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Abstract

Identifying co-expressed gene clusters can provide evidence for genetic or physical interactions. Thus, co-expression
clustering is a routine step in large-scale analyses of gene expression data. We show that commonly used clustering
methods produce results that substantially disagree and that do not match the biological expectations of co-
expressed gene clusters. We present clust, a method that solves these problems by extracting clusters matching the
biological expectations of co-expressed genes and outperforms widely used methods. Additionally, clust can
simultaneously cluster multiple datasets, enabling users to leverage the large quantity of public expression data for
novel comparative analysis. Clust is available at https://github.com/BaselAbujamous/clust.
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Background
Gene transcription is dynamically and coordinately regu-
lated in all living organisms. Such coordinate regulation is
manifest as concordant changes in the transcript abun-
dance of genes in time series and perturbation-response
datasets. Gene transcription is regulated by the binding of
transcription factors to DNA/chromatin elements located
in promoter or enhancer regions of genes. Typically, tran-
scription factors comprise ~ 10% of the total number of
genes in a genome, and complex spatio-temporal patterns
of transcription are achieved through the combinatorial ac-
tion of these genes in regulatory networks [1]. The com-
binatorial nature of these networks means that their
behavior is inherently conditional. That is, genes that ap-
pear co-expressed under one condition are not necessarily
co-expressed under all conditions. A corollary of this is that
within any one experimental context (e.g., time series span-
ning some biological process or perturbation-response ex-
periment), not all genes will be behaving coordinately.
Instead, subsets of genes will have the right combination of
regulators to behave coordinately during the experimental
context while others are following patterns of regulation

that are independent of the experimental design. Thus,
within a given observation window (i.e., experimental con-
text), it is not expected that all genes can be assigned to a
limited set of coordinate behavior [2, 3].
Given that only subsets of genes are likely to be

co-expressed within a particular context, it follows that
identification of these subsets is a data extraction prob-
lem and not a data partitioning problem. That is, the
aim of gene expression clustering is to identify and ex-
tract the cohorts of genes that are behaving coordinately
from the complete set of genes that are detected within
a particular context, and is not to partition the complete
set of genes into a set of gene clusters. In practice, clus-
tering methods have been widely applied to gene expres-
sion data with the expectation that they will identify the
complete set of discrete cohorts of genes that have
co-ordinated behavior (i.e., the clusters of co-expressed
genes), and that all of genes that exhibit those behavior
will be assigned to the correct cluster [4, 5]. However,
the vast majority of methods that aim to identify cohorts
of co-expressed genes are based on data partitioning
(e.g., k-means [6], hierarchical clustering [7], and
self-organizing maps [8]). These approaches attempt to
assign all genes to a finite set of clusters, with the num-
ber of clusters determined by numerical optimization of
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a data partitioning metric [9]. Thus, genes that are not
co-expressed in the context under investigation are also
assigned to their “best-fitting” cluster such that the ma-
jority of clusters will contain both co-expressed and
non-co-expressed genes. This result does not adhere to
the expectation of the biological properties of a
co-expressed gene cluster, i.e., that each cluster contains
only those genes that exhibit co-ordinate behavior in the
experimental or biological context under question and
that no two clusters should have an identical profile. Al-
though data partitioning methods are most commonly
used, a number of partial clustering methods have also
been proposed [5, 10–12]. These methods do not require
that the complete data set is partitioned between clus-
ters; instead, they aim to identify the subset that can be
readily assigned to clusters.
Here we show through analysis of 100 real biological

datasets from five model organisms that application of
data partitioning-based and partial clustering-based
methods to gene expression data generates clusters that
include substantial numbers of unreliably assigned
genes, i.e., genes that do not exclusively fit in their clus-
ters and should have been excluded. Such unreliable
content comprises up to about 50% of these clusters. To
address this problem, we provide a novel method called
clust for cluster extraction from gene expression data.
Clust is designed to extract co-expressed clusters of
genes that satisfy the biological expectations of a
co-expressed gene cluster. We show that clust satisfies
these expectations by extracting co-expressed clusters
with lower levels of dispersion than data partitioning
methods and partial clustering methods. We also show
that the clusters produced by clust are better than those
produced by any other tested method by 7 different
measures of clustering performance. Furthermore, we
show that the clusters extracted by clust are equally, or
more, significantly enriched with functional terms than
those produced by other methods. Finally, we demonstrate
the ability of clust to extract clusters of consistently
co-expressed genes in multiple datasets simultaneously,
enabling researchers to leverage multiple disparate data-
sets to identify high accuracy co-expressed gene clusters.

