tens of cells captured from a
typical blood draw [60]. The application of bulk sequen-
cing to such limited input material for genomic explor-
ation is difficult, hindering the analysis of cancer cell
migration via blood. Single-cell sequencing has trans-
formed the ability to characterize CTCs and has been used
to identify metastatic potential of CTCs in cancer metasta-
sis models, to monitor abnormal signaling pathways for
drug-resistance prediction. By characterizing mutation
profiles of CTCs, their tissue sources can be matched to
the positions of primary and metastatic tumors [13, 16,
24, 167, 168]. This type of analysis holds great potential in
early cancer detection and real-time monitoring of disease
progression with or without treatment. Furthermore, the
origin and destination of CTCs could be further explored
to reveal the dissemination conditions of specific tumors.
The application of DNA-based single-cell sequencing to
CTCs in colon cancer [161], melanoma [169], lung cancer
[170], and prostate cancer [171, 172] revealed that the
copy number profiles of CTCs are highly similar to pri-
mary and metastatic tumors but point mutation profiles
show much greater variations, consistent with punctuated

Table 1 Recent progress of cancer studies based on single-cell sequencing

Technology Study topic References

Single-cell DNA-seq Heterogeneity of cancer clones [18, 33, 40, 45, 157]

Single-cell DNA-seq Mutation profiles of CTCs [16, 43]

Single-cell RNA-seq Expression patterns of cancer cells upon treatment [19, 29, 46, 165]

Single-cell RNA-seq Expression heterogeneity and dynamics of cancer cells [22, 37, 38, 41, 44]

Single-cell RNA-seq Expression patterns of CTCs [31]

Single-cell RNA-seq Heterogeneity of tumor microenvironment [47–52, 55–59]

Single-cell RNA-seq, mass cytometry Heterogeneity of tumor microenvironment [53, 54]

Single-cell DNA-seq and RNA-seq Integrated analysis of cancer cells [20, 166]

Single-cell epigenomics Epigenomics of cancer cells [187]

Single-cell multi-omics Multi-omics analyses of the same cancer cells [32]

Single-cell-derived organoids Diversification of cancer cells [42]

Spatial single-cell sequencing Spatial heterogeneity and metastasis of cancer cells [21, 30]

Single-cell DNA-seq Amplification methods [7, 8, 39, 40, 172, 206–208]
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evolution of CNAs and gradual evolution of point muta-
tions observed within tumors. A recent integrative analysis
of colon, breast, gastric, and prostate cancers by
single-cell DNA sequencing compared the mutation pro-
files between primary tumor cells and CTCs, and revealed
convergent evolution of CNAs from primary cancer tis-
sues to CTCs [16]. Remarkably, CNAs affecting the onco-
gene MYC and the tumor suppressor gene PTEN were
observed only in a minor proportion of primary tumor
cells but were present in all CTCs spanning multiple can-
cer types. These observations suggest that the potential of
primary tumor cells to transit into CTCs are quite uneven,
or otherwise strong selection pressure exists upon CTCs
during the metastasis process. To resolve the detailed mo-
lecular mechanisms involved in the generation of CTCs in
primary tumors to colonization in metastasis sites, it will
be important to temporally trace the variations of CTCs
during cancer progression from primary tumors to metas-
tasis in both a research and clinical setting. Furthermore,
scRNA-seq has been used in the study of CTCs in melan-
oma [173], breast [167], pancreatic [126, 174], and
prostate cancers [31], revealing specific transcriptional sig-
natures of CTCs relative to their primary and metastatic
tumors. Extracellular matrix proteins were specifically
expressed by CTCs, and plakoglobin appeared to be a key
regulator of CTC clusters with survival advantages distinct
from individual CTCs. Furthermore, abnormal signaling
pathways for drug resistance prediction can be monitored
using scRNA-seq of CTCs, as illustrated by the Miyamoto
et al. study [31], in which scRNA-Seq profiling of 77 CTCs
from 13 prostate cancer patients revealed extensive het-
erogeneity of the androgen receptor gene at both expres-
sion and splicing levels. Activation of non-canonical Wnt
signaling was observed in the retrospective study of CTCs
from patients treated with an androgen receptor inhibitor,
indicating the potential resistance to therapy. Despite en-
viable progress, CTC studies remain limited by difficulties
in the detection and enrichment of CTCs from blood.
How to effectively obtain insight into the generation, pro-
gress, metastasis, and response to therapies of the entire
tumor through the characterization of CTCs is still an elu-
sive question.

