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Abstract

Compared to RNA-sequencing transcript differential analysis, gene-level differential expression analysis is more robust
and experimentally actionable. However, the use of gene counts for statistical analysis can mask transcript-level
dynamics. We demonstrate that ‘analysis first, aggregation second,’ where the p values derived from transcript analysis
are aggregated to obtain gene-level results, increase sensitivity and accuracy. The method we propose can also be
applied to transcript compatibility counts obtained from pseudoalignment of reads, which circumvents the need for
quantification and is fast, accurate, and model-free. The method generalizes to various levels of biology and we
showcase an application to gene ontologies.
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Background
Direct analysis of RNA abundance by sequencing comple-
mentary DNAs (cDNAs) using RNA-sequencing (RNA-seq)
offers the possibility of analyzing expression at the resolution
of individual transcripts [1]. Nevertheless, RNA-seq con-
tinues to be mostly studied at the gene level, partly because
such analyses appear to be more robust [2] and also because
gene-level discoveries are more experimentally actionable
than transcript-level discoveries due to the difficulty of
knocking down single isoforms [3].
Gene-level RNA-seq differential analysis is, at first

glance, similar to transcript-level analysis, with the caveat
that transcript counts are first summed to obtain gene
counts [4, 5]. However, despite such superficial simplicity,
there is considerable complexity involved in transitioning
from transcripts to genes. In [6], it was shown that a naïve
approach of summing transcript counts to gene counts
leads to inaccurate estimates of fold-change between con-
ditions when transcripts have different lengths. Because
transcript counts are proportional to transcript lengths,
summing transcript counts is not equivalent to summing
transcript abundances.

A remedy to this problem is to estimate gene abun-
dances (e.g. in transcript-per-million units) by summing
transcript abundances [7], but regularization methods for
variance estimation of gene counts [8] cannot be directly
applied to abundances. For this reason, recent workflows
for gene-level differential analysis rely on converting gene
abundance estimates to gene counts [2, 9]. Such methods
have two major drawbacks. First, even though the result-
ing gene counts can be used to accurately estimate fold
changes, the associated variance estimates can be distorted
(see Fig. 1 and Additional file 1: Section 1). Second, the
assignment of a single numerical value to a gene can mask
dynamic effects among its multiple constituent transcripts
(Fig. 2). In the case of “cancellation” (Fig. 2a), the abun-
dance of transcripts changing in opposite directions cancels
out upon conversion to gene abundance. In “domination”
(Fig. 2b), an abundant transcript that is not changing can
mask substantial change in abundance of a minor tran-
script. Finally, in the case of “collapsing” (Fig. 2c), due to
over-dispersion in variance, multiple isoforms of a gene
with small effect sizes in the same direction do not lead to
a significant change when observed in aggregate, but their
independent changes constitute substantial evidence for
differential expression. As shown in Fig. 2, these scenarios
are not only hypothetical scenarios in a thought experi-
ment, but events that occur in biological data.
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Rather than aggregating quantifications before differ-
ential analysis, one approach is to first perform a
transcript-level differential analysis followed by a gene-
level meta-analysis. Such a method is implemented in
the DEXSeq program [10], although it is not effective at
recovering differential events lost due to collapsing and
is suboptimal even for cancellation or domination events
(see “Results” and Additional file 1: Section 2). Meta-
analysis has been suggested for microarray studies to ag-
gregate probe-level P values [11] and is performed in
genome-wide association studies to aggregate single
nucleotide polymorphism P values to make gene-level
[12–14] and pathway-level inferences [14, 15], but such
approaches do not appear to have been extensively
explored for RNA-seq.
We present a new framework for gene-level differen-

tial analysis that utilizes the Lancaster method [16]. In
this framework, differential expression is performed on
transcripts as usual, but then transcript-level p values
are aggregated to obtain gene-level p values. (See
“Methods” for details about the Lancaster method. See
Additional file 1 for applicability of the Lancaster
method to RNA-seq.)
Our approach can be based on p values derived from

transcript-level differential analysis, but can also be ap-
plied to p values derived from comparisons of transcript
compatibility counts (TCCs), a concept introduced by
the pseudoalignment method in kallisto [17]. TCCs are
the number of reads that are compatible with a set of
transcripts, i.e. an equivalence class. In default RNA-seq
quantification mode, kallisto matches each read with its
equivalence class, thus generating TCCs, and then
applies the expectation-maximization (EM) algorithm on

TCCs to obtain transcript quantifications. Differential
analysis performed on directly TCCs has the advantage
of being fast and model-free, and we show that it is
particularly useful for positionally biased RNA-seq data.
Finally, we highlight the generality of our approach at

varying levels of biological resolution by extending it to
gene ontology analysis. In contrast to classical gene
ontology (GO) tests that identify enrichment of GO
terms with respect to gene lists, our approach identifies
GO terms in which there is significant perturbation
among the associated genes. We combine this idea with
TCC-based differential analysis to illustrate how GO
analysis can be performed on RNA-seq data without
transcript quantification.