Results
Problem definition, aim, and approach
Gene expression datasets (RNA-seq and microarray)
contain quantitative estimates (observations) of mRNA
abundance for a set of genes at multiple experimentally,
spatially, or temporally discrete conditions. Across these
conditions, it is expected that the mRNA abundance of
transcriptionally co-regulated genes will exhibit coordin-
ate behavior. These co-regulated cohorts of genes in-
clude those that are inherent modules of the system
being studied, as well as those that may be conditional

on applied experimental perturbations. The observations
also include transcript abundance estimates for genes
that are behaving independently in the experimental
series. Furthermore, for genes that are transcriptionally
co-regulated, variance in RNA processing and mRNA
half-life cause fluctuations in transcript abundance such
that abundance estimates are inherently noisy. Thus, the
goal of gene expression clustering is to identify and ex-
tract the discrete cohorts of genes whose transcripts are
behaving coordinately (albeit with biological noise)
across the observations under consideration.
Figure 1 presents simulated gene expression data to il-

lustrate the problem of extracting distinct cohorts of
co-expressed genes. Each simulated dataset contains 500
genes, with 100 genes in each of three distinct clusters
and 200 genes that do not belong to any cluster.
Detailed description of these datasets is provided in the
“Methods” section, and their values are provided in
Additional file 1: Table S1. Figure 1a shows the same
datasets simulated with increasing levels of biological
noise (D1 to D4), and Fig. 1b shows the desired results.
That is, to extract three distinct clusters of genes (C1 to
C3) while discarding the genes that behave independently.

Fig. 1 Expectations and outcomes for application of data-
partitioning methods to co-expression clustering. a, b Simulated
gene expression data for 500 genes with increasing noise (D1–D4)
(Additional file 1: Table S1). a All genes. b Profiles of the genes in
each of the three simulated clusters as well as the extra unclustered
genes at each one of the four levels of dispersion. The horizontal
axis of each plot represents the six different time-points, while the
vertical axis represents gene expression values. c The results of
applying a partitioning method (k-means in this case) to the same
simulated datasets. d Heat-maps that show the percentage of genes
in a cluster that also fit well within each one of the other clusters
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In conflict with the desired goal, data partitioning
methods require all genes to be included in one of the
clusters. For example, application of k-means (the most
commonly used method for analyzing gene expression
datasets) recovers the three simulated profiles (Fig. 1c).
However, each cluster also contains a large cohort of
genes that do not share the same expression profile
(Fig. 1d). This inclusion results in clusters with high levels
of dispersion (differences in expression levels between
genes within a cluster) and high levels of inter-cluster
similarity, violating the expectations of co-expressed gene
clusters, and producing clusters whose gene assignment is
unreliable. Clust is designed to address this problem by
extracting the largest and least dispersed set of clusters
whose profiles are distinct and exclude those genes that
do not belong to these clusters. That is, to identify and
extract the complete set of genes that are exhibiting
coordinate behavior in the experimental series under con-
sideration. The results of applying clust to these
demonstrative datasets are included in Additional file 2:
Figure S1.

The clust method
Figure 2 shows an overview pipeline of the steps com-
posing the clust method. The method takes one or more
datasets as an input. The first step is pre-processing the
datasets by summarizing replicates, filtering out genes
with low expression, and normalizing gene expression
values as required. The user may choose their preferred
pre-processing options, but the best practice options are

indicated in the description of the publically available
clust python package online. After that, clust produces a
pool of “seed clusters” by applying k-means clustering
multiple times to this data with different K values. If the
input includes more than one dataset, consensus clusters
over these datasets are calculated using the binarization
of consensus partition matrices (Bi-CoPaM) method
[13]. These seed clusters are then evaluated by the M-N
scatter plots technique [14], and elite seed clusters are
selected. This technique favours clusters of larger sizes
that maintain low dispersion values and guarantees that
clusters are distinct. Finally, the elite seed clusters are
analyzed to learn the distributions of within-cluster dis-
persion in the selected datasets; this information is used
to remove outliers from clusters and identify genes that
fit within clusters but that have been missed by the pre-
vious steps. A full description of the clust algorithm is
provided in Additional file 3: Text S1. A standalone
Python implementation of clust is available at https://
github.com/BaselAbujamous/clust [15].

