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Abstract

Background: Most cancer risk-associated single nucleotide polymorphisms (SNPs) identified by genome-wide
association studies (GWAS) are noncoding and it is challenging to assess their functional impacts. To systematically
identify the SNPs that affect gene expression by modulating activities of distal regulatory elements, we adapt the
self-transcribing active regulatory region sequencing (STARR-seq) strategy, a high-throughput technique to
functionally quantify enhancer activities.

Results: From 10,673 SNPs linked with 996 cancer risk-associated SNPs identified in previous GWAS studies, we
identify 575 SNPs in the fragments that positively regulate gene expression, and 758 SNPs in the fragments with
negative regulatory activities. Among them, 70 variants are regulatory variants for which the two alleles confer
different regulatory activities. We analyze in depth two regulatory variants—breast cancer risk SNP rs11055880 and
leukemia risk-associated SNP rs12142375—and demonstrate their endogenous regulatory activities on expression of
ATF7IP and PDE4B genes, respectively, using a CRISPR-Cas9 approach.

Conclusions: By identifying regulatory variants associated with cancer susceptibility and studying their molecular
functions, we hope to help the interpretation of GWAS results and provide improved information for cancer risk
assessment.
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Background
Genome-wide association studies (GWAS) have been
widely used to detect the single nucleotide polymorphisms
(SNPs) associated with common traits and complex dis-
eases [1]. Since 2005, more than 800 variants associated
with risk of various types of cancer have been identified
[1]. As with other complex diseases, more than 90% of the
cancer susceptibility SNPs are not in protein-coding re-
gions [1], making it difficult to decipher their functional
impacts. Multiple mechanisms have been proposed for
explaining how non-coding variants influence human dis-
ease, such as disrupting the splicing, translation, or

stability of the protein-coding gene [2]. In addition to
protein-coding genes, the risk-associated SNPs identified
by GWAS also affect key noncoding genes for miRNAs
and lncRNAs [3–5]. Recent studies have found that the
GWAS SNPs reported to be associated with diverse phe-
notypes and diseases, and the SNPs in linkage disequilib-
rium (LD) with the reported ones, are enriched in open
chromatin regions marked by DNase I hypersensitive sites
(DHSs) and transcription factor (TF) binding sites [6–8].
Also, the GWAS SNPs are more likely to be in genomic
loci associated with gene expression as identified by ex-
pression quantitative trait loci (eQTL) mapping [9, 10].
Therefore, it has been hypothesized that many GWAS
variants exert their effects through modulating the tran-
scriptional activities of genes controlled by the regulatory
genomic elements in which they are located. Consistent
with this hypothesis, several SNPs in enhancers have been
identified to contribute to the risk of breast cancer, pros-
tate cancer, or neuroblastoma by modulating the expres-
sion of critical cancer-associated genes [11–13].
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Annotating cancer susceptibility SNPs using chromatin
states, sequence motifs, and eQTL sites can help prioritize
variants for further assessment on their functional conse-
quences [14, 15]. To validate these predictions on a large
scale, high-throughput experimental approaches to directly
quantify their regulatory effects are urgently needed. Recent
advances in synthetic biology and next-generation sequen-
cing have enabled a dramatic increase in the throughput of
the luciferase reporter assay, a well-established method for
assessing transcriptional activities of genomic regulatory el-
ements. By incorporating a unique DNA barcode for each
testing sequence at the 3’ UTR of a reporter gene, the mas-
sively parallel reporter assay (MPRA) can simultaneously
assess the transcriptional activities of several hundred thou-
sand testing sequences based on the relative abundance of
their corresponding barcodes in transcripts [16, 17]. At an
even larger scale, the self-transcribing active regulatory re-
gion sequencing (STARR-seq) approach allows for directly
measuring the activities of millions of enhancers by using
testing sequences as their own reporters, taking advantage
of the position-independent property of enhancers [18, 19].
These methods have the potential to be adopted for direct
testing of regulatory SNPs. Recently, two groups have re-
ported direct identification of expression-modulating vari-
ants associated with GWAS traits using modified MPRAs
[20, 21]. They synthesized tens of thousands of DNA ele-
ments containing both alleles of each SNP to recapture the
variants in a population to test by MPRA, with increased
numbers of barcodes for each variant to improve the sensi-
tivity and reproducibility [20, 21].
Here we report the use of a modified STARR-seq

