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Abstract

We present a new method, Fine-Mapping of Adaptive Variation (FineMAV), which combines population differentiation,
derived allele frequency, and molecular functionality to prioritize positively selected candidate variants for functional
follow-up. We calibrate and test FineMAV using eight experimentally validated “gold standard” positively selected
variants and simulations. FineMAV has good sensitivity and a low false discovery rate. Applying FineMAV to the 1000
Genomes Project Phase 3 SNP dataset, we report many novel selected variants, including ones in TGM3 and PRSS53
associated with hair phenotypes that we validate using available independent data. FineMAV is widely applicable to
sequence data from both human and other species.
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Background
The out-of-Africa expansion ~ 60,000 years ago exposed
humans to a diverse range of new environments and se-
lective pressures including new pathogens, climatic con-
ditions, and diets [1–3]. Genetic drift and local
adaptations in spatially distant populations consequently
led to geographically structured phenotypic diversifica-
tion, illustrated by the inter-population variation ob-
served for numerous morphological and physiological
traits, such as skin pigmentation [2–4]. Not only are the
genetic variants underlying differences between popula-
tions crucial for understanding recent human evolution
and present-day human diversity, but they may also be
clinically relevant, as the prevalence and susceptibilities
of some common diseases vary across regions (e.g.
hypertension or type 2 diabetes) [4–6]. Medical implica-
tions of adaptive variation arise because natural selection
can only act in a direct way on functionally important
variants driving phenotypic variation [7, 8]; selected al-
leles usually confer protective effects, like pathogen re-
sistance associated with CASP12 [9], CCR5 [10], and
FUT2 [11] deficiency alleles, but paradoxically, may turn

harmful in non-traditional environments or a homozy-
gous state [5, 6, 12–14], e.g. sickle cell alleles [15],
CPT1A [16, 17], and APOL1 [18, 19].
Selective episodes leave signatures in the human gen-

ome and thus can be recognized from the pattern of nu-
cleotide polymorphisms in a population sample [2, 20,
21]. Most methods that have been developed to detect sig-
nals of recent and ongoing positive selection are based on
the classical hard sweep model [2, 22]. This model as-
sumes that a new advantageous mutation rapidly spreads
to fixation or high frequency, purging nearby linked vari-
ation due to genetic hitchhiking [2, 20, 23]. Its genetic
characteristics include high-frequency derived long-range
haplotypes with a concomitant reduced level of genetic
variation, large derived allele frequency differences be-
tween populations, and changes to the allele frequency
spectrum (e.g. increased fraction of derived common and
rare alleles, depletion of intermediate-frequency variation),
although these features can also arise by genetic drift or
purifying selection and are confounded by population
demography [2–4, 7, 20, 22]. However, it has been argued
that hard sweeps were rather rare in recent human evolu-
tion [2, 22] and that selection may more often operate on
pre-existing variation that has evolved neutrally in the
population until it becomes advantageous under certain
conditions (“selection on standing variation”) [2, 4, 22].
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Selection from standing variation is difficult to detect
using most standard approaches, because the selected
variant often exists on multiple haplotype back-
grounds (a so-called “soft sweep”) and has weaker ef-
fects on closely linked sites, so does not produce the
classical selective sweep signatures of extended link-
age disequilibrium (LD) and site frequency spectrum
(SFS) changes [2, 4, 21, 22, 24, 25].
Previous surveys have reported vast lists of putatively se-

lected genomic segments, genes, and variants, which con-
trast sharply with the handful of functionally validated
examples of genetic adaptations with both a strong popu-
lation selection signal and a compelling explanation for
the reasons for selection linked to a relevant phenotype in
humans [2, 5, 22, 26]. This is because population-genetic-
based methods are often imprecise, implicating large gen-
omic regions harboring many genes and a myriad of single
nucleotide polymorphisms (SNPs) that could potentially
drive the selection signal, but which are mostly neutral
[27]. Even if a selection statistic operates at the individual
variant level, such as population-differentiation-based sta-
tistics (e.g. FST; difference in derived allele frequency
[ΔDAF]) [28] or some composite likelihood approaches
(e.g. composite of multiple signals [CMS]) [29], the highest
scoring variant is not necessarily causal. High LD around
the selected SNP often results in a stretch of highly differ-
entiated variants with the same allele frequencies, further
complicating the identification of the most likely causal
variant. Similarly, for each potentially causal variant iden-
tified by CMS, there are on average 20 neutral proxies, all
indistinguishable from the functional mutation [29]. As a
result, the false discovery rate (FDR) of genome-wide se-
lection scans is potentially high, which is reflected by the
low concordance between such studies [2, 6, 7, 22, 26, 30–
32]. The focus of this field now needs to move from candi-
date locus discovery to fine mapping of the signals of se-
lection and biological understanding of their adaptive
significance. However, population genetics alone is usually
not sufficient to narrow down the signal of selection to a
single causative SNP and the only way to distinguish true
positives from artifacts or neutral passenger variation has
been functional validation [2, 33]. Yet very few variants
have been validated in this way, as current technology
does not allow high-throughput functional validation, e.g.
using genome editing in model systems [33]. Therefore, a
useful step would be to subject candidate variants to
rigorous evaluation and narrow down these extensive lists
to a manageable subset of the strongest candidates for
functional studies.
Despite these reservations, there are a few well-

supported cases of local genetic adaptation that conform
to the classical sweep model [22]. One example is the A
allele at rs1426654 (within SLC24A5), which is nearly
fixed in European populations, causing an amino acid

(Thr to Ala) change and contributing to lighter skin pig-
mentation [34]. Such examples are not restricted to amino
acid changes and have also been reported for cis-regulatory
variants, such as the A allele at the rs4988235, an intronic
regulatory variant in MCM6 which has been shown to in-
crease the expression of the downstream lactase (LCT) gene
in vitro enabling digestion of the milk sugar, lactose, as an
adult in West Asian and European populations that trad-
itionally practice pastoralism [35, 36].
Here, we develop a new in silico framework to short-

list candidate positively selected variants for further
functional follow-up (Fig. 1). In order to prioritize candi-
date variants, we need a starting list of variants, a proto-
col for prioritization, and a way of assessing whether or
not the prioritization is effective. We use an integrative
method that overlays population signatures of selection
with functional annotation to produce a refined list of
candidate variants in the 1000 Genomes Project Phase 3
SNP dataset [37]. We assessed the results using both
eight “gold standard” examples where the evidence for
positive selection acting on a particular variant is con-
vincing; and also simulations, to explore the likely false
positive and negative rates and further discuss some of
the novel variants in our lists.