Results
We first examined the performance of aggregation in
comparison to standard gene-level differential expression
methods using three simulated scenarios from Pimentel et
al. [9]. In these simulations, transcripts are perturbed in-
dependently, in a correlated fashion with other transcripts
of the gene, or according to effect sizes observed in a bio-
logical experiment. In the first scenario of independent ef-
fects, random transcripts in the transcriptome are
independently chosen to be perturbed and the effect size
for each transcript is chosen independently. In the second
scenario of correlated effects, genes are independently
chosen to be differentially expressed and all transcripts of
the same gene are perturbed in the same direction. In the
third scenario of experimentally based effects, effect sizes
are learned from an experimental dataset and applied to
the simulation (see “Methods” for more details). Each of
the three scenarios was simulated 20 times.

a b c d

Fig. 1 Conversion of transcript counts to gene counts for the Nkap gene in the dexamethasone dataset under two conditions (dexamethasone and
vehicle treatment). The x-axis is labeled with the Ensembl gene and transcript IDs, along with p values obtained by performing sleuth on transcripts and
genes. In this process, the transcript counts (a) are converted into transcript abundances (b) by normalization according to transcript lengths. Transcript
abundances are then summed to obtain gene abundances (c) and then converted to gene counts (d) using the median or mean transcript length as a
proxy for the gene length. The converted gene counts mask significant changes among the constituent transcripts and the gene count variance does not
directly reflect the combined variance in transcript counts. In this example, Nkap is not differential when examined using the converted gene counts, but
can be identified as differential when the p values of the constituent transcripts are aggregated using the Lancaster method
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We evaluated the performance of various aggregation
methods on these simulations with two differential ex-
pression methods: sleuth and DESeq2. These differential
expression methods were chosen for their superior per-
formance in previously published simulations [9]. sleuth
utilizes bootstraps on reads to estimate inferential vari-
ance due to read-mapping and quantification

uncertainty, which is then used in a linear model to per-
form differential expression analysis. DESeq2 utilizes a
negative binomial model on counts [18]. We evaluated
every aggregation method using each differential expres-
sion method in each of the three simulation scenarios.
Figure 3 shows the results of performing aggregation

using sleuth in the simulation scenario that is modeled

Fig. 2 Differential transcript masking. Dynamics among transcripts may not be detected with gene-level analyses due to cancellation (a), domination (b),
and collapsing (c). Gene counts and constituent transcript counts are plotted between conditions (dexamethasone vs vehicle treatment) and annotated
with Ensembl ID and sleuth-derived p values. In the case of cancellation (a), the abundance of transcripts changing in opposite directions cancels out upon
conversion to gene abundance. In domination (b), an abundant transcript that is not changing can mask substantial change in abundance of a minor
transcript. In the case of collapsing (c), multiple isoforms of a gene with small effect sizes in the same direction do not lead to a significant change when
observed after summation, but their independent changes constitute substantial evidence for differential expression. In all these examples, gene-level
differential analysis with sleuth failed to identify the genes as differential (p values listed on x-axis), whereas Lancaster aggregation of transcript p values
resulted in detection of the genes as differential
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after experimental effect sizes, plotted as a false discovery
rate (FDR)-sensitivity tradeoff curve. (Additional File 1:
Figures S1 and S2 show results with other two simulation
scenarios using sleuth. Additional File 1: Figure S3 shows
results with the three simulation scenarios using DESeq2.)
Aggregation of transcript p values using the Lancaster
method [16] outperforms standard gene-level analysis; it
provides greater power at lower FDR. Furthermore,
Lancaster-based aggregation outperforms the Šidák
method of DEXSeq, which utilizes the minimum tran-
script p value to make the gene-level determination
(method corrected, Additional file 1: Section 2). While the
Šidák method performs well when transcripts are
perturbed independently (Additional file 1: Figure S1), it
performs very poorly in the more common case of corre-
lated effect (Additional file 1: Figure S2). In addition to
providing more power at lower FDR than the other
methods, the Lancaster method is also better at control-
ling and accurately reporting FDR (See Fig. 3b for
reported FDRs). Additional file 1: Figure S3 shows similar
improvements when aggregation is performed using
p values that are derived from DESeq2 [18] instead of
sleuth. Regardless of the differential expression method
used to compute p values, the Lancaster method of aggre-
gation outperforms the other methods, showing that im-
provements in performance are due to the aggregation
method and not the differential expression software.
Transcript-level p values are computed from transcript

quantifications, a process that introduces uncertainty
from multiple-mapping RNA-seq reads. Pimentel et al.
[9] showed that propagating uncertainty from the

transcript quantification to differential expression ana-
lysis increases accuracy of the differential expression
analysis. In kallisto [17], pseudoalignment was per-
formed to generate TCCs, which are the number of
reads that are compatible with sets of transcripts and
therefore do not contain any quantification uncertainty.
Given the improved results observed with performing
Lancaster aggregation, we asked whether it is possible to
perform differential expression analysis directly on TCCs
and aggregate on TCC p values to obtain gene p values,
thereby bypassing transcript quantification and the
uncertainty it entails altogether. Figure 3 shows that
aggregating TCC p values outperforms other methods,
including that of aggregating transcript p values. Fur-
thermore, aggregating TCC p values reported FDRs that
are as or more accurate than those reported by other
methods. In this instance, we used only TCCs that
mapped solely to the transcripts of a single gene, which
accounts for 88% of the RNA-seq reads. It may be pos-
sible to continue to improve performance by accounting
for intergenic TCCs.
Aggregation of TCCs is useful when quantification is