Interrogating the genesis and evolution of therapy
resistance
Chemotherapy and targeted therapies have been import-
ant weapons to combat cancers, but drug resistance is
common for most tumors. Due to the complexity of
cancer drug resistance, the underlying mechanisms re-
main poorly understood for most human cancers, which
hampers the development of new approaches to over-
come drug resistance. An important question to address
is whether drug resistance arises from rare pre-existing
subclones with drug-resistant phenotypes prior to

treatment (intrinsic resistance) or, alternatively, is ac-
quired through induction of new mutations conferring
drug-resistance (acquired resistance). Acquired versus
intrinsic resistance has been studied for decades in bac-
teria, which are single-cell systems [175], but remains
elusive in most human cancers. Single-cell sequencing
can be used to resolve tumor heterogeneity, reconstruct
the evolutionary trajectories of cancer cells, and identify
rare subclones, and has therefore been a promising
method to address drug resistance [19, 25, 29, 47, 165].
The recent study by Kim et al. [20] of triple-negative
breast cancers treated with neoadjuvant chemotherapy
employed both single-cell DNA- and RNA-sequencing
to resolve the genesis and evolution of drug-resistant
clones. Using DNA data from 900 cells and RNA data
from 6862 cells, CNAs in drug-resistant subclones were
found to be pre-existing and adaptively selected while
their expression profiles were acquired through transcrip-
tional reprogramming in response to chemotherapy.
These results suggest a model of drug-resistance acquisi-
tion involving both intrinsic and acquired modes of evolu-
tion. According to the newly proposed model, drug
resistance-associated CNAs are acquired in rare tumor
clones during several short evolutionary bursts at the
earliest stages of tumor progression and then subject to
gradual evolution. Following anti-tumor therapies, the se-
lective pressure will result in two fates for tumor cells:
clonal extinction and persistence, during which the
pre-existing rare drug-resistant tumor clones will persist
and become the major clones. The transcriptional pro-
grams of the persisting clones will converge on a few com-
mon pathways associated with the therapy-resistance
phenotypes. Both genomic mutations and transcriptional
reprogramming could be relevant in understanding ther-
apy resistance as they might exert different modes of evo-
lution for changes at individual levels. It remains unclear
how different mechanisms coordinate with one another;
therefore, more powerful technologies, such as single-cell
multi-omics, are needed to address these questions.

Dissecting the tumor microenvironment to
understand cancer immune evasion and metastasis
The tumor microenvironment represents all compo-
nents of a solid tumor that are not cancer cells. Besides
the genetic and non-genetic heterogeneity among tumor
clones, heterogeneity among tumor-infiltrating stromal
and immune cells in the microenvironment also plays
vital roles in tumor growth, angiogenesis, immune eva-
sion, metastasis, and responses to various therapies.
With bulk DNA sequencing, the genomes of these cells
in the microenvironment are indistinguishable from
those of normal tissues and thus often interfere with the
detection of tumor CNAs and point mutations by alter-
ing tumor purity. With bulk RNA sequencing, the
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mRNAs of these cells are intermingled with those of
tumor cells, which makes it difficult to untangle the ex-
pression signals by tumor cells from those by micro-
environment cells. The variable compositions of tumor
microenvironment often become ‘dark matter’ that con-
founds subsequent analyses. Although pathway analysis
may indicate major types of infiltrated cells, the results
are not sufficiently detailed to provide insights into the
underlying mechanisms of tumor phenotypes. Computa-
tional deconvolution analysis can infer tumor-infiltrating
cell types based on tumor bulk RNA-seq data [128–130].
However, these algorithms are limited by the availability
of gene signatures specific to individual cell types and
the collinearity among gene signature profiles.
The majority of these limitations are overcome by