Results
We performed a new analysis of 1000 Genomes Project
Phase 3 whole-genome sequence data [37] focusing on
identifying individual putatively selected SNPs. Our ana-
lysis overlays multiple lines of evidence for causality to
prioritize the vast numbers of potential candidates in
order to identify a small number for experimental follow
up. FineMAV combines a new measure of population dif-
ferentiation (derived allele purity [DAP]; see “Methods”
Eq. 2), a measure of allele prevalence (DAF), and a meas-
ure of functionality (the Combined Annotation-
Dependent Depletion [CADD] PHRED-scaled C-score
[38]). We simply scaled and combined them to obtain a
single measure giving high values to derived alleles that
are common, population-specific, and functional (see
“Methods” Eq. 1). FineMAV is designed to refine the loca-
tion of a positive selection signal to a single variant and
can be applied to a region of prior interest or to the whole
genome for de novo discovery of selected variants, focus-
ing on recent local adaptations, that arose after the out-of-
Africa population expansion.

FineMAV power analyses using simulations
FineMAV’s power to detect selected variants depends on
the strength of the selection coefficient. In simulations, it
was unable to distinguish weak selection (s = 0.001) from
neutrality since population differentiation under the sce-
narios tested was low (Additional file 1: Figure S1). In con-
trast, medium and strong selection coefficients (s = 0.007
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and s = 0.01) produced FineMAV distributions that were dif-
ferent from the neutral variation (Additional file 1: Figure
S1) and, assuming that CADD annotation is characterized
by a low FDR, it was rare to find neutral variants in the ex-
treme upper tail of the FineMAV distribution: FDR~ 4%.
The power to detect the selected variants that fall outside of
the neutral FineMAV distribution was 46% and 77% for s =
0.007 and s = 0.01, respectively, although the real power,
which depends on the accuracy of the functional annotation,

might be lower (since functional annotation might be in-
complete), these simulations demonstrated that FineMAV
fits our aims, as we do not attempt to pick up all positive se-
lection in the genome (accepting a high false negative rate),
but rather try to minimize the FDR, which was < 5%.

FineMAV evaluation using 1000 Genomes Project data
To calibrate FineMAV and evaluate its performance, we
compiled a gold standard panel of the eight best examples

Fig. 1 Workflow for prioritization of positively selected candidate variants for functional studies. The DNA molecule is represented as a blue line,
with variants being red dots. Identification of the candidate positively selected variants from the genome-wide variation data, or the refinement of
the known signal of selection to a functional SNP, is achieved by overlapping the statistical support from genetic analyses with functional annotation
(implemented in FineMAV). A detailed follow-up functional study can then be performed (in vitro or in vivo experiments using model
systems) to validate the implicated variant, quantify its phenotypic consequences, and clarify its relationship with reproductive fitness, e.g.
by assessment of phenotypic differences between mouse models carrying the human-selected and non-selected alleles
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of experimentally validated, positively selected variants
underlying signals of positive selection that are linked to
specific phenotypic consequences in the three well-
characterized continental populations (Table 1). A key
element was the value of the penalty for allele sharing be-
tween populations (parameter x). We first learned x from
empirical data (subsets of the gold standards) and then
tested it using simulations (100 simulated positive con-
trols) to see if further increment of x increased FineMAV’s
robustness in larger datasets (see “Methods”). The simula-
tions showed that x deduced from empirical data was suf-
ficient to pick up simulated selected variants and that its
further increase did not affect FineMAV’s power. Calibra-
tion results were consistent across different combinations
of gold standards used in the analysis (see “Methods”). We
then applied FineMAV to genome-wide data from the
1000 Genomes Project (Phase 3) [37] to discover positive
selection signals in Africa, East Asia, and Europe, and
tested the results by examining whether or not: (1) our
method was able to separate the other gold standard vari-
ants from the surrounding linked SNPs; (2) the gold stan-
dards as a group were found among the extreme outliers
of the genome-wide distribution; and (3) FineMAV also
enriched for genes identified in previous genome-wide se-
lection scans with high Selection Support Index (SSI)
values (Additional file 2).
Results of the refinement of the signal of selection for

the gold standard panel calibration and replication sets
are shown in Figs. 2 and 3, respectively, together with
the performance of methods relying on population-
genetic data alone (ΔDAF – a standard measure of
population differentiation [28] and CMS – a composite
method [29, 39]). Our integrative approach successfully
distinguished the positively selected variants from neu-
tral background variation in all cases, whereas the stand-
ard methods were often unable to differentiate between
the functional variant and its neutral proxies. Values of
individual FineMAV components for each genomic

window are shown in Additional file 1: Figure S2 and
S3. Furthermore, we assessed how often the positively
selected variant was the highest scoring one in a gen-
omic window of 1000 SNPs in both the simulated and
empirical data (1000 Genomes Project sequence data
spanning the gold standard panel) according to three
different tests (Table 2). In this comparison, we used
two statistics relying on population genetic data alone
(ΔDAF and DAPxDAF – population genetic component
of FineMAV) and compared with our statistic FineMAV
incorporating the measure of functionality. Inclusion of
functionality improved the fine mapping of truly se-
lected variants remarkably (Table 2). It is also worth
noting that DAPxDAF is more sensitive to the signature
of local adaptation than ΔDAF in the simulated data,
especially for lower selection coefficients (Table 2 and
Additional file 1: Figure S4 and S5).
We then ranked all variants in the 1000 Genomes

dataset according to their FineMAV value to identify ex-
treme outliers in the upper tail of the empirical genome-
wide distribution for each continent and examined
whether or not the gold standard variants fell in the ex-
treme tail. We indeed found all the gold standards to be
high scoring (Fig. 4) (among the top 0.0004% of the
whole-genome distribution [Additional file 1: Figure S6
and Additional file 3]) and set a conservative threshold
to include the top 100 candidates per population (in-
corporating all gold standards and a total of 300 vari-
ants, out of more than 78 million derived alleles
[Additional file 1: Figure S6 and Additional file 3]) for
downstream analysis. Among those 300 FineMAV top-
hits, we observed varying levels of allele frequency (DAF
range of ~ 0.25–1) and allele sharing between popula-
tions (DAP range of ~ 0.38–1), all characterized by a
functional CADD score prediction (in the range of ~ 11–
47 with a mean of ~ 19). It is worth noting that although
FineMAV prioritizes population-specific alleles, it also al-
lows some degree of allele sharing between populations.
The distribution of continental DAF, DAP, and CADD in
the top FineMAV outliers in each population are shown
in Additional file 1: Figure S7, S8, and S9, respectively.