complicated due to non-uniformity of reads coverage
across transcript spans. While non-uniformity in cover-
age is prevalent in RNA-seq [19], it is particularly
extreme in variants of RNA-seq that enrich for 5′ or 3′
sequences. We used TCC aggregation to perform differ-
ential expression on QuantSeq data [20], where an
experiment involved mechanically stretching rat primary
type I like alveolar epithelial cells and then performing
QuantSeq 3’ messenger RNA (mRNA) sequencing to

a b

Fig. 3 Sensitivity and false discovery trade-off curves of aggregation methods. Twenty simulated experiments based on parameters estimated
from biological data were analyzed with different aggregation methods and averaged producing (a) and zoomed in (b). sleuth in gene mode
(“sleuth-Gene”) is a standard gene-level differential analysis method. Aggregation results based on transcript p values are shown using two
approaches: sleuth transcript p values aggregated by the Lancaster method (“sleuth-Lancaster Tx”) and sleuth transcript p values aggregated by
the Šidák-adjusted minimum method (“sleuth – Sidak Tx”). Finally, sleuth TCC p values obtained by running sleuth on TCC counts were aggregated
with the Lancaster method (“sleuth-Lancaster TCC”). Dashed lines indicate true FDR at 0.01, 0.05, and 0.1. The shapes (circle, triangle, square) on each
sensitivity-FDR curve indicate the true FDR and sensitivity at each method’s reported FDRs of 0.01, 0.05, and 0.1
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detect changes in 3′ untranslated region (UTR) expres-
sion ([21], GEO Series GSE89024). Figure 4a shows that
overall results with TCC-based aggregation are similar to
standard analysis based on gene counts obtained by
summing the number of reads that map to any constitu-
ent isoforms. However, TCC-based aggregation allows
for the discovery of events that are masked in standard
count-based analysis. Figure 4b shows an example where

we discovered 3’ UTR isoform switching, an event which
could not be identified with a gene counts-based ana-
lysis. While p value aggregation works well for gene-
level differential expression analysis, aggregation can be
extended to other natural groupings. To demonstrate
the generality of the approach, we applied p value aggre-
gation to gene ontologies [22]. Classic gene ontology
(GO) analysis of a RNA-seq experiment involves first

Fig. 4 Analysis of positionally biased RNA-seq data using TCC aggregation. A log-log plot of p values comparing aggregated sleuth-derived TCC p
values using the Lancaster method (x-axis) to p values obtained by differential analysis in DESeq2 with gene counts (y-axis) shows overall agreement
(a). DESeq2 applied on gene counts discovered 460 DE genes (FDR < 0.05); Lancaster aggregation on TCCs discovered 243 genes (FDR < 0.05). TCC
aggregated analysis can detect differential 3’ UTR usage that is masked in gene count analyses (b). An example is shown from the rat gene Tap1, with
rectangular blocks representing individual exons (blank = non-coding, solid = coding), and distinct equivalence classes (ECs) labeled with brackets. Two
other transcripts and their corresponding (zero count) equivalence classes are not shown. Significance levels for Tap1 under effects of alveolar stretching
were calculated using the Lancaster method (p value = 0.0056) and compared to p values derived from gene counts (p value = 0.169)
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performing gene differential expression analysis to
obtain either a list of statistically differential genes (i.e.
all genes with q-value < 0.05) or a rank order list of
genes (i.e. ordered by p value) and then identifying GOs
that are statistically enriched in this gene list. Common
statistical tests for enrichment include Fisher’s exact test
and Wilcoxon rank-sum test [23, 24]. Instead of testing
for enrichment of GOs, we examined the complemen-
tary question of “perturbation analysis,” namely, whether
the GO is significantly perturbed. To test for perturb-
ation, we aggregated p values based on transcript quanti-
fications or TCCs for all genes in each GO term to
obtain p values for each GO term, which are then
Bonferroni corrected. Unlike standard GO enrichment
analysis, this perturbation analysis utilizes the informa-
tion derived from all genes and reveals information not
only about membership, but also about the significance
of perturbation.
We performed differential expression and GO analysis

on recently published RNA-seq data that examined the
effect of dexamethasone treatment on primary neural
progenitor cells of embryonic mice ([25], GEO Series
GSE95363). First, we performed differential expression
using each of the four previously discussed aggregation
methods to obtain differential gene lists (FDR < 0.05).
(Additional file 1: Figure S4 compares differential
expression with sleuth standard gene mode vs Lancaster
aggregating TCC p values.) Then, we applied classical
GO enrichment analysis to each method’s differential
gene list. The Lancaster method applied to TCC-derived
p values produced the differential gene list that is
enriched for the most “immune”-containing GO terms
(Fig. 5a). To apply the GO perturbation test, we per-
formed further aggregation on the gene p values result-
ing from differential expression analysis to generate GO
p values, resulting in a total of four GO perturbation tests.
Each GO perturbation test resulted in a perturbed GO list
(FWER < 0.05) that was more enriched for “immune”-
containing GO terms than the corresponding enrichment
test (FWER < 0.05) (Additional file 1: Figure S5).
To highlight some specific results, in the GO perturb-