single-cell sequencing. With scRNA-seq, the immune
landscapes of melanoma [47], glioblastoma [176], breast
[52, 55, 56], head and neck [48], colorectal [50], liver
[49], kidney, [54, 58] and lung [53, 57, 59] cancers have
been depicted at unprecedented resolution. New im-
mune cell subtypes with distinct functions or states have
been identified, and genes specifically expressed in rare
immune cells have been linked to tumor immune eva-
sion. For example, results from a recent single cell study
of lung cancers by 10X Genomics [59] revealed that
tumor-enriched B cells can be further grouped into six
clusters, of which two follicular B cell clusters are char-
acterized by the high expression of CD20, CXCR4, and
HLA-DRs. By contrast, two plasma B-cell clusters ex-
press immunoglobulin gamma and the remaining two
mucosa-associated lymphoid tissue-derived B-cell clus-
ters have immunoglobulins A and M and JCHAIN as
signature molecules. Subtypes of macrophages were also
depicted by mass cytometry [53]. In particular, T cells,
which specifically recognize tumor neoantigens and kill
cancer cells in a targeted way, have been in the spotlight
of single cell interrogation of several cancer types [49,
55, 57]. Tissue-resident T-cell subsets are found in liver,
lung, and breast tumors, with lower T-cell exhaustion
levels associated with better prognosis [49, 55, 57]. Im-
munotherapies that reinvigorate cytotoxic T cells via im-
mune checkpoint blockade or adoptively transfer
neoantigen-specific T cells are therapeutically effective in
multiple cancer types [177]. Specific T-cell clusters with
suppressive functions in treatment-naïve tumors and
T-cell clusters that respond to immunotherapies have
been identified [47, 49, 178, 179]. Signature genes of
these T-cell clusters, e.g., LAYN identified in exhausted
CD8+ T cells and regulatory T cells of liver cancer, can
provide attractive biomarkers to predict patient re-
sponses to cancer immunotherapies and potentially
serve as new candidate targets for further investigation.
Nevertheless, accompanying these great achievements,
single-cell studies of tumor microenvironment are

limited in their depictions of spatial, temporal, and inter-
active characteristics among cancer and immune cells.
Besides the immune cells themselves, cancer-associated

fibroblasts (CAFs) also play crucial roles in cancer im-
mune evasion and metastasis. Heterogeneity of CAFs in
various cancer types via scRNA-seq has been shown in
several studies [47, 48, 50, 59]. In lung cancer studies by
10X Genomics [59], five distinct types of tumor-resident
fibroblasts were identified that expressed unique reper-
toires of collagens and other extracellular matrix mole-
cules. In colorectal cancers profiled by SMART-seq2 [50],
two distinct subtypes of CAFs were identified, one of
which was enriched for epithelial–mesenchymal transition
(EMT)-related genes, which is consistent with results
from the lung cancer study [59]. The heterogeneity of
CAFs of these cancer types was consistent with results
from earlier studies in metastatic melanoma and head and
neck cancer, in which the potential functions of CAF sub-
clusters were indicated [47, 48]. Interestingly, a specific
subcluster of CAFs that exclusively expressed multiple
complement factors, including C1S, C1R, C3, C4A, CFB,
and C1NH (SERPING1), correlated with T-cell infiltration
based on data analysis from the Cancer Genome Atlas
project [47]. Although the correlation cannot imply caus-
ality, the cellular and molecular mechanisms of T-cell re-
cruitment by CAFs should be studied. Furthermore,
certain CAFs observed in a head and neck cancer
single-cell study were found to co-localize with malignant
cells highly expressing a p-EMT (partial EMT) gene
program that is correlated with metastasis [48]. The
co-localization was supported by numerous ligand–recep-
tor interactions between CAFs and the corresponding ma-
lignant cells, thus providing new clues for the underlying
mechanisms of tumor invasion. The dynamic nature of
CAF gene expression certainly deserves further
exploration.

Outlook of single-cell sequencing in cancer research
Single-cell epigenomic technologies are maturing and
steadily making their way to cancer research [15, 68, 72,
180–190] (Fig. 3). These technologies provide various
means to explore DNA methylation status, chromosome
accessibility, protein binding, and high-order chromosome
conformations. As single-cell epigenomic technologies de-
pict the molecular layers connecting the genome and its
functional outputs, the adaptation of single-cell epige-
nomic technologies to cancer research would greatly ad-
vance the understanding of regulatory mechanisms of
cancer cell phenotypes and provide new therapeutic tar-
gets to combat cancers [191]. New insights may also in-
clude mechanisms of cancer cell mutagenesis as
epigenomics plays key roles in chromosome stability and
dynamics [192]. Single-cell epigenomic technologies may
also help investigate the regulatory mechanisms that shape
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tumor-infiltrating cells, and thus help in advancing the
development of therapies that target the tumor
microenvironment.
Despite its exciting prospects, single-cell sequencing still