Functional validation in silico
To further evaluate our top FineMAV hits, we performed
an in silico validation by searching the available litera-
ture for relevant functional information. FineMAV’s
performance is supported by several lines of evidence.
The first verification comes from the “gold standard”
replication set (the best examples of validated causal
adaptive variants). Not only did FineMAV replicate the
signals in these well-known cases of strong election, but
it also narrowed it down to the known single functional
SNP, even in high LD regions. Positive controls extend
to other variants that were not included in the “gold

Table 1 List of “gold standard” selected variants used for FineMAV
calibration and validation

Gene SNP Population Function

ACKR1a rs2814778 AFR Malaria resistance [115–118]

SLC39A4 rs1871534 AFR Zinc level [119]

ABCC11 rs17822931 EAS Earwax and sweat type [120, 121]

EDAR rs3827760 EAS Hair shape and thickness [33, 122]

HERC2 rs12913832 EUR Eye pigmentation [123–125]

MCM6 rs4988235 EUR Lactose tolerance [35, 36]

SLC24A5 rs1426654 EUR Skin pigmentation [34, 126]

SLC45A2 rs16891982 EUR Skin pigmentation [126–128]
aNote that ACKR1 is also known as DARC and the derived allele at rs2814778 is
the Duffy O allele
AFR Africans, EAS East Asians, EUR Europeans
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Fig. 2 Comparison of FineMAV with existing approaches for pinpointing positively selected variants in the calibration set. ΔDAF, CMS, and FineMAV
scores are shown for the genomic windows spanning genes from the gold standard calibration panel. ΔDAF and FineMAV were calculated from the
1000 Genomes Project Phase3 dataset [37] for Africans (AFR, blue), East Asians (EAS, orange), and Europeans (EUR, green). CMS scores for localized
regions were downloaded from an online repository [39] and included: region8new and region152new calculated using the pilot phase of 1000
Genomes Project [129]. Variants with CMS value set to “nan” were not plotted; thus, some CMS plots are missing. Genomic positions are given in Mb
according to GRCh37 for ΔDAF and FineMAV, and build NCBI36 for CMS. The selected variant is marked with a dashed line. FineMAV notably reduced
the noise of neutral background variation, so that the selected variant is always the highest scoring one in any given gene. Note that the y-axis scale
in the CMS plots is not standardized
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Fig. 3 (See legend on next page.)

Szpak et al. Genome Biology  (2018) 19:5 Page 6 of 18



standard” panel, but whose prior evidence of causality is
also strong, potentially providing additional support for
our method. FineMAV rediscovered additional known
SNPs implicated in eye, hair, and skin pigmentation in
non-Africans, such as rs1800414 in OCA2 (skin lighten-
ing in East Asians) [40–42], rs1042602 and rs1126809 in
TYR (pigmentation and freckling in Europeans) [43–45],
rs12350739 in BNC2 (freckling and color saturation of
human skin pigmentation in Europeans) [46], and also
rs1047781 in FUT2 (an enzyme-inactivating mutation
conferring advantage in avoiding certain viral infections
in East Asians) [11, 47], rs3211938 in CD36 selected in
Yoruba (protection against malaria and/or the metabolic
syndrome) [48–50], and rs1229984 in ADH1B (protec-
tion against alcohol dependence in East Asians) [51–54].
Finally, FineMAV also identified a variant with no prior

implication of functionality that was experimentally vali-
dated while our study was in progress, thus providing add-
itional evidence of its performance. We picked up the
missense SNP rs11150606 as the sixth top-scoring Fine-
MAV variant in East Asians and noticed that it fell in
PRSS53, whose function was then largely unknown.
PRSS53 encodes a polyserine protease called polyserase-3
(POL3S), which hydrolyzes peptide bonds. Subsequently,
Adhikari et al. showed that PRSS53 is highly expressed in
the hair follicle and rs11150606 was associated with hair
shape in East Asians [55]. The authors confirmed the
functionality of rs11150606 by in vitro assays, showing
that it affects processing and secretion of the gene prod-
uct, with the derived allele contributing to the straight hair
phenotype (similarly to the well-established gold standard
EDAR variant) [55]. It can thus be considered another

(See figure on previous page.)
Fig. 3 Comparison of FineMAV with existing approaches for pinpointing selected variants in the replication set. ΔDAF, CMS, and FineMAV scores
are shown for the genomic windows spanning genes from the gold standard replication panel. ΔDAF and FineMAV were calculated from the
1000 Genomes Project Phase3 dataset [37] for Africans (AFR, blue), East Asians (EAS, orange), and Europeans (EUR, green). CMS scores for localized
regions were downloaded from an online repository [39] and included: region34new, region104new, and SLC45A2old, all calculated using the
pilot phase of 1000 Genomes Project [129]. Variants with CMS value set to “nan” were not plotted; thus, some CMS plots are missing. Genomic
positions are given in Mb according to GRCh37 for ΔDAF and FineMAV, and build NCBI36 for CMS. The selected variant is marked with a dashed line.
FineMAV notably reduced the noise of neutral background variation, so that the selected variant is always the highest scoring one in the given gene.
Note that the y-axis scale in the CMS plots is not standardized

Table 2 Different tests’ power to identify the selection driving
SNP as the top scoring one in the genomic window of 1000 SNPs

Scenario ΔDAF DAPxDAF FineMAV

Empirical data 0.75 0.75 1

Simulation s = 0.001 0 0 0.01

Simulation s = 0.007 0.23 0.44 0.75

Simulation s = 0.01 0.72 0.84 0.92

“Empirical data” means 1000 Genomes Project sequence data of the gold
standard panel. “Simulation” is given for three different selection coefficients
(s). "DAPxDAF" specifies FineMAV without functional prediction

Fig. 4 Manhattan plot of genome-wide FineMAV scores. FineMAV
scores were calculated for genome-wide SNPs from 1000 Genomes
Project Phase 3 [37] in three continental populations: (a) Africans
(AFR, blue); (b) East Asians (EAS, orange); (c) Europeans (EUR, green).
Each dot in the Manhattan plots represents a single SNP plotted
according to coordinates in GRCh37. The threshold (dashed lines)
was set to include the top 100 variants (top ~ 0.0004% of the whole-
genome distribution). All gold-standard SNPs (yellow dots found
among the top outliers) and other interesting candidate variants are
labeled with the name of the gene they fall into
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gold standard example demonstrating the validity of our
method in picking up true functional selected variants.
Furthermore, we looked at the enrichment of genome-

wide association study (GWAS) hits and expression
quantitative trait loci (eQTLs) more generally among
our top outliers (Additional file 2). GWAS enrichment
was carried out in an LD framework (Additional file 2)
instead of a simple overlap between FineMAV outliers
and GWAS hits, because many GWAS studies are based
on array-genotyping, rather than whole-genome sequen-
cing data and are confounded by LD between functional
and linked variants. We saw enrichment in GWAS hits
among FineMAV outliers in Europeans and Eurasians
(especially in the high LD category r2 ≥ 0.9) (Additional
file 2). As the majority of GWAS studies were conducted
in populations with European ancestry, the lack of en-
richment in Africans and East Asians is not surprising.
The directionality of the association was not available
for all variants, but most of the annotated selected alleles
(or their tagging SNPs) conferred protective effect, ex-
cept a few derived alleles associated with increased risk
of schizophrenia, type 2 diabetes, increased adiposity,
lupus erythematosus, and degeneration of lumbar disc
(Additional file 4). We also saw selection on alleles asso-
ciated with increased height and lower age of puberty in
Europeans [56], delayed eruption of permanent teeth in
Eurasians [57], facial morphology in Africans, and chin
dimples in Europeans and Asians [58] (Additional file 4).
Similarly, we saw an enrichment in eQTLs among

FineMAV top outliers in Europeans and Eurasians as
compared to a random expectation (p values of 0.04
and 0.03, respectively), although with lower signifi-
cance than for GWAS signals. In a similar fashion,
non-European ancestries are under-represented in
eQTL databases. Over half of the top 100 FineMAV
outliers in Europeans and Eurasians were annotated
as significant eQTLs (Additional file 3).