Data sources and comparative methods
To demonstrate the performance characteristics of clust
on real biological datasets, the method was applied to
100 different gene expression datasets (Additional file 4:
Table S2). These datasets comprised ten microarray
datasets and ten RNA-seq datasets from each of five dif-
ferent model organisms: Homo sapiens, Mus musculus,
Drosophila melanogaster, Arabidopsis thaliana, and
Saccharomyces cerevisiae. To put these performance
characteristics in context, seven of the most commonly
used co-expression clustering methods (Cross Clustering
(CC) [12], k-means [6], self-organizing maps (SOMs) [8],
Markov clustering (MCL) [16], hierarchical clustering
(HC) [7], Click [10], and WGCNA [17]) were also ap-
plied to these datasets. For each of these comparative
methods, the best-practice operating procedures were
followed as described in the “Methods” section. In all
cases, the data pre-processing procedures were the same
for each method and were applied as described in the
“Methods” section.

Clust robustly extracts tight and non-overlapping clusters
Different clustering methods produce very different
results when applied to the same dataset (Fig. 3a;
Additional file 5: Table S3). For instance, when any two
methods are applied to the same dataset, the results will,
on average, only be 37% identical (i.e., adjusted rand
index similarity score [18] of 0.37). Therefore, clustering
results strongly depend on the method that was applied,
which raises the question as to which method performs
the best.
As clust is a cluster extraction method, it does not ne-

cessarily assign all genes to clusters. On average across

Fig. 2 Pipeline of the steps of the clust method. The clust pipeline is
composed of four major steps: (1) data pre-processing of the one or
more input raw datasets, (2) production of a pool of seed clusters,
(3) cluster evaluation and the selection of a subset of elite seed
clusters, and (4) the optimization and completion of the elite seed
clusters to produce final clusters
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the 100 test datasets clust assigned 50% of the input
genes to clusters (Fig. 3b). The CC, MCL, and Click
methods also extract clusters without forcing all input
genes to be in clusters (Fig. 3b). Importantly, clust pro-
duced sets of clusters that have significantly lower disper-
sion than those produced by CC (p value 1.5 × 10−39),
k-means (p value 3.2 × 10−10), SOMs (p value 4.8 × 10−27),
MCL (p value 8.4 × 10−35), HC (p value 8.0 × 10−16), Click
(p value 2.5 × 10−26), or WGCNA (p value 3.9 × 10−19)
(Fig. 3c; p values obtained from paired T test,
Additional file 6: Table S4). Clusters produced by clust are
discrete, such that genes assigned to one cluster do not fit
within the profile boundaries of any other cluster (JI = 0
for all clusters, Fig. 3d; see the “Methods” section for the
definition of cluster boundaries). This is not the case for
the other methods, where 10% to 50% of the genes that
are included in a given cluster also fit within the boundar-
ies of at least one other cluster (Fig. 3d). Thus, application
of these methods to gene expression data produces clus-
ters that are not discrete and contain between 10% and
50% unreliably assigned genes (Additional file 6: Table S4).
Analogous results were obtained when the comparative
methods were re-run while optimising the MSE and JI
metrics, where applicable (Additional file 2: Figure S2).
Notably, datasets with more than 50 samples were ex-
cluded from this analysis for logistical reasons. However, a

total of 19 datasets would have been included had the
number of samples not been limited (Additional file 7:
Table S5). Replicating the clustering method comparison
over these datasets also shows analogous results to those
presented in Fig. 3 (Additional file 2: Figure S3). Thus the
improved performance of clust relative to other clustering
methods is independent of dataset size or the criteria used
for competitor dataset optimization.
The properties of clust’s clusters are independent of

their size, that is, the number of genes contained in a
given cluster. In contrast, the properties of clusters
returned by the majority of the other methods display a
significant dependency on cluster size (Additional file 2:
Figures S4 and S5; Additional file 8: Table S6). None of
the eight methods, including clust, behaves differently
on datasets from different species (Additional file 2:
Figures S6 and S7) or with different numbers of
expressed genes (Additional file 2: Figures S8 and S9).
Therefore, the number of genes or the species from
which the data was produced is not a factor that affects
clustering performance. However, the dispersion of clus-
ters produced by all methods is dependent on the num-
ber conditions under consideration such that the more
conditions being considered the worse the results of the
clustering (Additional file 2: Figure S10). This is particu-
larly problematic for cluster overlap (Additional file 2:

Fig. 3 Evaluation of the performance of clustering methods. a Similarity of clustering results generated by each pair of methods measured by the
Adjusted Rand Index (ARI); 1.0 means exactly similar and 0.0 means completely dissimilar. b–d Evaluation of clustering performance over all 100
datasets. b The percentage of input genes that were included in clusters; c the average dispersion of clusters measured by weighted-averaging
of individual cluster MSE values; d percentage of the overlap amongst clusters, as measured by the JI index. e Evaluation of clustering
performance over all 100 datasets as measured by average rank across 7 cluster validation indices that clust does not directly optimize; the
indices are Davies–Bouldin (DB) index, Bayesian information criterion (BIC), Silhouette, Calinski-Harabasz (CH) index, Ball and Hall (BH) index, Xu
index, and within-between (WB) index (Additional file 2: Figures S4 to S11, Additional files 5, 6, and 9: Tables S3, S4 and S7)
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Figure S11), where the clusters produced by all methods
except clust become less distinct as the number of con-
ditions increases.

Clust outperforms other methods on seven different
cluster validation indices
In order to provide an independent assessment of the per-
formance of clust, the clusters produced by all of the 8
methods across all 100 datasets were assessed using seven
additional cluster validation/separation indices. The indices
comprise the Davies-Bouldin (DB) index [19], the Bayesian
information criterion (BIC) [20], the silhouette index [21],
the Calinski-Harabasz (CH) index [22], the Ball and Hall
(BH) index [23], the Xu index [24], and the within-between
(WB) index [25]. None of these seven validation indices are
direct targets of optimization by clust. In contrast, some of
the other tested clustering methods directly optimize some
of these metrics (e.g., CC is designed to optimize the

silhouette index [12]). To compare the methods on these
metrics (whose scores differ in location shape and scale), a
non-parametric rank-based comparison was performed.
This revealed that clust significantly outperformed all of the
other tested clustering methods (Fig. 3e; Additional file 9:
Table S7). For example, clust shows significantly lower
(better) rank scores than its closest competitor, CC, with a
paired Wilcoxon test p value of 3.0 × 10−15.
Figure 4 shows a comparative example of the clusters

produced by each one of the eight clustering methods
when applied to one of the 100 datasets, namely D83
(Additional files 4 and 6: Tables S2 and S4). This dataset
was chosen as it is the time-series dataset with the most
similar number of clusters across all the tested methods.
A similar figure showing (up to) 14 clusters produced by
each method for all 100 datasets is provided for down-
load from the Zenodo repository at https://doi.org/
10.5281/zenodo.1298541 [26]. The reduced MSE and JI

Fig. 4 Profiles of the genes in the clusters generated by methods when applied to dataset D83. This figure visually shows a sample of the results
of each one of the methods when applied over the same dataset, which is the dataset D83 (Additional files 4 and 6: Tables S2 and S4). This
dataset is the time-series dataset of which the numbers of clusters generated by the eight methods are more similar to each other than any
other time-series dataset (measured by the least squares metric). D83 is a budding yeast dataset with the accession GSE72423 and was generated
using the Affymetrix Yeast Genome 2.0 microarray. Cells were grown in selective media supplemented with dextrose as a pre-culture and then
shifted to media containing ethanol as the sole carbon source. Samples were taken at 0, 0.5, 1, 4, and 12 h after medium transfer. The numbers
of clusters generated for this dataset by clust, CC, k-means, SOMs, HC, MCL, Click, and WGCNA were 15, 2, 2, 2, 2, 6, 7, and 11, respectively. This
figure shows all 15 clusters generated by clust in the first row. Then, the most similar clusters generated by the other methods to each one of the
15 clust’s clusters are aligned below them. The title of each sub-plot shows the name of the cluster and the number of genes in that cluster
between parentheses. The horizontal axis of each sub-plot represents the five time-points in the dataset D83 while the vertical axis represents the
normalized gene expression value. The profiles of all individual genes in a cluster are drawn as lines on top of each other in its
corresponding sub-plot
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of clust in comparison to other methods is readily appar-
ent from visual inspection of the gene expression pro-
files of genes assigned to each cluster in Fig. 4.