method to allow for large-scale, convenient, and direct
testing of regulatory variants. We captured the naturally
occurring population genetic heterogeneity in a STARR-
seq screening library and transfected the library into
HEK293T cells for regulatory activity measurement. We
applied the method to analyze all the variants associated
with cancer risk (10,673 SNPs linked with 996 cancer risk
SNPs) and found 1333 SNPs in the genomic regions at
502 loci (50.4% of known cancer risk loci) with either
positive or negative regulatory activities. Of these, 70 vari-
ants were observed to directly modulate transcriptional
activities in an allele-specific manner for the elements
where they are located. For two top-ranked regulatory var-
iants, we also identified their target genes and validated
their endogenous regulatory activities using targeted
CRISPR interference (CRISPRi).

Results
A modified STARR-seq strategy to detect regulatory
variants associated with cancer susceptibility
To detect regulatory variants associated with cancer risk,
we focused on the 996 GWAS hits for cancer susceptibility
and drug response catalogued in NHGRI up to 2013 [1]. As

causal SNPs could be in LD with a SNP reported in the
GWAS catalogue [7], we included 10,673 SNPs that were in
high LD (r2 > 0.8) with the 996 reported SNPs (Additional
file 1: Figure S1a). For each SNP, we designed capture
probes targeting the 500-bp genomic region centered at the
SNP. To maximize the representation of common SNPs,
we captured genomic DNAs from ten individuals from a
Chinese Han population. By simulation using Chinese Han
population data in the 1000 Genomes Project, we found
that over 96% of the common SNPs would be covered using
DNA from ten individuals (Additional file 1: Figure S1b).
To directly detect the regulatory activity of the se-

lected variants in a high-throughput way, we modified
the STARR-seq strategy. We first rebuilt the pGL4.23
vector to have regulatory DNA fragments of interest
inserted as self-transcribing elements in the 3’ UTR of
the luciferase ORF (see “Methods”; Fig. 1). We replaced
the pGL4.23 promoter with the SCP1 promoter and
inserted a ccdB cassette to generate the vector pGL4.23-
SCP1-ccdB [22–24]. The SCP1 promoter has been used
in previous Starr-seq assays in mammalian cells and was
validated to be able to accurately quantify enhancer ac-
tivities [18, 19]. We also added an Illumina sequencing
adapter to the vector right after an inserted element to
simplify the construction of sequencing libraries.
The captured sequences were then amplified and inserted

into our vector pGL4.23-SCP1-ccdB through Gibson as-
sembly to generate the input plasmid library (Fig. 1). After
transfection of the plasmid library, the mRNA was collected
and the output library was prepared. We used 250-bp
paired-end sequencing to ensure the detection of the vari-
ants at the fragment (Fig. 1). In this way, we may derive the
allelic regulatory activities of a SNP by measuring the
change of allelic ratios in the output library compared with
those in the input library.
We observed high coverage of the designed SNP

regions in the input library. From the raw reads of the
two biological replicates, 97.3% of the designed SNP
regions were recovered and 84% of them were se-
quenced at least ten times in both replicates, with a
median depth of 204 and 175, respectively (Additional
file 1: Figure S2a). In the output library, 99% of the frag-
ments in the input library were recovered and 92.1% of
the designed SNPs showed more than ten reads in both
replicates (Additional file 1: Figure S2b). The normalized
fragment counts in the input library were correlated with
those in the output library for most SNPs. The outliers are
likely to be the regulatory elements we are screening for
(Additional file 1: Figure S2c). We also found that the
screen is highly reproducible, as two transfection repli-
cates performed in 293T cells were correlated with a Pear-
son coefficient of 0.99 (Additional file 1: Figure S2d). The
calculated fold change for each fragment was also well
correlated between two replicates (Fig. 2a).
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Regulatory activities for regions containing cancer risk
GWAS SNPs
To determine the SNP-containing regions that have sig-
nificant regulatory activities while accounting for the dis-
tribution of count data and sampling noise for fragments
with low counts, we used DESeq2 [25] to calculate the
fold change of normalized fragment counts from the out-
put library over the input library from the data of two rep-
licates (Fig. 2a; see “Methods” for details). According to
DESeq2, 7725 SNP containing regions had sufficient
counts for reliable testing for differences between the
counts in the two libraries. Unlike previous MPRA studies
in which a weak promoter was used, we found the distri-
bution of expression fold change was not skewed toward
the positive value (Additional file 1: Figure S2e), suggest-
ing the potential to detect negative regulatory elements
using a stronger promoter. With a false discovery rate
(FDR) less than 0.01, we found 575 of the 7725 SNP-
containing regions had a significantly increased count in
the output library, while 758 of them had a significantly
decreased count (Fig. 2a; Additional file 2: Dataset S1).
We refer to these regions as positive regulatory elements
(PREs) and negative regulatory elements (NREs),