Novel candidate variants in Africa, East Asia, and Europe
Although we have thus far highlighted known variants
replicated in our analysis, which serve as positive con-
trols for evaluating our method’s performance, the vast
majority of outliers discovered are novel and fall in non-
coding regions (Additional file 1: Figure S10 and
Additional file 2). We also identified variants on the X
and Y chromosomes which have been under-represented
in previous genomic scans [28, 29, 31, 39, 59–80], but fur-
ther functional testing is needed to explore these findings.
It is worth noting that the paucity of FineMAV hits on the
Y chromosome (only one in the top 300) shows its strong
dependence on the CADD score prediction.
We observed some high-scoring nonsense variants

among our top candidates, suggesting pseudogenization
of PKD1L2 (an endogenous fatty acid synthase in

skeletal muscle) [81] in Europeans, ZNF208 (zinc finger
and SRY-interacting protein) [82] in Africans, as well as
ZAN, OBSCN (sacromeric signaling protein involved in
myofibrillogenesis) [83] and MAGEE2 (melanoma-asso-
ciated antigen expressed in the brain) [84] in East
Asians. ZAN is particularly interesting as it encodes a
zonadhesin protein located in the acrosome that medi-
ates the species specificity of sperm binding to the extra-
cellular coat of the egg (zona pellucida) [85]. We find a
signal of selection at a nonsense mutation (rs2293766)
present at 51% frequency in East Asians, but virtually
absent elsewhere.
FineMAV also highlighted rs6048066, a missense variant

in TGM3 in Africans. The TGM3 gene product’s defi-
ciency in humans has been linked to Uncombable Hair
Syndrome, characterized by dry, frizzy, and wiry hair [86],
while the Tgm3 knockout mice exhibit rough-looking,
curly, or brittle hair [87–89]. The missense variant we re-
port here falls in the catalytic core of the protein, as does
the mouse non-synonymous weBkr allele causing a wavy
coat and curly whisker phenotype [89]. SNPs in TGM3
have been weakly associated with hair diameter in humans
[90] and proteomic profiling of human hair shafts identi-
fied TGase 3 as a major component of the hair fiber and
revealed considerable variation among samples of different
ethnic origins, with the lowest levels in African Americans
and Kenyans [91]. We propose that this missense variant
(rs6048066) might cause enzyme deficiency and contrib-
ute to African hair texture, hypothesized to have experi-
enced strong positive selection in equatorial climates due
to body-temperature regulation [92, 93].
Finally, regulatory variants are particularly interesting as

they form the most abundant functional category among
FineMAV outliers (Additional file 1: Figure S10 and
Additional file 2) and are responsible for the bulk of human
phenotypic variation [21, 35, 94]. However, the functional
effect of regulatory variants remains difficult to predict and
interpret. We find a signal of selection on rs12881545—an
intronic regulatory variant falling in a promoter-flanking re-
gion and transcription factor binding site that scores as the
top sixth variant selected in Europeans. The region sur-
rounding rs12881545, although non-coding, is character-
ized by high conservation across taxa and the presence of
DNaseI hypersensitivity. Our GWAS analyses revealed that
rs12881545 is tagged by rs7141210 (r2 = 0.96) associated
with lower age at menarche [56]. rs12881545 is also a direct
eQTL and the selected allele increases DLK1 expres-
sion (p value = 0.000015) [84]. DLK1 is an epidermal
growth factor involved in differentiation of many tis-
sues with strong links to adiposity and body growth.
Furthermore, in accordance with the GWAS associ-
ation [56, 95], aberrations in DLK1 has been linked to
central precocious puberty (a condition where puberty
starts too soon in children) [96]. Although potentially
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pleiotropic, it could be that this regulatory variant
modulates the expression level of DLK1 and timing of
menarche.
In-depth discussion of further novel alleles and

speculation on the plausible selection pressures acting
on them can be found in Additional file 2. The func-
tional significance of these novel candidate variants
presented here needs to be experimentally validated,
but narrowing their signal of selection to a single
most likely selected candidate SNP is a good starting
point for such efforts.

FineMAV analysis in Admixed Americans and South Asians
After the calibration of our method and an assessment
of its performance in African, East Asian, and European
populations, we applied it to the remaining 1000
Genomes Project populations: Admixed Americans
(AMR) and South Asians (SAS). FineMAV revealed less
population-specific selection in these populations
(Additional file 1: Figure S11) due to population admix-
ture (AMR) or shared ancestry (SAS). Nevertheless, a
single strong outlier was observed in the SAS, found at
0.54 frequency there but virtually absent elsewhere: the
missense SNP rs201075024 in PRSS53 (Additional file
1: Figure S11.A). This is different from the non-
synonymous variant in PRSS53 in East Asians (previous
section), but lies in close proximity, only 10 bp away
(Additional file 1: Figure S12), which might indicate a
similar functional consequence and convergent evolu-
tion of a hair-related phenotype, especially as both
mutations are non-synonymous and have a similar
molecular nature. Besides PRSS53, we see several po-
tential signals of convergent or parallel evolution [1],
i.e. selection on the same gene in geographically dis-
tant populations but on a different SNP (Additional
file 3); however, only in the case of PRSS53 do the
similarities in locations and consequences of the
SNPs provide a strong priori likelihood of conver-
gent evolution.
In the AMR, even though admixture decreases the Fine-

MAV signal, the gene flow into the Americas affects the
frequency of derived Native American alleles, but not their
purity (as private American alleles would still be found ex-
clusively in Americas giving high DAP values). In the case
of common derived alleles selected to high frequencies be-
fore the admixture event, a FineMAV signal should still be
detectable (assuming their high functional prediction) in
the extreme tail of the whole-genome distribution; the top
three scores were missense variants: rs148608573 in
MAP7D1, rs142326775 in ZNF438, and rs34890031 in
LRGUK (where the mouse homologue is essential for
multiple aspects of sperm assembly and function) [97]
(Additional file 1: Figure S11.B).