Clust extracts clusters with significantly enriched
biological terms
One of the most commonly applied tests to co-expressed
clusters of genes is functional term enrichment, as a clus-
ter of co-expressed genes is expected to be enriched with
genes that have related biological roles. As clust assigns on
average 50% of genes to clusters, it was investigated if this
reduction in gene number affects enrichment with func-
tional terms. To do this, each of the methods were evalu-
ated for their ability to detect enrichment of GO terms in
10 datasets from the multicellular organism Arabidopsis
thaliana, and 10 datasets from the unicellular organism
Saccharomyces cerevisiae.
Over the results of clustering these 20 datasets, differ-

ent methods produced results with different numbers of
enriched GO terms ranging from 1530 terms in the re-
sults of CC to 4317 terms in the results of WGCNA
(Fig. 5a). Clust’s results include 2988 enriched GO terms
(Fig. 5a). In total, 7404 GO terms were detected by at
least one method, of which 4531 (61%) were detected by
two or more methods and only 503 (7%) were detected by
all methods (Fig. 5b; Additional file 10: Table S8). A simi-
lar observation can be seen when replicating this analysis
using functional annotation terms from the REACTOME
database [27] instead of GO terms (Additional file 2:
Figure S12; Additional file 11: Table S6).
Given the disparity in detection of enriched functional

terms between methods, and that the truth is unknown,
a test was devised to assess which method best recov-
ered those GO terms that were most likely to be true.
Here the set of GO terms that were most likely to be
true were defined as those that were identified as signifi-
cantly over-represented within a given dataset by all
methods (n = 503). The distribution of these 503 unani-
mously agreed terms in the different constituent datasets
is shown in Fig. 5c. It should be noted here that such
unanimous terms were not identified in four of these
datasets (Fig. 5c) and thus only 16 of the 20 datasets
contributed GO terms to this analysis. Although there
was variation in the performance between methods on
different datasets (Fig. 5d), overall, the clusters produced
by clust achieved significantly better p values for these
unanimous GO terms than clusters produced by CC,
k-means, SOMs, HC, Click, or WGCNA, while being
not significantly different from those produced by MCL
(Fig. 5d; Additional file 10: Table S8; see the “Methods”
section for description of the statistical tests). Thus in
addition to improved clustering performance, as defined
by multiple cluster validation indices, clust also performs

as well as or better than other tested clustering methods
in terms of GO term detection.

Clust extracts clusters of co-expressed genes from
multiple datasets simultaneously
The quantity of gene expression data that is deposited in
public repositories is increasing rapidly. This is primarily
due to a reduction in the costs of acquiring such data-
sets. These datasets come from a multitude of different
species, have been generated using different technologies
(microarrays and RNA-seq), and have different proper-
ties such as numbers of conditions, replicates, and

Fig. 5 Evaluation of GO term enrichment in the results of the
clustering methods. a The total numbers (sum) of GO terms
detected as significantly enriched in the results of each of the eight
methods across the 20 selected datasets. b Numbers of terms
detected as significantly enriched in the same dataset by x or more
methods; over the 20 datasets, 7404 terms were detected by at least
one method, 2873 (39%) of which are exclusive to a single method,
and only 503 (7%) terms were unanimously agreed by all eight
methods. c The distribution of the 503 unanimously agreed GO
terms over the 20 datasets. d Pairwise comparisons of the p values
of the unanimously agreed GO terms in the clusters returned by
clust with each of the other clustering methods. Green squares
indicate that the p values for the GO terms returned by clust were
better than those of the comparative method (Wilcoxon test p value
≤ 0.01), blue squares indicate the opposite result (Wilcoxon p value
≥ 0.99), and white squares indicate that there was no significant
difference (0.01 < p < 0.99). The values to the right side of this matrix
are the resultant p values when the Wilcoxon test is applied to the
full dataset of all 503 unanimously agreed GO terms
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missing values. Clust is designed to enable simultaneous
cluster extraction from multiple such heterogeneous
gene expression datasets (Additional file 3: Text S1).
Irrespective of datatype or source species, clust extracts
clusters of genes that are consistently co-expressed with
each other in all of the given datasets.
To evaluate this feature of clust, ten combinations of d

datasets for each d in {2,3,4,5,6,7,8,9,10} were selected at
random from the ten yeast RNA-seq datasets (D91 to D100;
Additional file 4: Table S2). The same experiment was per-
formed over Arabidopsis datasets. To provide a comparison,
the other methods were also applied to these combinations
of datasets. However, as these methods are only applicable to
a single dataset at a time, the only way to enable their simul-
taneous analysis was to concatenate them together prior to
clustering (Additional files 12, 13, 14, 15: Tables S10–S13).
As before, clust produces tighter clusters with lower
within-cluster dispersion (lower MSE) (Additional file 2:
Figure S13a & b) and guarantees no cluster profiles which
overlap (JI = 0, Additional file 2: Figure S13c & d). Moreover,
and as expected from a biological point of view, both the
percentage of input genes that are included in the extracted
clusters (PAG) and the number of generated clusters (K)
decrease as more datasets are included as input to clust
(Additional file 2: Figure S13e–h). This behavior is expected
because as the number of conditions increases, the less likely
a group of genes are to be co-expressed under all conditions.
For example, when all ten yeast RNA-seq datasets are pro-
vided as input to clust, only a single cluster of 52 genes is
identified. Of these, 44 are components of the ribosome or
participate in ribosome biogenesis (Additional file 16: Table
S14). An analogous cluster of 19 genes (all of them are in-
volved in translation (protein synthesis)) was obtained when
all 10 Arabidopsis RNA-seq datasets were provided to clust
(Additional file 16: Table S14).
Of the other methods, MCL maintains relatively low