faces notable technical challenges that limit the release of
its full power in cancer research and clinical applications.
For example, the single layer–omics technology generally
only gives a snapshot of the state of tested cells. Thorough
understanding of the functions of individual cells often re-
quires comprehensive molecular information that covers
all layers from the nucleus to extracellular matrix, and in-
cludes genomes, epigenomes, chromosome confirmation,
transcriptomes, proteomes, metabolomes, and interac-
tomes (Fig. 3). Comprehensive information is important
for cancer studies because of the great genomic and phon-
emic heterogeneity of cancer cells. Single-cell multi-omics
technologies [32, 76–79, 124, 187, 193] have proved feas-
ible but these methods are still in the infant phase of de-
velopment, limited by low coverage, throughput, and
automation levels. Wide application of such technologies
in cancer research and clinics requires more effort to
conquer the aforementioned challenges. CITE-seq has
been used to simultaneously profile mRNA levels and the
abundance of a set of selected proteins of cancer samples
[80]. Furthermore, SUPeR-seq allows simultaneous meas-
uring of linear and circular RNA levels within the same
single cancer cell and associated cells [124], and G&T-seq
provides both genomic and transcriptomic information of
a given cell [76]. scTrio-seq has been used to obtain epige-
nomic, genomic, and transcriptomic information of the
same cancer cell [32].
Future challenges will include circumventing the loss

of spatial information of tested single cells during the

dissociation step. Tumor ecosystems are highly orga-
nized and dynamic; therefore, the spatial positions of
various cancer cells and the tumor microenvironment
cells and their interactions may play pivotal roles during
cancer progression, metastasis, immune evasion, and the
development of therapeutic resistance (Fig. 3). Integra-
tion of imaging techniques with single-cell sequencing
have made meaningful progress in this area. By record-
ing the spatial information of single cells or important
‘anchor genes’ via FISH, smFISH, immunohistochemis-
try, laser capture microdissection, laser scanning micros-
copy, or in situ sequencing, the spatial structure of
single cells can be experimentally recorded or computa-
tionally reconstructed [21, 87–91, 132, 138, 143, 149],
thereby shedding light on the spatial heterogeneity of
tumor ecosystems. The recently developed NICHE-seq
technology [89] allows isolation of immune cells in a
specifically prescribed niche of model animals for
single-cell sequencing, which provides a powerful tool to
explore tumor immunology in animal models. However,
the wider application of NICHE-seq to clinical samples
will take time, because two-photon laser scanning
microscopy requires the targeted cells to be optically la-
beled, which at present is only possible on model
animals. ProximID maps the cellular interaction network
of tissues and could be used for spatial position mapping
to cellular physical networks [194] to show how can-
cer cells interplay with the tumor microenvironment
(Fig. 3). ProximID dissects tissues into doublets or triplets
to capture the physical interactions among cells and deter-
mines cellular identities via scRNA-seq. ProximID pro-
vides great promise for cellular interaction and spatial
position mapping, as shown by the recently proposed

A
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A
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A
A

A
A

A

AAAAAAAAA

(c) Cellular interaction
 mapping

(d) Single-cell epigenetics(a) Spatial single-cell
 sequencing

(b) Single-cell multi-omics

Fig. 3 Potential applications of single-cell sequencing technologies in cancer research. a Spatial single-cell sequencing. Integration of single-cell
sequencing technologies with spatial information of cells to analyze the spatial architecture of tumors. This technique is not yet widely used but
is important for cancer biology and treatment. b Single-cell multi-omics. Interrogation of the cellular interaction network within tumors by single-
cell sequencing. The very recent development of ProximID, which maps physical cellular interaction networks via single-cell RNA-seq without prior
knowledge of component cell types, has proved the principles of single-cell multi-omics [194] and provides great promise for cancer research. c
Cellular interaction mapping. Application of single-cell multi-omics techniques to resolve both the somatic mutations and gene expression, which will
allow the investigation of immunogenicity of single cancer cells. d Single-cell epigenetics. Techniques to resolve the heterogeneity of cancer cells and
tumor-infiltrating immune cells, which may provide new insights into the regulatory mechanisms within tumors and new drug targets to modulate
tumor progression
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paired-cell sequencing method that adopts a similar strat-
egy [195]; however, cellular throughput is still modest at
present. A newer version of ProximID parallels the micro-
dissection of doublets and triplets with single cell identity
determination, and improves the throughput at the ex-
pense of accuracy of cell identity assignment. Overall, cre-
ative technological advances in the basic research field
have recently emerged in quick succession. Despite obvi-
ous pros and cons, they provide exciting new tools to in-
terrogate human cancers at the single-cell level.
Furthermore, the development of new computational