Discussion
The aim of this study was not to perform another selec-
tion scan and it should not be interpreted in that way.
Instead, it aims to refine a proportion of local adapta-
tions to a single variant and prioritize positively selected
candidates for further functional validation, as existing
methods often do not pinpoint the selected SNPs. Fur-
thermore, this paper does not focus on experimental
follow-up of novel selection signals, but rather provides
a decision-making algorithm for identifying high-priority
causal variants for subsequent experimental work. To
achieve these aims, we introduced the FineMAV statistic
which combines measures of population differentiation,
derived allele frequency, and molecular functionality. In-
corporation of diverse functional annotations (such as
predictors of deleteriousness) should improve the pin-
pointing of likely selected variants and lower FDR, as it
has in the detection of disease-causing variants [98]. It is
worth noting that variants classified as damaging alter the
level or biochemical function of a gene product, but do
not necessarily decrease the reproductive fitness of car-
riers [38, 99]. The functional consequence of the “dam-
aging” change for a person depends on many factors and
can be either negative or positive (as, for example, defi-
ciency alleles might be either beneficial or detrimental) de-
pending on the environmental context. For instance,
variants disadvantageous in one environment can be fa-
vored under different conditions, e.g. CPT1A [16, 17].
FineMAV was calibrated and tested using a gold stand-

ard panel of the eight best examples of experimentally
validated functional variants underlying signals of posi-
tive selection in humans and was able to identify the
known functional candidate in all instances (Figs. 2 and
3). Using the 1000 Genomes Project Phase 3 dataset
[37], we then ranked all genome-wide SNPs based on
their FineMAV value and identified extreme outliers in
the upper tail of the empirical genome-wide distribution
in Africa, Europe, and East Asia (Additional file 3). Fine-
MAV rediscovered many known variants with prior evi-
dence for being causal of positive selection signals,
which were not part of the calibration set, providing
additional support for our method. We also identified
potential functional variants in other genes reported to
be under strong positive selection in the literature (with
strong SSI scores; Additional file 5) where the specific
positively selected variant had not been confirmed, in-
cluding LPP, PCDH15, and PRSS53. The selection signal
in PCDH15 and PRSS53 was attributed to a single mis-
sense variant per population (rs4935502, rs11150606,
and rs201075024, respectively), replicating and extend-
ing the results obtained by CMS [39, 55].
The signal in BNC2 was particularly strong in Europeans,

as reflected by a cluster of 12 SNPs found among the
top 100 hits in the FineMAV distribution (Fig. 4c).
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The hypothesized functional SNP (the intergenic
rs12350739) was the second highest-scoring BNC2
variant in our analysis and has been reported to be a
functional eQTL as it falls in a highly conserved
melanocyte-specific enhancer and regulates BNC2
transcription [46]. The highest-scoring BCN2 variant
(rs10962600) might also contribute to the differential
expression of BNC2 isoforms as several regions inside
and outside of the BNC2 gene contain enhancer fea-
tures [46]. Interestingly, BNC2 has been highlighted
as present in a region of the human genome that
shows Neanderthal ancestry (Additional file 1: Figure
S13), suggesting that Neanderthal introgression might
have provided modern humans with adaptive variation
for skin phenotypes involving BNC2 [46, 100–102].
Furthermore, a cluster of high-scoring SNPs in Fine-
MAV analysis might more generally be indicative of
introgression as a source of adaptive variation, as op-
posed to advantageous de novo mutations that usually
arise individually. Although we cannot exclude the
possibility of more than one causal SNP in regions
introgressed from archaic hominins (especially those
falling in regulatory elements), it seems that FineMAV
may have low resolution in cases of adaptive intro-
gression. We also found other FineMAV outliers in
regions proposed to be adaptively introgressed from
an archaic source (27 SNPs in total) in GNAI2,
GPATCH1, IRF6, POU2F3, RASSF1, SEMA3F, and
SLC38A3 (Additional file 1: Figure S13) [100–103],
suggesting that some of the candidates might be of
archaic rather than de novo origin. However, the ori-
gin of the adaptive mutations is not the focus of this
study and has been considered elsewhere [100–103].
Apart from BNC2, several other introgressed SNPs
also showed GWAS associations, including IRF6 (cleft
lip), GPATCH1 (bone density), and, most interestingly,
a high-LD eQTL region on chromosome 3 spanning
GNAI2, HYAL1, HYAL2, RASSF1, SEMA3F, and
SLC38A3 in East Asians associated with keloid scar
formation resulting from dysfunction of the wound-
healing processes [104]. It has been shown that keloid
susceptibility varies across ethnicities with higher inci-
dence in Africans and East Asians, and darker-
skinned populations in general [105, 106].
Finally, FineMAV picked up variants with modest to

high derived allele frequency in the range of ~ 0.25–1
within continental populations (Additional file 1: Figure
S7). Most classical methods detect only extreme allele
frequency differences between populations, which are
less likely to arise by chance [22]. On the other hand,
highly functional alleles are less likely to be subjected to
random changes in their frequency; thus, it seems
that filtering out neutral variation by applying func-
tional information might allow more examples of

weaker sweeps (potentially including selection on
standing variation) to be discovered, which are char-
acterized by more modest allele frequency shifts [4,
22], although our method has no power to detect low
selection coefficients that do not produce population
differentiation patterns.
Functional validation of candidate signals of selection

is a current roadblock in the field, limiting both our un-
derstanding of the modes and importance of positive se-
lection and the independent evaluation of methods to
detect it. Modeling of non-pathological human genetic
variation in cell or animal systems, however, has received
only limited attention to date [107]. Our study misses
some genuine selected variants, but our prioritization
aims to enrich for true positives, which is what matters
for studies that may spend years examining individual
candidates in cellular or animal models. For example,
the reason for selection of the TRPV6 haplotype contain-
ing three derived non-synonymous substitutions ob-
served in non-African populations remains enigmatic
despite detailed functional characterization of selected
and non-selected forms at the cellular level [108]. Al-
though it remains possible that the ancestral and derived
forms differ in aspects that were not tested or can only
be observed at the whole-organism level [108], none of
the three candidate sites was supported by our FineMAV
analysis (in both selection scenarios n = 3 [AFR, EAS,
EUR] and n = 2 [AFR, EAS + EUR]; see “Methods”) since
their score was low (FineMAV ~ 1 for each variant in the
EAS + EUR scenario). Therefore, we see them as weak
candidates for causality and would not suggest a high
priority for modeling them.