MSE values over increasing numbers of datasets (d). In
contrast, MSE values of the other methods increase
when d increases (Additional file 2: Figure S13a–d).
Moreover, MCL is the only method, other than clust,
which shows the biologically expected trend of decreasing
values of PAG and K at higher d values (Additional file 2:
Figure S13e–h). Nonetheless, the performance of clust is
significantly better than MCL in terms of MSE and JI
values at all d values (Additional file 2: Figure S13a–d).

Discussion and conclusions
Co-expression clustering is a routinely used step in data ex-
ploration for gene expression analysis. Here we show that
the most commonly used methods for conducting
co-expression analysis produce clusters that substantially
disagree with each other and do not match the biological
expectations of co-expressed clusters of genes. That is, they
produce clusters that are highly dispersed (high MSE

values) and contain large proportions of genes that could
be equally assigned to other clusters within the same clus-
tering result (high JI values). Moreover, the methods behave
inconsistently, with substantial differences in clustering per-
formance attributable to differences in datatype or data
quantity. We present clust, as a method designed to solve
all of these problems. Clust was compared with seven com-
monly used clustering methods (CC, k-means, SOMs,
MCL, HC, Click, and WGCNA) by application to 100 dif-
ferent microarray and RNA-seq gene expression datasets
from five model species. In contrast to the other tested
methods, clust behavior is consistent and is unaffected by
species, datatype, or number of genes over the diverse sam-
ple of 100 datasets analyzed in this study. Thus, clust per-
formance is robust to increases in data quantity without
sacrificing the quality of the results. Moreover, clust outper-
forms all of the tested methods when assessed by 7 com-
monly used cluster validation metrics.
The most commonly conducted post-clustering analysis

is to detect enrichment of functional terms within clus-
tered sets of co-expressed genes. We show that conduct-
ing such analyses on clusters produced using the most
commonly used methods for co-expressed gene clustering
produces very different results (Fig. 5b). This observation
has implications for the utility of downstream analysis
conducted on these clusters. For example, putative regula-
tory relationships are often inferred by identifying regula-
tory genes that occur in clusters that are enriched with
specific functional terms [28–30]. Thus, unreliability of
enriched functional term assignment likely contributes to
the high false-positive discovery rate in the discovery rate
of regulatory interactions from co-expression data [31].
We have shown that clust extracts clusters that are signifi-
cantly more enriched with functional annotation terms
than many other commonly used methods. Thus, clust
not only outperforms other methods in terms of numer-
ical properties of the clusters it produces but also pro-
duces the highest quality functional annotation term
enrichment.
Finally, clust is designed to be able to extract clusters

of co-expressed genes from multiple gene expression
datasets, even if these datasets have different properties
such as numbers of conditions or replicates. Such fea-
ture allows researchers who have multiple gene expres-
sion datasets that are all related to the biological
problem in hand to analyze them simultaneously, that is,
to extract the clusters of genes which are consistently
co-expressed in each of these different datasets. Various
consequences can be inferred from such analysis. For in-
stance, it is more reliable to hypothesize that a group of
genes are co-regulated by common regulator when they
are consistently co-expressed over multiple datasets in
contrast to being co-expressed in a single dataset only
[2, 32–35]. Moreover, the results of applying clust to
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multiple datasets simultaneously are as biologically ex-
pected; fewer genes are included in the clusters when
adding more datasets as fewer genes are expected to
maintain coordinate expression over larger numbers of
biological conditions.
Taken together, this work reveals a mismatch between

what researchers expect from gene expression clustering
and the results that are produced by application of com-
monly used data partitioning methods to these data. The
proposed clust method solves this problem, and the util-
ity and performance characteristics of clust are demon-
strated through comprehensive testing and comparison
on real biological datasets from multiple different spe-
cies. In addition to improved performance characteristics
over competing methods, the ability of clust to handle
multiple datasets simultaneously will enable individual
gene expression datasets to be interpreted in the context
of the large quantity of publicly available gene expres-
sion data. Clust is open source and freely available at
https://github.com/BaselAbujamous/clust [15].