ation test based on aggregating TCC p values, we found
6396 GO terms (< 0.05 FWER) perturbed by dexametha-
sone treatment. Example terms at the top of the per-
turbed list included: system process (GO:0003008);
response to stress (GO:0006950); metabolic process
(GO:0008152); immune system process (GO:0002376);
inflammatory response (GO:0006954); and response to
hormone (GO:0009725). As a comparison, the corre-
sponding classical enrichment analysis using Fisher’s
exact test revealed 2123 enriched GO terms (< 0.05
FWER). Many of the perturbed GOs mentioned above
were also enriched, but system process and inflamma-
tory response were not (FWER = 0.27 and 1.00). In other

words, an enriched ontology is likely perturbed, but not
vice versa, and indeed, many “immune”-containing GO
terms were perturbed but not enriched (Fig. 5b). These
results suggest that perturbation analysis can be a useful
and powerful complementary analysis to standard GO
enrichment analysis.

Discussion
We have shown that aggregating p values to obtain
gene-level p values is a powerful and tractable method
that provides biologically interpretable results. By using
only the resulting p values from a differential expression
analysis, aggregation bypasses issues of different vari-
ances and directions of change across constituent tran-
scripts, allowing it to capture cancellation, domination,
and collapsing events. All the examples of failure modes
of traditional gene differential analysis showcased in Fig. 2
were successfully identified with the Lancaster method.
Furthermore, performing the Lancaster method on
TCC p values leverages the idea of pseudoalignment for
RNA-seq, enabling a fast and model-free approach to
differential analysis that circumvents numerous drawbacks
of previous methods.
The method of p value aggregation is also extendable

to testing other features of biological interest. We have
demonstrated its utility for GO analysis to test for
perturbation of gene ontologies, a complementary ana-
lysis that can be used in addition to existing GO enrich-
ment tests. Aggregation can be performed hierarchically
to maintain resolution at all levels including transcripts,
genes, and GO terms. Further applications can include
testing for intron retention, differential transcript start
site (TSS) usage, and other use cases where aggregation
of features is of interest. Finally, gene-level testing
directly from TCC counts is particularly well-suited for
single-cell RNA-seq analysis, where many technologies
produce read distributions that are non-uniform across
transcripts.
While this paper has focused on higher-order differen-

tial analysis, the complementary problem of differential
analysis of individual transcripts can also benefit from
some of the aggregation ideas described here. The
stageR method, recently described in Van den Berge et
al. [26], incorporates a two-step testing procedure in
which an initial meta-analysis at the gene-level (using
DEXSeq) is used to identify differential transcripts
without losing power due to testing of all transcripts.
The use of the Šidák method for aggregation of p values
makes sense in that context, as it is desirable to identify
genes with at least one differential isoform. However, it
is possible that some of the methods we have intro-
duced, including testing of TCCs and weighting, could
be applied during the screening stage.
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Conclusions
Transcript differential analysis and gene differential ana-
lysis for RNA-seq have been two independent proce-
dures up until now. Aggregating transcript p values with
the Lancaster method to call gene differential expression
not only outperforms other gene-level methods, it also
retains information about transcript dynamics and

produces one coherent analysis between transcripts and
genes. This framework can be leveraged to study
multiple resolutions of biology, such as performing a
hierarchical analysis of transcripts, genes, and gene
ontologies, or to bypass artifacts introduced at a particu-
lar resolution, such as obtaining gene-level results with-
out transcript quantification by aggregating on TCCs.

Fig. 5 GO analysis based on p value aggregation. a Four aggregation methods (“Lancaster TCC,” “Lancaster Tx,” “Sidak Tx,” and “Gene”) were performed with
sleuth to obtain gene-level differential expression analysis on response to dexamethasone treatment. The significant genes (FDR < 0.05) from each differential
expression analysis were tested for GO enrichment (Fisher’s exact test) and Bonferroni-corrected. GO terms containing the word “immune,” for which at least
one differential expression analysis provided a significant enrichment (FWER < 0.05), are shown with corresponding FWERs. Aggregation
methods (“Lancaster TCC,” “Lancaster Tx,” and “Sidak Tx”) are better at detecting “immune” enrichment than p values derived from standard gene-level
analysis (“Gene”). b TCC p values aggregated by GO term (“Perturbation Test”) reveal complementary information to classical GO enrichment
(“Enrichment Test”)
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Methods
Aggregation of p values
Fisher’s method aggregates K p values p1,…, pK, which,
under the null hypothesis, are independent and uniformly
distributed between 0 and 1. Under the null hypothesis, the

test statistic T ¼ PK
i¼1 −2 logðpiÞ is chi-squared distributed

with degrees of freedom (df) = 2K. The aggregated p value

is therefore 1−ϕðPK
i¼1 −2 logðpiÞÞ where ϕ is the cumula-

tive distribution function (CDF) of a chi-squared distribu-
tion with df = 2 K [27].
The Lancaster method [16] generalizes Fisher’s method