Conclusions
Modeling human selection in cell or animal systems is
challenging since relevant phenotypic consequences
(often very subtle) might be overlooked. Some pheno-
types may be manifest only in certain conditions, such
as the presence of specific pathogens or environmental
stresses, and might be missed even by association studies
in humans [7, 33]. The inability to directly demonstrate
phenotypic consequences in a limited set-up, therefore,
does not entirely rule out the possibility that a variant
has been selected [21]. Nonetheless, regardless of chal-
lenges like these, cell and animal models often provide
the best way to test hypotheses regarding recent human
evolution [33]. FineMAV now offers an improved way to
identify specific variants for these tests and paves the
way for systematic identification of selected alleles driv-
ing phenotypic differences among human populations,
future functional studies of individual loci, and more
general understanding of the circumstances in which
local adaptations occur.
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Methods
Fine-mapping of adaptive variation
Fine-Mapping of Adaptive Variation (FineMAV) is de-
signed to refine a signal of selection to a single most
likely selected variant and thus to differentiate it from
the passenger variants for functional follow-up studies.
FineMAV is most relevant for targets of recent or on-
going local positive selection underlying local adapta-
tions in humans following the out-of-Africa migration
(within the last ~ 60,000 years) and can be applied to
a region of prior interest, or to the whole genome,
for discovering novel positively selected variants. It
could also potentially address old selection in the hu-
man lineage (preceding the out-of-Africa expansion;
see “FineMAV calibration” below), but this is not the
main focus of this study.
A FineMAV score was calculated for the derived allele

of each SNP by combining its DAP, DAF, and functional
prediction score (the CADD PHRED-scaled C-score)
[38] (Eq. 1). The rationale behind doing so is that vari-
ants predicted to be non-functional are (within the limi-
tations of the prediction) likely to be neutral, since
natural selection can only act directly on variants that
confer a phenotypic effect. If an allele is predicted to be
highly functional and rare, it will often be deleterious;
but it cannot be harmful if it is both functional and
common, and may potentially be adaptive. Importantly,
all three metrics are allele-specific (rather than site- or
gene-specific) and consequently allow direct evaluation
of individual alleles. We simply scaled and combined the
metrics to obtain a single measure giving high values to
derived alleles that are common, population-specific,
and functional (Eq. 1). Individual components are in-
troduced in the following sections. Although Fine-
MAV can be also applied to ancestral alleles by
calculating their allele frequency and purity, detection
of selection on segregating ancestral alleles would be
limited by extensive sharing of ancestral alleles world-
wide (across different populations) and their low pur-
ity scores. Therefore, it is unlikely to detect selection
on segregating ancestral alleles that do not produce a
high population differentiation signature.
Equation 1. Fine-Mapping of Adaptive Variation. To

compute FineMAV per derived allele across n popula-
tions, suppose i ∈ {1, 2, …, n} and let DAFi be derived
allele frequency in population i.

FineMAV i ¼ DAP � DAFi � CADD

Measure of population differentiation
We used an allele frequency differentiation method as a
signature of local selection in FineMAV. We chose a
measure of population structure differing somewhat

from existing methods, as it: (1) operates at the variant
level; (2) does not rely on the hard sweep assumptions
of strong LD and SFS signatures (which can be erased
by recombination); (3) is sensitive to many types of se-
lection including classic sweeps and selection from
standing variation; and (4) detects recent human adapta-
tions [4, 21, 22, 24, 25]. Alternative methods based on
extended LD or distortion of SFS are characterized by
low genomic resolution (summary statistics are calcu-
lated for large genomic windows) [109] and do not allow
single candidate variants to be pinpointed, which is the
key aim of this manuscript. Furthermore, such methods
lead to signals mainly in cases of strong hard sweeps
(known to be rare in human evolution). Therefore, such
tests were not incorporated into the FineMAV score.
Any selection event, regardless of its mode, will even-

tually produce an excess of allele frequency differenti-
ation between populations as long as: (1) it has taken
place in one population but not in another, and the allele
was at low frequency when first favored; (2) there is vari-
ation in selection coefficient over space; (3) migration
and gene flow between the populations have been re-
stricted; and (4) there has been enough time for selec-
tion to act [4, 22]. Even if an allele is equally
advantageous in all environments, but its selection hap-
pened in a regionally restricted manner, the selected
variant will be concentrated around its geographic origin
due to limited dispersal [4, 7].
We proposed and applied a new measure of popula-

tion differentiation called DAP. DAP is related to ΔDAF
[28] and other pairwise comparison-based methods,
but is able to summarize population differentiation
(spatial pattern of the derived allele) across many popu-
lations in a single measure for each variant. DAP is a
measure of derived allele entropy based on Gini impurity
[110] and describes how unequally the derived allele is
distributed among diverse populations. DAP operates on
derived allele counts in a population sample when dis-
tinct groups are equally represented and is calculated ac-
cording to Eq. 2. When population groups are not
equally represented, derived allele count can be esti-
mated from derived allele frequency. DAP counts de-
rived allele occurrences across populations and describes
their spatial distribution, reaching its maximum of 1
when all cases (derived alleles) fall into a single popula-
tion category and penalizes allele sharing between differ-
ent populations. The magnitude of the penalty can be
controlled by the x parameter (“penalty parameter”) de-
pending on the user’s purposes and the number of popu-
lations being compared (n) (see “FineMAV calibration”).
x is an inherent parameter of the population differenti-
ation test, as without it DAP would not measure entropy
and would remain constant (equal to 1) for all alleles.
We calibrated x using a subset of our gold standards
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(see “FineMAV calibration”). It is worth noting that DAP
is a measure of derived allele purity (or “privateness”)
and scores highly for both rare and common alleles
found exclusively in a single population (characterized
by high population differentiation) and therefore needs
to be combined with a measure of allele abundance
(DAF) in order to detect local adaptation.
Equation 2. Derived allele purity. To compute derived

allele purity per site (DAP) across n equally represented
populations, suppose i ∈ {1, 2, …, n} and let di be derived
allele count in population i.

dN ¼
Xn

i¼1

di

f i ¼
di

dN

DAP ¼
Xn

i¼1

f xi

Measure of allele prevalence
We estimated allele abundance using two alternative ap-
proaches: (1) global derived allele frequency; and (2)
continental derived allele frequency. In both cases, DAF
is in the range of 0–1. We obtained the continental DAF
by averaging DAF across all populations within each
continent and calculated global DAF for each variant by
averaging continental DAFs. Both approaches yielded
similar results (almost identical lists of top 100 extreme
outliers). The main difference between these two mea-
sures of allele prevalence is that incorporation of global
DAF results in a single FineMAV score for each derived
allele (which is then assigned to a single population
based on the difference in derived allele frequency be-
tween examined populations), while application of con-
tinental DAF leads to calculation of FineMAV scores for
each population separately. Global DAF is n-dependent,
while continental DAF remains constant regardless of n,
thereby making FineMAV values comparable across dif-
ferent values of n. Here, we report results incorporating
continental DAF. The combined measure of DAPxDAF
is the population genetic component of the FineMAV
test that detects the signature of local adaptation.