Methods
Simulated gene expression data generation
Four simulated datasets were generated to allow visualiz-
ing the concept of gene expression clustering (Fig. 1).
Each dataset is composed of gene expression profiles of
500 genes, 300 of which belong to three clusters with
100 genes in each, and 200 of which do not belong to
any cluster (unclustered). The gene expression profiles
span six simulated time-points over which the first clus-
ter has an upregulated pattern, the second cluster has a
downregulated pattern, the third cluster has an upregu-
lated then downregulated pattern, and the unclustered
genes have other random patterns. The 100 gene expres-
sion profiles in a given cluster are generated by adding
random Gaussian noise to the average profile of that
cluster. Four different standard deviation (σ) values of
the Gaussian noise were considered for the four datasets
such as the first dataset (D1) has a zero σ value and the
last dataset (D4) has the highest σ value (σ = 1.2). The
200 unclustered genes were generated randomly using
the Gaussian distribution while guaranteeing that
none of them fits within the profiles of any of the
three clusters. Finally, the datasets were normalized
by calculating z-scores. Full expression values and
cluster membership for these datasets are provided in
Additional file 1: Table S1.

Selection of 100 gene expression datasets
The 100 gene expression datasets were downloaded
from the Gene Expression Omnibus (GEO) repository
on 2nd of July 2017 [36]. For each one of the five model
species, ten microarray datasets and ten RNA-seq data-
sets were downloaded. In all cases, the most recently

published datasets for each of these species was selected,
given that the dataset had at least 4 different conditions
(time-points or treatments) and no more than 50 sam-
ples including replicates. RNA-seq datasets were chosen
only if the resulting TPM, RPKM, FPKM, or CPM quan-
titation files were available from the GEO repository.
Microarray datasets were a mix of both one-colour or
two-colour microarrays. The complete list of the 100
datasets and their properties is available in Additional
file 4: Table S2. The raw data files for the 100 datasets,
the clustering from each method, and the analysis scripts
are all publically available at the Zenodo repository with
the doi https://doi.org/10.5281/zenodo.1298541 [26].

Data pre-processing and the implementation of clust and
comparative methods
All methods, including clust, were run using their de-
fault parameters, which is the manner in which they are
most commonly used. The datasets were pre-processed
according to the common practice of applying quantile
normalization, taking the logarithm of data values (un-
less already taken in the downloaded data), and calculat-
ing z-scores. However, centring around zero was
adopted instead of z-scores for two-colour microarray
datasets. After that, replicates of the same condition
were summarized by taking their median value. In
addition, genes that do not exceed the 25th percentile
expression value at least at 25% of the conditions/sam-
ples are filtered out. All of these pre-processing actions
were carried out during the first step of clust before ap-
plying the following clustering steps. The clust software
package is provided with parameters indicating these
choices of pre-processing actions, and in its turn, it pro-
vides the pre-processed dataset in one of its output files.
Consequently, the other methods were directly applied
to these pre-processed data files.
The Python package clust 1.8.0 was used to run clust

[15]. The CC method was run using the R CrossCluster-
ing library. K-means was run using the Python
sklearn.cluster implementation. The Python sompy pack-
age was used to run SOMs. The Python scipy.cluster.-
hierarchy package was used to run HC clustering. The
Python mcl package was used to run MCL after generat-
ing networks of co-expressed genes using a Pearson’s
correlation threshold of 0.8 [16]. The click.exe executable
was downloaded as part of the Expander software from
http://acgt.cs.tau.ac.il/expander/ and was used to run
Click. The blockwiseModules module of the R WGCNA
library was used to run WGCNA with the network type
set to “signed”.
Running k-means, HC, and SOMs, requires pre-setting

the number of clusters (k). Each of these methods was
applied to the input data with k values ranging from 2 to
50 and the k value that minimized the Davies–Bouldin

Abu-Jamous and Kelly Genome Biology          (2018) 19:172 Page 8 of 11

https://github.com/BaselAbujamous/clust
https://doi.org/10.5281/zenodo.1298541
http://acgt.cs.tau.ac.il/expander/


(DB) cluster validation index was chosen. The DB index
is a widely used and frequently cited whole-partition
cluster validation index [19]. To demonstrate that the
superior performance characteristics of clust were not
due to use of the DB index, we also attempted to bias
against our principle finding by choosing the cluster sets
that minimized our evaluation criteria, i.e., that minimized

MSE and the JI metrics (minimizing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE2 þ JI2
p

). These
additional results are analogous to those produced using
DB index and are included in Additional file 2: Figure S2
and Additional file 6: Table S4(B).