and analytical tools is often lagging behind corresponding
experimental methods. The new single-cell sequencing
data, with added new dimensions or features, often violate
the analytical assumptions of bulk sequencing studies,
which makes existing analytical tools obsolete or under-
powered. For example, the data structure of single-cell se-
quencing of cancers requires the application of tensors to
depict the gene-by-cell-by-sample relationships, whereas
the bulk sequencing data can be sufficiently encapsulated
by gene-by-sample matrices. Analytical tools currently
available are generally designed for matrix-based data
structure. Reduction of dimensionality from tensors to
matrices is currently needed to use the available
bioinformatics tools to analyze either gene-by-cell,
gene-by-sample, or cell-by-sample relationships. Tools for
simultaneous analysis of gene–cell–sample relationships
are urgently needed. The ever-increasing data size of
single-cell sequencing studies also requires more robust
computational powers. Down-sampling is often applied to
reduce data size so that the dataset can be analyzed.
Computational algorithms that can handle large
single-cell sequencing datasets while simultaneously main-
taining similar analytical performance are needed. The
spatial single-cell RNA sequencing technique also gener-
ates unprecedented data type, for which two new algo-
rithms have been proposed recently [196, 197], allowing
analysis of the spatial variance of cancers. Computational
development specifically for single-cell data will likely be
the field to watch in the next few years, because there are
many unresolved yet important issues. It is hoped that
bioinformatics of single-cell analysis will catch up with the
rapid technology development and the ever-expanding ap-
petite for new data in the cancer research field.

Potential applications of single-cell sequencing in
the clinic
Single-cell technologies use limited input materials to
resolve tumor heterogeneity and so have great potential
in the cancer clinic for diagnosis, prognosis, early detec-
tion, risk assessment, progress monitoring, and therapy
response prediction. Single cancerous cells can be iso-
lated from blood samples in early stages of cancer gen-
esis [161, 170, 172], which enables early detection and

assessment of cancers [198, 199]. If a set of known driver
mutations are observed independently in multiple single
cancer cells, clonal expansion of cancerous cells is in-
ferred. Additional diagnostic tests are then combined to
validate the inference, and further monitoring or treat-
ments may be needed. For diagnosed cancer patients,
single-cell sequencing can reveal clonal and subclonal in-
formation of their tumor lesions with respect to their gen-
omic and transcriptomic characteristics, upon which
clinicians can determine the most suitable therapies [200].
With longitudinal sampling of CTCs or DTCs (dissemi-
nated tumor cells), single-cell sequencing also allows the
monitoring of patient responses to the prescribed therap-
ies [31, 171, 201]. The resulting genomic and transcrip-
tomic information can be used to examine the selective
pressure of drugs to various cancer clones and alert the
emergence or expansion of drug-resistance cancer clones
[20]. The non-invasive nature of CTC or DTC isolation
also greatly reduces the inherent risks of core biopsy dir-
ectly at the tumor site. Single-cell sequencing data poten-
tially provide metrics beyond conventional genomic
mutation data or gene expression data for prognosis ana-
lysis. For example, various indices for tumor heterogeneity
could be designed to predict responses to therapies, prob-
ability of metastasis, disease-free periods, and overall sur-
vival [147, 202–205].

Conclusions
Since its inception, single-cell sequencing has revolution-
ized cancer research. The pioneering studies have covered
the development and applications of single-cell DNA and
RNA sequencing to address a wide range of topics such as
intra-tumor heterogeneity of primary tumors, roles of
CTCs and DTCs during metastasis, evolution of therapy
resistance, and the characteristics of tumor microenviron-
ments. Many novel biological insights have been obtained,
and the revolution is just starting. Improvement of exist-
ing single-cell sequencing technologies, emergence of new
techniques, and the integration of single-cell sequencing
with other experimental protocols have provided powerful
toolsets to understand many of the remaining mysteries of
cancers. Single-cell epigenomics, multi-omics, and spatial
single-cell sequencing technologies are some of the major
directions of single-cell sequencing technologies that will
bring the second wave of revolutions of cancer research.
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