Measure of functionality
It is crucial that variant-level functional inferences are
based on whole-genome measures to ensure that all po-
tentially selected variants are treated equally. We needed
a measure of functionality to be allele-specific and ap-
plicable to all variation, both coding and non-coding,
since many signals of selection localize in regulatory ele-
ments or intergenic regions [21, 29]. As proteins are

usually involved in multiple processes through compli-
cated interaction pathways with other proteins, amino
acid change in one protein may affect diverse traits, i.e.
pleiotropic phenotypes [33]. In general, pleiotropic
changes are thought to be disadvantageous [94], so it is
believed that a great deal of human phenotypic variation
is based in regulatory variation [21, 35, 94]. Thus, differ-
ent sets of annotations for coding and non-coding vari-
ation would make it challenging to compare these
distinct variant categories and consensus methods com-
bining multiple annotations, each with its own strengths
and weaknesses, are especially needed here for unbiased
prioritization of variants [38]. In our analysis, we used
the CADD (v1.2 PHRED-scaled C-score), which inte-
grates 63 diverse genome annotations into a single
measure for each variant and in theory can take a value
in the range of 0–99 [38].

FineMAV calibration
We compiled a gold standard panel of the eight best
examples of experimentally validated functional vari-
ants underlying signals of positive selection which are
linked to specific phenotypic consequences (Table 1)
and calibrated FineMAV using population-scale se-
quence data (1000 Genomes Project Phase 3) of gen-
omic windows spanning half of the gold standards
(randomly chosen from each population). We then
examined if the calibration results are sensitive to dif-
ferent combinations of gold standards in a quantita-
tive and reproducible manner.
Increment of the penalty for allele sharing (x) increases

the difference between the FineMAV score of the differ-
entiated selected SNPs and less differentiated nearby
neutral variants. The magnitude of this difference in-
creases with increasing x, reaches a plateau, and then de-
creases for larger values of x. For each gold standard
gene (empirical data), we calculated the fold change be-
tween the FineMAV scores of the selected variant and
the highest scoring neutral background SNP using differ-
ent values of x (1 ≤ x ≤ 4). We then selected the optimal
values of x for each gold standard gene that maximizes
the difference between the selected and neutral variants
(Additional file 1: Figure S14). Based on our calibration
set, we decided to set the penalty parameter x to a con-
sensus value of 3.5.
If our calibration analysis relied on a single gold stand-

ard gene, the optimal x would fall in the rage of 2.5 ≤
x ≤ 4 (Additional file 1: Figure S14). The same holds true
for different combinations of gold standards. Although
some gold standards reached a plateau earlier than
others, and some of them did not reach a plateau in the
examined interval at all, it seems that the minimal value
of 2.5 is large enough to differentiate between selected
and neutral SNPs in all cases (Additional file 1: Figure
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S14). Although further increase of x (>4) improves the
fold change between some of the gold standards and
neutral variants, we also noticed a decrease in the fold
change in the examined range of x and decided not to
extend this range in our calibration analyses.
Furthermore, we examined the overall rank of gold

standards in the empirical whole-genome distributions
of FineMAV and DAPxDAF. The average rank improves
dramatically with increasing x until 2.5, and then plat-
eaus (with further decrease above 4 in case of DAPxDAF
distribution) (Additional file 1: Figure S15). The optimal
value of x for highest ranks is seen at x = 3.5 and 4 (all
gold standards among top 100 genome-wide outliers).
Similarly, FineMAV’s and DAPxDAF’s power to detect
the selection-driving SNP as the highest scoring in a
genomic window of 1000 nearby SNPs does not increase
substantially with x > 2 (using both simulated and empir-
ical data; Tables 3 and 4). Finally, we performed overlap
analyses of the top 100 FineMAV outliers from the em-
pirical whole-genome distribution across different values
of x (from 1 to 4) (Additional file 1: Figure S16). We
conclude that a value of x from ~ 3 to 4 is optimal and
further increment does not improve FineMAV analyses
usefully (very similar set of top 100 outliers) (Additional
file 1: Figure S16). We recommend x = 3.5 (in three pop-
ulations comparison; n = 3) as an optimal penalty in
FineMAV analyses, although higher penalties would yield
very similar results. Note that this calibration was car-
ried out using gold standards across three continental
populations (n = 3) and x is sensitive to n. To see that:
for maximally differentiated derived alleles (observed in
one population only) DAP is constant (DAPmax = 1) and
insensitive to n, while at the other extreme, minimally
differentiated derived alleles (with the same frequency in
all populations), DAP depends on n and DAPi >DAPi+1
(1 < i ≤ n). To adjust for this and keep the FineMAV
value insensitive to n, the x parameter for lower n values
needs to be higher. Additional file 1: Figure S17 specifies
the values of x for different values of n that make Fine-
MAV values comparable across different values of n.
This calibration is robust to different combinations

and number of gold standards used in the analysis and is
supported by both empirical and simulated data. We en-
courage modified values of x if users wish to apply

FineMAV to different species characterized by different
levels of population differentiation or to different modes
of selection, following the calibration framework pre-
sented here.

Balance between differentiation and functionality
The penalty parameter x also tunes DAP in relation to
DAF and CADD and controls the balance between
population differentiation and the prediction of func-
tionality. The magnitude of the penalty for allele sharing
in our population differentiation test (DAPxDAF)
needs to fit the purpose of detecting selected alleles.
We aim to pick up highly functional variants among
the most differentiated variants (not the other way
around) with the minimal cut-off for functionality at
~ 10 (variants with CADD scores below this threshold
are considered non-functional).
When the x parameter is set to 1, population differenti-

ation is not taken into account (DAP is constant and equals
1 for all variants) and FineMAV (or rather DAFxCADD)
picks up derived alleles of high frequencies (often nearly
fixed in the human lineage) with a strong prediction of
functionality that are not differentiated between popula-
tions (e.g. the stop mutation in CASP12 - rs497116) [9]
(green tail in Additional file 1: Figure S18, S19 and S20; x=
1). We provide a list of such variants in Additional file 6. 77
of the top 100 such outliers were shared between Africans,
East Asians, and Europeans. They could represent old se-
lection events in the human lineage (presumably preceding
the out-of-Africa expansion) and are potentially interesting,
although beyond the scope of this study which focuses on
recent selection and population diversification.
In the calibration stage, we needed to find the value of

the x penalty parameter that assigns low scores to the
background variation and highly functional derived al-
leles nearly fixed on the human lineage in the window
around the selected variant. Imagine two scenarios. In
scenario 1: a maximally differentiated derived allele that
is exclusively fixed in population i but absent elsewhere
(DAPmax = 1), which implies a maximal frequency (DAFi
= 1), and is predicted to be functional (CADD = 20). In
this scenario, FineMAV = 20 and would be constant re-
gardless of n (number of populations used in the ana-
lysis). Alternatively, in scenario 2, for a derived mutation