for aggregating p values by introducing the possibility of
weighting the p values with weights w1,…,wK. According to
the Lancaster method, under the null hypothesis where all

studies have zero effect, the test statistic T ¼ PK
i¼1 ϕ

−1
wi ðpiÞ ,

where ϕ−1
wi is the inverse CDF of the chi-squared distribution

with df = wi, follows a chi-squared distribution with

df ¼ PK
i¼1 wi . Fisher’s method is a specific instance of the

Lancaster method where all p values are uniformly
weighted by 2 and we found that the Lancaster method ap-
plied with a weighting scheme based on transcript counts
outperformed Fisher’s method (Additional file 1: Figure S6).
We investigated whether the assumptions of Fisher’s

and the Lancaster method, namely that p values are in-
dependent and uniformly distributed under the null hy-
pothesis, apply to RNA-seq. Additional file 1: Figure S7
shows a distribution of the transcript p values for the
dexamethasone RNA-seq data we examined. Aside from
a peak close to 0, presumably corresponding to the dif-
ferential transcripts, the p values appear to be uniformly
distributed. Furthermore, the Additional file 1: Section 3
contains a walkthrough of the experiments we per-
formed to test the independence between transcripts
under the null hypothesis, showing that while transcripts
of the same are not independent in general, the depend-
ence is weak and does not lead to exaggerated p values
or inflated FDRs (Additional file 1: Figures S8 and S9).
The Šidák method [28] utilizes a test based on the mini-

mum p value m = min(p1,…, pK), namely the adjustment θ =
1 – (1 − m)K. In the context of K isoforms with p values
p1,…, pK, θ is the gene-level p value based on adjusting for
the number of isoforms in the gene. If there are M genes,
the adjustments will generate p values θ1, …, θM, which can
be corrected for multiple testing. This method is similar to
the perGeneQvalue result from DEXSeq [10], and while
both methods control the FDR, the gene ranking is different
between the two methods (Additional file 1: Section 2).

Transcript differential analysis and aggregation
RNA-seq reads were quantified with kallisto v.0.43.1 to ob-
tain transcript counts and abundances. These transcript
counts were used as inputs in differential expression
methods sleuth and DESeq2 in order to obtain

transcript p values, which were then aggregated with
the Lancaster method to obtain gene p values. sleuth
and DESeq2 were run with their respective default
filters and the Wald test. sleuth was run with 30
bootstraps. Transcripts filtered out from the differential ex-
pression analysis due to low counts were also filtered out
from the p value aggregation. To obtain p value weights for
the Lancaster method, we used as weights the mean ex-
pression level for the transcript extracted by the differential
expression analysis (i.e. the mean_obs parameter in sleuth,
the baseMean parameter in DESeq2). FDRs were calculated
for the gene-specific p values using the Benjamini–Hoch-
berg method. While we used the Wald test in this manu-
script for obtaining transcript and gene differential
expression analysis, we also tested the likelihood ratio test,
which showed similar improvements with Lancaster aggre-
gation and whose performance is comparable to the Wald
test (Additional file 1: Figure S10).

Transcript compatibility count differential analysis and
aggregation
TCCs of RNA-seq reads were obtained with the kallisto
pseudo option, which outputs a TCC matrix whose two
dimensions are the number of samples and number of
equivalence classes. Each TCC represents the RNA-seq
counts corresponding to an equivalence class of tran-
scripts. All TCCs corresponding to transcripts from
more than one gene were filtered out from the analysis;
88% of reads were retained after applying this filter. The
remaining TCCs were used to perform differential ex-
pression with sleuth [9] and DESeq2 [18] by using TCCs
in lieu of transcript/gene counts. In order to use sleuth,
we performed 30 bootstraps on TCCs, whose results
were inputted into sleuth to estimate inferential vari-
ance. Non-expressed TCCs were filtered from the sleuth
analyses and the default filter in DESeq2 was used. Both
methods were performed with the likelihood ratio test
because we found that the Wald test applied to TCCs
reported overly liberal FDRs. The resulting TCC p
values from the differential expression analysis were
aggregated using the Lancaster method, with p value
weights equal to the log-transformed mean counts
normalized to 1. In other words, given K TCCs of the
same gene with mean counts t1, …, tK, the weight for

the ith TCC is wi ¼ logðtiþ1ÞPK

j¼1
logðt jþ1Þ

.

Gene differential analysis
The aggregation methods were compared to standard
gene-level differential analysis performed with sleuth
and DESeq2. sleuth was run in gene mode with 30 boot-
straps. DESeq2 was run on gene counts obtained using
tximport [2] to aggregate transcript quantifications,
except the case of 3’ QuantSeq dataset, where gene

Yi et al. Genome Biology  (2018) 19:53 Page 8 of 11



counts were obtained by summing reads that uniquely
map to a gene. Both sleuth and DESeq2 were run with
the Wald test and their respective default filters.