respectively. To validate the results of the screen, we
tested the regulatory activities for 70 of the PREs, five of
the NREs, and 27 inactive fragments using a classic lucif-
erase reporter assay (Fig. 2b; Additional file 2: Dataset S2).
The activities of these fragments in the luciferase assay
were reasonably well correlated with the activities mea-
sured in our screen (Pearson correlation coefficient =
0.66), confirming the accuracy of the high-throughput
assay in quantifying the regulatory activities.
Epigenetic marks, including DHSs, histone modifica-

tions, and transcription factor binding sites, are associated
with genomic regulatory activity [8, 26]. To assess the en-
dogenous chromatin features of the identified regulatory
elements, we analyzed the available ENCODE data in
HEK293 and HEK293T cells, as well as the Roadmap Epi-
genomics data in fetal kidney cells; 12.3% of the PREs and
9.23% of the NREs overlapped with DHSs in fetal kidney
cells, while only 4.0% of the inactive fragments overlapped
with DHSs (odds ratio [OR] = 3.08 for PREs and 2.31 for
NREs, p value = 3.31 × 10−13 and 3.47 × 10−8, respectively,
Fisher’s exact test; Additional file 3: Table S1). Similar en-
richments were found for DHSs in 293T cells (OR = 3.46
for PREs and 3.01 for NREs, p value = 5.06 × 10−11 and

Fig. 1 The workflow to screen for regulatory SNPs associated with cancer risk. The genomic DNA from ten individuals was pooled and sonicated into
fragments of ~ 500 bp. Regions containing 10,673 SNPs in LD with 996 GWAS-identified cancer risk SNPs were captured using a custom designed array.
The captured fragments were inserted into a modified STARR-seq vector using Gibson assembly to generate a plasmid library, which was sequenced
as the input library and then transfected into HEK293T cells. The RNAs were extracted from cells and sequenced as the output library. The regulatory
activities were calculated based on the ratio of normalized fragment counts in the output library against the input library. The regulatory SNPs were
detected by the changes in allelic ratios in the output library compared to those in the input library
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3.46 × 10−10, respectively, Fisher’s exact test; Additional file
3: Table S1). These results indicate that the regions of
PREs and NREs are more likely to be within open chroma-
tin and functional in endogenous contexts (Fig. 2c, d;
Additional file 3: Table S1). The enrichment was also ob-
served for marks associated with enhancers, such as
H3K4me3 and H3K9ac (Fig. 2c, d). On the other hand,
the epigenetic marks associated with heterochromatin
(H3K9me3 [27]) and repressed transcription initiation
(H3K36me3 [28]) were not enriched in either PREs or
NREs (Fig. 2c, d). The differences in enrichments for spe-
cific histone marks between PREs and NREs may be ex-
plained by their opposite roles in regulating transcription.

For example, the PREs are associated with H3K4me1,
which marks cell type-specific “active” enhancers; while
the NREs are associated with H3K27me3, the mark for
Polycomb-mediated transcriptional silencing (Fig. 2c, d).
Together these results suggest that the regulatory activities
we observed, although identified using an ectopic assay,
are mostly consistent with their transcriptional regulatory
functions in the native genomic context.
As expected, both PREs and NREs were enriched for

TF binding sites in the ENCODE data for 91 cell lines
(Fig. 2c, d). For specific TFs that have ChIP-seq data in
HEK293 cells, the NREs were significantly overlapped
with binding sites for CTCF, an architectural protein