Table 3 FineMAV’s power to identify the selection-driving SNP
as the top scoring one in a genomic window of 1000 SNPs
across different values of x parameter

Scenario x = 1 x = 1.5 x = 2 x = 2.5 x = 3 x = 3.5 x = 4

Empirical data 0.5 0.88 1 1 1 1 1

Simulation s = 0.007 0.6 0.7 0.71 0.72 0.74 0.75 0.76

Simulation s = 0.01 0.82 0.88 0.9 0.92 0.92 0.92 0.92

“Empirical data” means 1000 Genomes Project sequence data of the gold
standard panel. “Simulation” is given for two different selection coefficients (s)

Table 4 DAPxDAF’s power to identify the selection-driving SNP
as the top scoring one in a genomic window of 1000 SNPs
across different values of x parameter

Scenario x = 1 x = 1.5 x = 2 x = 2.5 x = 3 x = 3.5 x = 4

Empirical data 0 0.75 1 1 1 1 1

Simulation s = 0.007 0.08 0.39 0.44 0.43 0.44 0.44 0.45

Simulation s = 0.01 0.41 0.84 0.84 0.84 0.84 0.84 0.85

“Empirical data” means 1000 Genomes Project sequence data of the gold
standard panel. “Simulation” is given for two different selection coefficients (s)
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that is fixed in all populations (DAFi = 1) and is highly
functional (CADD = 45) we need to penalize for allele
sharing between populations to keep DAP (and conse-
quently the FineMAV value) at a low level relative to sce-
nario 1. x set to ~ 3 (and above) fits all above criteria
(Additional file 1: Figures S18–S20). Increment of x
removes the tail of nearly fixed derived alleles of high
CADD prediction which disappears around x = 3 and 3.5
and leaves the most differentiated variants that are pre-
dicted to be functional (with CADD scores > 10) (Add-
itional file 1: Figures S18–S20). Further increase of x
(within the interval examined) has little effect on the re-
sults (see “FineMAV calibration” above and Additional
file 1: Figures S18–S20). The penalty parameter x set ac-
cording to Additional file 1: Figure S17 (3.5 and > 3
population comparison) is sufficient to give low scores
to highly functional nearly fixed alleles (scenario 2: DAP
~ 0.064 and FineMAV ~ 2.88, which is at least seven
times lower than the gold standard calibration set).

FineMAV calculation in 1000 Genomes Project samples
DAF and DAP values were calculated from the 1000 Ge-
nomes Project Phase 3 data release [37] using a custom
script; CADD PHRED-scaled C-scores v1.2 were ob-
tained from an online repository [38]. We ran our ana-
lysis for both autosomes and sex chromosomes, focusing
initially on three continental populations: Africans
(AFR), East Asians (EAS), and Europeans (EUR). We ran
it in two contexts: (1) to re-discover continent-specific
positive selection signals in Africa, East Asia, and Europe
(n = 3; x = 3.5); and (2) to analyze selection that hap-
pened outside of Africa by pooling East Asians and
Europeans together (n = 2; x = 4.96). Although our study
focuses on local adaptation driving population differen-
tiation at the continental scale, FineMAV can be also
applied to study signals of selection within continents.
It is also possible to investigate signals of selection
shared between populations by relevant population
grouping depending on the user’s purposes, e.g.
selection outside Africa by pooling East Asians and
Europeans together (Additional file 3).
FineMAV was calculated for derived alleles (annotated

according to Ensembl) [111, 112] using a custom script
(SNPs only). We applied a conservative FineMAV cut-off
to include only the top 100 candidate variants in each
continental population (which incorporated all gold stan-
dards and gave a total of 300 variants corresponding to
the top ~ 0.0004% of the whole-genome distribution) for
our downstream enrichment analysis (Additional file 2).
Subsequently, we also ran FineMAV in AMR and SAS

from the 1000 Genomes Project Phase 3 data release [37],
together with the three main continental populations, as
follows: AFR, AMR, EAS, EUR; n = 4; x = 2.98 and AFR,

EAS, EUR, SAS; n = 4; x = 2.98, to investigate population-
specific local adaptation in those populations.

Simulation analyses
Simulations assessing FineMAV’s performance were
limited by the unknown relationship between the
prediction of functionality (CADD score) and the selec-
tion coefficient. Although the functional range of CADD
scores has been estimated, its FDR and sensitivity are
poorly understood, while FineMAV’s performance is
closely tied to the accuracy of the functional annotation.
Nevertheless, we performed simulation analyses using
individual-based forward-time simulations imple-
mented in simuPOP v1.1.7 [113] to assess the power
(true positive rate) and FDR of the FineMAV algorithm.
We simulated three populations with a set of demo-
graphic parameters (starting effective population size,
migration rate, and time of divergence) similar to esti-
mates in European, African, and East Asian populations
accordingly to published values [114]. We simulated a
genomic window of 1000 SNPs with one SNP per win-
dow under selection in one population. The probability
of recombination between two SNPs was set to in-
crease with increasing physical distance between sites.
The starting derived allele frequency for the selected
marker was set to 0.01, while the allele frequencies of
the remaining neutral SNPs were drawn from a beta
distribution. Each SNP was assigned a CADD score
value as follows:

1. Neutral SNPs were randomly assigned a CADD
score value drawn from the genome-wide CADD
distribution of derived alleles seen at ≥ 2% frequency
in the 1000 Genomes Project Phase 3. Our simulation
does not include purifying selection against
pathogenic variants with high CADD values, so
the derived allele frequency cutoff was set to 2%
(approximately the minimal frequency at which
a neutral derived allele should be seen at least
once in a homozygous state in a population of
the Phase 3 size) to remove rare deleterious
variants from the CADD distribution.

2. We assumed that the CADD score distribution of
selected variants is high and corresponds to known
functional variants (which is supported by the
CADD predictions of the gold standard panel).
Based on this assumption, the CADD score for the
selected SNP was drawn from the outlier distribution
in the range of 10.78–47 (see below and “Results”
section).

We then simulated four scenarios under the additive se-
lection model with different selection coefficients: s = 0.001,
s = 0.007, s = 0.01, and s = 0 (no selection); and a sample
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size of 500 individuals in each population. The popu-
lations were sampled after 1000 generations of selec-
tion and drift. Each scenario was replicated 100
times. The FineMAV algorithm was subsequently ap-
plied to each output dataset. We then checked how
often the selected variants fall outside of the neutral
FineMAV distribution. To determine the upper end of
the neutral distribution we bootstrapped 1000 Fine-
MAV values from the simulated neutral variation 100
times and took the maximum sampled value as our
cut-off (set to FineMAV of 10.7).
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