Cluster dispersion metric (MSE)
The mean squared error (MSE) metric is used to meas-
ure within-cluster dispersion. If the cluster has N genes
and the dataset has D dimensions, the MSE value for
that cluster will be:

MSE ¼ 1
D� N

X

N

g¼1

x!g− z!
�

�

�

�

2
;

where x!g is a vector of the gene expression profile of the
gth gene in this cluster, z! is a vector of the average expres-
sion profile of all genes in this cluster, and k x!g− z!k is the
Euclidean distance between these two vectors. Note that
the MSE value here is normalized by the number of genes
in the cluster. When calculating the MSE value for a
whole clustering result (a set of clusters), it is calculated as
the weighted average of the MSE values of the each of the
clusters, where the weight is the size (number of genes) in
each of the clusters.

Cluster similarity metric (JI)
A modified version of the Jaccard Index (JI) metric is used
to measure the similarity amongst the clusters in a cluster-
ing result [37]. JI, as defined in this study, is calculated as
the ratio between the number of “overlap genes” and the
number of all genes in clusters. “Overlap genes” are those
genes that are included in a cluster while their expression
profiles also fit within the boundaries of at least one other
cluster. The upper and the lower boundaries of a cluster at
any given dimension (condition) are respectively calculated
as the maximum and the minimum expression values of all
genes in that cluster after trimming the most extreme 1%
values at each point to reduce the effect of outliers.

Cluster validation indices and the rank score
Each clustering result produced by applying a single
clustering method to a single dataset is assessed by using
seven cluster validation indices other than the MSE and
the JI metrics. The indices are the Davies-Bouldin (DB)
index [19], the Bayesian information criterion (BIC) [20],
the silhouette index [21], the Calinski-Harabasz (CH)

index [22], the Ball and Hall (BH) index [23], the Xu
index [24], and the within-between (WB) index [25].
Larger values of the BIC, silhouette, and CH indices in-
dicate better clustering results while smaller values of
the DB, BH, Xu, and WB indices indicate better clusters.
Then, the absolute values of the indices are converted to

rank scores where a clustering method’s rank score of a
given index at a given dataset is 1.0 if that method scores
the best index score across the eight clustering methods at
that dataset and is 8.0 if it scores the worst index. If two or
methods have the same score, their ranks are averaged (e.g.,
two methods sharing the best score across eight will have
rank scores of 1.5 for each). Therefore, these seven rank
scores reflect how well the method behaves in comparison
with the other clustering methods while clustering that
dataset. After that, the seven rank scores for each method
at each dataset are averaged to arrive at the final rank score
for that method at that dataset. The final scores (plotted in
Fig. 3e) are 100 scores for each method reflecting its rank
across the 100 datasets.

GO term enrichment analysis
The GO term annotations for Arabidopsis thaliana and
Saccharomyces cerevisiae were downloaded from the
Gene Ontology Consortium’s online repository at http://
www.geneontology.org [38, 39]. Clusters produced using
each method were evaluated on a dataset by dataset
basis (i.e., 20 independent datasets). Significantly
over-represented GO terms for each dataset for each
method were taken as the set of terms that each ob-
tained an adjusted hypergeometric test p value ≤ 0.001.
The full set of these terms for each method and dataset
are provided in Additional file 10: Table S8.
To enable direct comparison between methods, a set

of unanimously agreed GO terms was identified. A
unanimously agreed GO term is defined here as a GO
term that was detected as significantly over-represented
(p value ≤ 0.001) by all methods in a given dataset. GO
terms from each dataset were treated independently irre-
spective of whether they were also observed as signifi-
cantly over-represented in other datasets, i.e., the p value
for GO term 1 from dataset 1 was not compared to the
p value for the same GO term in a different dataset. In
the case where the same GO term was detected multiple
times within a single method clustering of a single data-
set, then the instance with the lowest p value was taken
for analysis.
A paired one-tailed Wilcoxon test was used to com-

pare log transformed p values of the unanimously agreed
GO terms between methods. This pairwise comparison
was conducted for each dataset separately (Fig. 5d), as
well as for the full set of unanimously agreed GO terms
combined from all datasets (Fig. 5d).
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