Fig. 2 Regulatory regions identified in the screen and validation. a Correlation of the activities for the SNP-bound regions between two screens. The p
value was calculated by Wald test, p value = 2.2 × 10−16. b Validation of identified enhancers using dual luciferase reporter assay; r represents Pearson’s
correlation coefficient. The p value was calculated by Wald test, p value = 2.56 × 10−14. Identified positive regulatory regions (PRE) are in
red, negative regulatory regions (NRE) are in blue, and inactive fragments are in grey. c, d Enrichments of epigenetic markers in the
identified PREs and NREs, respectively. The p values were calculated by Fisher’s exact test; *p value < 0.05; error bars represent the
confidence interval for the odds ratio
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mediating interaction between transcription regulatory
sequences [29]. These observations are consistent with
the potential distal regulatory roles of the regulatory re-
gions we have identified. Interestingly, the PREs were
enriched in RNA polymerase II (POL2) binding sites
while NREs were depleted of POL2 binding (Fig. 2c, d).
Consistent with this, POL2 binding has been reported to
be associated with active enhancers and responsible for
transcribing enhancer RNAs [30], supporting the posi-
tive regulatory roles of PREs.
Each GWAS study could report multiple tag SNPs that

are associated with cancer risk. To test whether the more
confident SNP markers were more likely to be in the PREs
and NREs than in the inactive regions, we included 28
GWAS studies reporting ten or more SNP markers each.
In total, 443 tag SNPs reported in these studies were
tested in our assay and 87 of them were found in PREs or
NREs. We found an enrichment of the most significant
SNP markers in functional regulatory elements, as 11 of
the 28 tag SNPs with the lowest p value in each study were
in PREs or NREs and the other 17 were in inactive regions
(OR = 2.64, p value = 0.027, Fisher’s exact test).
We also identified that many SNPs in regions with regu-

latory activities were in LD with tag SNPs. Interestingly,
53.2% of the cases had more than one SNP linked with the
same tag SNP in PREs or NREs (Additional file 1: Figure
S3a). For 17.6% of them, both PREs and NREs are present
in the same loci (Additional file 1: Figure S3a). The dis-
tances between PREs and NREs in the same loci have a me-
dian of 8741 bp (Additional file 1: Figure S3d), indicating
that the PREs and NREs were unlikely to overlap in position.
These results are consistent with the observations for GWAS
loci in autoimmune disorders [31], in which multiple poly-
morphisms in LD could map to clusters of enhancer regions
and might cooperatively impact gene expression.

Identifying regulatory variants
We next focused on identifying the regulatory variants for
which two alleles at the SNP site (reference and alternative
alleles) showed different regulatory activities. With a frag-
ment size of about 465 bp, we were able to robustly call
the genotypes at each SNP position (Additional file 1: Fig-
ure S4a–c). By using genomic DNA from ten individuals
from a Chinese Han population, we recovered 83.5%
(8902 of 10,673) of the SNPs we attempted to capture in
our experimental design, whereby both alleles were repre-
sented in our library. Applying the low coverage threshold
in DESeq2 to eliminate SNPs with sparse data, we have in-
cluded 7514 SNPs for further analysis. The allelic ratio for
these SNPs in the input library was correlated with the al-
lele frequency in the Eastern Asian population (Additional
file 1: Figure S4d). We observed a strong correlation be-
tween the allelic ratios in the plasmid DNA library and
the allelic ratios in the output library, indicating that most

variants had only a small effect on regulatory activity
(Additional file 1: Figure S4e).
The imbalanced expression of two alleles in the output

library compared to the input library was used to define
regulatory variants and the statistical significance was
evaluated by the two-sided Fisher’s exact test. The changes
in allelic ratios were reproducible between two replicates
(Additional file 1: Figure S4f). At a FDR < 0.1, we identi-
fied 70 SNPs with imbalanced expression of two alleles
(Fig. 3a; Additional file 2: Dataset S1), 39 of which are in
PREs and 31 in NREs. The change in allelic ratio was
moderate for most sites and independent of the effect size
of the fragment (Fig. 3b). We validated 14 of the 70 regu-
latory SNPs using a standard luciferase reporter assay and
observed high correlation between the effect sizes of the
two assays (Fig. 3c; Additional file 2: Dataset S2).
Similar to the overall set of PREs and NREs, these regula-