Simulations
The simulations used to benchmark the method followed
the approach of Pimentel et al. [9]. A null distribution
consisting of the negative binomial model for transcript
counts was learned from the Finnish female lymphoblastic
cell lines subset of GEUVADIS [29]. A distribution of fold
changes to the mean was learned from an experimental
dataset from Trapnell et al. [6]; 20% of genes were chosen
randomly to be differentially expressed, with fold changes
of the transcripts assigned by rank-matching transcript
abundances. Twenty simulations were performed, each
with different randomly chosen sets of differentially
expressed genes (for further details on the simulation
structure, see [9]).
The simulations were quantified with kallisto v0.43.1

using an index constructed from Ensembl Homo sapiens
GRCh38 cDNA release 79. Differential expression ana-
lyses were performed with sleuth and DESeq2 and then
aggregated with various methods described above. Sensi-
tivities and corresponding FDRs were calculated and
then averaged across the 20 simulations. The average
sensitivity at each average FDR was plotted with the
mamabear package ([9], https://github.com/pimentel/
mamabear).

Rat alveolar epithelial cell stretching dataset analysis
We used a 3’ QuantSeq dataset (GEO Series GSE89024)
of stretched and unstretched rat primary type I like
alveolar epithelial cells. Five replicates for each condition
were performed by the original experimenters, resulting
in a total of ten single-end RNA-seq samples [21]. Reads
were trimmed to remove poly-A tails with fqtrim-0.9.5
using the default parameters [30]. As discussed above in
the “Methods” section under “Transcript compatibility
count differential analysis and aggregation,” TCCs were
obtained with the kallisto pseudo option, differential
expression of TCCs was performed in sleuth, and
TCC p values were aggregated with the Lancaster method.
Because kallisto quantification is invalid for this non-
uniform sequencing dataset and it cannot be used to pro-
vide bootstrap estimates of inferential variance required
for sleuth, we used DESeq2’s default pipeline to perform
gene differential analysis, summing all reads mapping
uniquely to a gene to obtain gene counts.

Dexamethasone dataset analysis
We analyzed a dataset (GEO Series GSE95363) consist-
ing of reads derived from RNA-seq on primary mouse
neural progenitor cells extracted from two regions of the
brain, from female and male embryonic mice, and with

and without dexamethasone treatment. Three replicates
were performed for each of the eight combinatorial con-
ditions, resulting in a total of 24 single-end RNA-seq
samples [25]. As detailed above in “Transcript differen-
tial analysis and aggregation,” samples were quantified
with kallisto v0.43.1 (default kmer length 31, with 30
bootstraps per sample), using an index constructed from
Ensembl Mus musculus GRCm38 cDNA release 88.
Within sleuth, a linear model with three parameters
(gender, brain region, and treatment) was constructed, a
Wald test was performed to test for effect of treatment
on transcript expression, and the resulting p values were
aggregated. As detailed above in “Transcript compatibil-
ity count differential analysis and aggregation,” TCCs
were obtained with kallisto v0.43.1 using the pseudo op-
tion, differential expression of TCCs was performed in
sleuth, and the resulting p values aggregated. On this
dataset, we also performed the sleuth’s standard gene
pipeline (detailed in “Gene differential analysis”) and the
Sidak aggregation method, resulting in a total of four
different aggregation methods.
Each method’s significant gene list, thresholded at

FDR < 0.05, was inputted into a classical GO analysis to
test for GO enrichment. topGO_2.26.0 [31] was invoked
to perform Fisher’s exact test, using gene ontologies
drawn from GO.db_3.4.0 and mouse gene annotations
drawn from org.Mm.eg.db_3.4.0 [32]. Furthermore, the
gene p values from each aggregation method were used
in a GO perturbation test. In the GO perturbation test,
gene p values are weighted by the counts mapping
uniquely to the gene and aggregated with the Lancaster
method, using the ontology-to-gene mappings provided
by topGO. The GO p values were Bonferroni corrected
to obtain FWER.

Software versions
DESeq2 1.14.1 and sleuth 0.29.0 were used in R version
3.4.1 to perform differential analyses. Tximport 1.2.0 was
used to sum transcript counts within genes to perform
gene-level differential expression with DESeq2. We im-
plemented Fisher’s method and Lancaster method with
the chisq and gamma functions in the R Stats Package.
A lightweight R package containing the functionality
for performing p value aggregation with Fisher’s,
Lancaster and Šidák methods, which is applicable gen-
erally to outside the domain of RNA-Seq, is available
on CRAN as “aggregation” (https://cran.r-project.org/
web/packages/aggregation/). Our method to perform
gene-level differential analysis via Lancaster aggregation
of transcript p values has been implemented in sleuth.
Scripts to reproduce the figures and results of the paper
are available at http://github.com/pachterlab/aggrega-
tionDE/.

Yi et al. Genome Biology  (2018) 19:53 Page 9 of 11

https://github.com/pimentel/mamabear
https://github.com/pimentel/mamabear
https://cran.r-project.org/web/packages/aggregation/
https://cran.r-project.org/web/packages/aggregation/
http://github.com/pachterlab/aggregationDE
http://github.com/pachterlab/aggregationDE


Additional file

Additional file 1: Supplementary material. (PDF 13757 kb)

Acknowledgments
We thank Jase Gehring, Páll Melsted, and Vasilis Ntranos for discussion and
feedback during development of the methods. Conversations with Cole
Trapnell regarding the challenges of functional characterization of individual
isoforms were instrumental in launching the project.

Funding
LY was partially funded by the UCLA-Caltech Medical Science Training Program,
NIH T32 GM07616, and the Lee Ramo Fund. Harold Pimentel was partially
funded by NIH R01 HG008140.

Availability of data and materials
Scripts to reproduce the figures and results of the paper are available at http://
github.com/pachterlab/aggregationDE/, which is under GNU General Public
License v3.0. [33]. The RNA-seq datasets used in the analysis can be found at
GEO GSE89024 [21]and GEO GSE95363 [25].

Authors’ contributions
LY, NLB, and LP devised the methods. LY analyzed the biological data. LY and
LP performed computational experiments. HP developed and implemented the
simulation framework. LY and LP wrote the paper. NLB and LP supervised the
research. All authors read and approved the final manuscript.

Ethics approval and consent to participate
No data from humans were used in this manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1UCLA-Caltech Medical Science Training Program, Los Angeles, CA, USA.
2Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA.
3Department of Genetics, Stanford University, Palo Alto, CA, USA. 4Innovative
Genomics Institute, Berkeley, CA, USA. 5Department of Computing and
Mathematical Sciences, Caltech, Pasadena, CA, USA.

Received: 5 October 2017 Accepted: 8 March 2018

References
1. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for

transcriptomics. Nat Rev Genet. 2009;10(1):57–63. https://doi.org/10.
1038/nrg2484.

2. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq:
transcript-level estimates improve gene-level inferences. F1000Research.
2015;4:1521. https://doi.org/10.12688/f1000research.7563.1.

3. Kisielow M, Kleiner S, Nagasawa M, Faisal A, Nagamine Y. Isoform-specific
knockdown and expression of adaptor protein ShcA using small interfering
RNA. Biochem J. 2002;363(Pt 1):1–5. https://doi.org/10.1042/bj3630001.

4. Anders S, Huber W. Differential expression analysis for sequence count data.
Genome Biol. 2010;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106.

5. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-
throughput sequencing data. Bioinformatics. 2015;31(2):166–9. https://doi.
org/10.1093/bioinformatics/btu638.

6. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L.
Differential analysis of gene regulation at transcript resolution with RNA-seq.
Nat Biotechnol. 2013;31(1):46–53. https://doi.org/10.1038/nbt.2450.

7. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.
Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol.
2010;28(5):511–5. https://doi.org/10.1038/nbt.1621.

8. Robinson M, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/
bioinformatics/btp616.

9. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of
RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14(7):
687–90. https://doi.org/10.1038/nmeth.4324.

10. Anders S, Reyes A, Huber W. Detecting differential usage of exons from
RNA-seq data. Genome Res. 2012;22(10):2008–17. https://doi.org/10.
1101/gr.133744.111.

11. Hess A, Iyer H. Fisher’s combined p-value for detecting differentially
expressed genes using Affymetrix expression arrays. Genome Biol. 2007;8:96.
https://doi.org/10.1186/1471-2164-8-96.

12. Chen Z, Yang W, Liu Q, Yang JY, Li J, Yang MQ. A new statistical approach
to combining p-values using gamma distribution and its application to
genome-wide association study. BMC Bioinformatics. 2014;15(Suppl 17):S3.
https://doi.org/10.1186/1471-2105-15-S17-S3.

13. Dai H, Charnigo R, Srivastava T, Talebizadeh Z, Ye SQ. Integrating P-values
for genetic and genomic data analysis. J Biom Biostat. 2012;3:e117. https://
doi.org/10.4172/2155-6180.1000e117.

14. Lamparter D, Marbach D, Rueedi R, Kutalik Z, Bergman S. Fast and
rigorous computation of gene and pathway scores from SNP-based
summary statistics. PLoS Comput Biol. 2016; https://doi.org/10.1371/
journal.pcbi.1004714.

15. Li S, Williams BL, Cui Y. A combined p-value approach to infer pathway
regulations in eQTL mapping. Stat Interface. 2011;4:389–402. https://doi.org/
10.4310/SII.2011.v4.n3.a13.

16. Lancaster HO. The combination of probabilities: an application of
orthonormal functions. Austral J Statistics. 1961;3:20–33. https://doi.org/10.
1111/j.1467-842X.1961.tb00058.x.

17. Bray N, Pimentel H, Melsted H, Pachter L. Near-optimal probabilistic
RNA-seq quantification. Nat Biotechnol. 2016;34:525–7. https://doi.org/10.
1038/nbt.3519.

18. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
https://doi.org/10.1186/s13059-014-0550-8.

19. Hayer KE, Pizarro A, Lahens NF, Hogenesch JB, Grant GR. Benchmark analysis
of algorithms for determining and quantifying full-length mRNA splice
forms from RNA-seq data. Bioinformatics. 2015;31(24):3938–45. https://doi.
org/10.1093/bioinformatics/btv488.

20. Moll P, Ante M, Seitz A, Reda T. QuantSeq 3 [prime] mRNA sequencing for
RNA quantification. Nat Methods. 2014;11(12):31.

21. Dolinay T, Himes BE, Shumyatcher M, Lawrence GG, Margulies SS.
Integrated stress response mediates epithelial injury in mechanical
ventilation. Am J Respir Cell Mol Biol. 2017;57(2):193–203. https://doi.
org/10.1165/rcmb.2016-0404OC.

22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.
https://doi.org/10.1038/75556.

23. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Res. 2009;37(1):1–13. https://doi.org/10.1093/nar/gkn923.

24. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene
function analysis with the PANTHER classification system. Nat Protoc. 2013;8:
1551–66. https://doi.org/10.1038/nprot.2013.092.

25. Frahm KA, Waldman JK, Luthra S, Rudine AC, Monaghan-Nichols AP,
Chandran UR. A comparison of the sexually dimorphic dexamethasone
transcriptome in mouse cerebral cortical and hypothalamic embryonic
neural stem cells. Mol Cell Endocrinol. 2017; https://doi.org/10.1016/j.mce.
2017.05.026.

26. Van den Berge K, Soneson C, Robinson MD, Clement L. stageR: a general
stage-wise method for controlling the gene-level false discovery rate in
differential expression and differential transcript usage. Genome Biol. 2017;
18(1):151. https://doi.org/10.1186/s13059-017-1277-0.

27. Fisher RA. Statistical methods for research workers. 4th ed. London: Oliver
and Boyd; 1932.

28. Šidàk Z. Rectangular confidence region for the means of multivariate
normal distributions. J Am Stat Assoc. 1967;62:626–33. https://doi.org/10.
1080/01621459.1967.10482935.

29. Lappalainen T, Sammeth M, Friedländer MR, t Hoen PA, Monlong J, Rivas
MA, et al. Transcriptome and genome sequencing uncovers functional

Yi et al. Genome Biology  (2018) 19:53 Page 10 of 11

https://doi.org/10.1186/s13059-018-1419-z
http://github.com/pachterlab/aggregationDE
http://github.com/pachterlab/aggregationDE
https://doi.org/10.1038/nrg2484
https://doi.org/10.1038/nrg2484
https://doi.org/10.12688/f1000research.7563.1
https://doi.org/10.1042/bj3630001
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1038/nbt.2450
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1038/nmeth.4324
https://doi.org/10.1101/gr.133744.111
https://doi.org/10.1101/gr.133744.111
https://doi.org/10.1186/1471-2164-8-96
https://doi.org/10.1186/1471-2105-15-S17-S3
https://doi.org/10.4172/2155-6180.1000e117
https://doi.org/10.4172/2155-6180.1000e117
https://doi.org/10.1371/journal.pcbi.1004714
https://doi.org/10.1371/journal.pcbi.1004714
https://doi.org/10.4310/SII.2011.v4.n3.a13
https://doi.org/10.4310/SII.2011.v4.n3.a13
https://doi.org/10.1111/j.1467-842X.1961.tb00058.x
https://doi.org/10.1111/j.1467-842X.1961.tb00058.x
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1093/bioinformatics/btv488
https://doi.org/10.1093/bioinformatics/btv488
https://doi.org/10.1165/rcmb.2016-0404OC
https://doi.org/10.1165/rcmb.2016-0404OC
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1038/nprot.2013.092
https://doi.org/10.1016/j.mce.2017.05.026
https://doi.org/10.1016/j.mce.2017.05.026
https://doi.org/10.1186/s13059-017-1277-0
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1080/01621459.1967.10482935


variation in humans. Nature. 2013;501:506–11. https://doi.org/10.1038/
nature12531.

30. Johns Hopkins Center for Computational Biology. fqtrim; 2015. https://doi.
org/10.5281/zenodo.20552. https://github.com/gpertea/fqtrim/tree/v0.9.4.

31. Alexa A and Rahnenfuhrer J. topGO: Enrichment Analysis for Gene
Ontology. R package version 2280. 2016.

32. The Gene Ontology Consortium. Gene Ontology Consortium: going
forward. Nucl Acids Res. 2015;43(Database issue):D1049–56. https://doi.org/
10.1093/nar/gku1179.

33. Yi L, Pimentel H. Bray NL. Pachter L. aggregationDE. Github. 2016. https://
doi.org/10.5281/zenodo.1179317; https://github.com/pachterlab/
aggregationDE .

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Yi et al. Genome Biology  (2018) 19:53 Page 11 of 11

https://doi.org/10.1038/nature12531
https://doi.org/10.1038/nature12531
https://doi.org/10.5281/zenodo.20552
https://doi.org/10.5281/zenodo.20552
https://github.com/gpertea/fqtrim/tree/v0.9.4
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.5281/zenodo.1179317
https://doi.org/10.5281/zenodo.1179317
https://github.com/pachterlab/aggregationDE
https://github.com/pachterlab/aggregationDE

	Abstract
	Background
	Results
	Discussion
	Conclusions
	Methods
	Aggregation of p values
	Transcript differential analysis and aggregation
	Transcript compatibility count differential analysis and aggregation
	Gene differential analysis
	Simulations
	Rat alveolar epithelial cell stretching dataset analysis
	Dexamethasone dataset analysis
	Software versions

	Additional file
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