tory SNPs are enriched within transcription factor binding
sites compared to inactive regions (OR = 2.08, p value =
7.5 × 10−4, Fisher’s exact test; Additional file 3: Table S2a).
The regulatory SNPs that overlapped within a TF motif are
also more likely to change the strength of TF binding than
other SNPs. When we considered the number of variants
that contributed a difference of at least 3 in log-likelihood
binding score based on position-weight matrices, we ob-
served 2.7-fold more variants in the regions showing allelic
differences in expression compared to SNPs in regulatory
sequences that did not show imbalanced allelic expression
(OR = 2.7, p value = 0.0378, Fisher’s exact test); and we ob-
served a 7.9-fold difference when compared to SNPs in in-
active regions (OR = 7.9, p value = 2.2 × 10−4, Fisher’s exact
test) (Fig. 3d; Additional file 3: Table S3).
eQTLs are often associated with cis-regulatory SNPs

found in promoters and enhancers that contribute to
differential gene expression. We found our regulatory
variants were enriched in eQTL peaks identified from
The Cancer Genome Atlas (TCGA) datasets of six can-
cer types (OR = 3.97, p value = 0.043, Fisher’s exact test;
Additional file 4: Supplementary Text), suggesting they
have endogenous expression modulating activities.
From the luciferase assay validation, we estimate our

predictive positive value is about 57% (Fig. 3c). Based on
the assumptions from previous MPRA studies, the sensi-
tivity of our screen to identify a causal eQTL variant was
between 10 and 12%, and the sensitivity of our screen to
identify causal variants from GWAS hits was about 8.8%
(Additional file 4: Supplementary Text).

rs11055880 is a regulatory SNP in an intergenic enhancer
for ATP7IP gene expression
After identifying 70 regulatory SNPs, we investigated sev-
eral in greater detail. The first one we chose was
rs11055880, which is located in one of the strongest PREs
we have identified in the screen. It is in LD with
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rs17221259, a tag SNP reported to be associated with breast
cancer in a GWAS of a Japanese population [32].
rs11055880 resides in DHSs in both MCF7 and HEK293T
cells (Fig. 4a). It also overlaps with H3K4me3 peaks as well
as H3K27ac marks, indicating endogenous enhancer activ-
ities for this region (Fig. 4a). In our assay, compared to the
plasmid library, we found a 3.3-fold increase in expression
for the fragment containing rs11055880-C and a 2.45-fold
increase for rs11055880-T, which is a significant difference
(Fig. 4b; n = 4, two tailed paired t-test, p value = 0.047). The
difference in enhancer activity was validated using a lucifer-
ase reporter assay. After replacing the reference C allele
with the alternative T allele, we observed the enhancer ac-
tivity of the rs11055880 region reduced from 11.53-fold of
the control to 10.32-fold (Fig. 4c; n = 6, two tailed t-test, p
value = 2.0 × 10−4).

We next wanted to explore whether it is possible to iden-
tify potential targets of the rs11055880-containing region.
The nearest gene is ATF7IP, 100 kb downstream of the
SNP. In ChIA-PET data in MCF7 cells, we found an inter-
action of the SNP with the promoter of the ATF7IP gene
(Fig. 4a). Consistent with this long-range interaction, in
both GM12878 and IMR90 cell lines, rs11055880 and the
ATF7IP gene were found together in one of the topologic-
ally associated domains (TADs) [33] (Additional file 1:
Figure S5), the large local chromatin interaction domains
defined by HiC data that are very stable across cell types
[34, 35]. To validate that the rs11055880-containing region
endogenously regulates ATF7IP expression, we used the
CRISPR interference (CRISPRi) system to alter the chroma-
tin state at the rs11055880 site through recruitment of a
KRAB effector domain fused to catalytically dead Cas9 [36].

Fig. 3 Identification and validation of regulatory SNPs. a Distribution of effect sizes and DESeq2 p values for all the SNPs that have two alleles
covered. b Distribution of effect sizes of all the tested SNPs against the activities of the SNP-containing regions. The regulatory SNPs in PREs are
shown in red and those in NREs in blue. c Luciferase reporter assay validation of the estimated effect sizes for 14 regulatory SNPs. r represents the
Pearson correlation coefficient. d Differences in predicted TF binding scores between two alleles for different classes of SNPs
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sgRNAs targeting the SNP region of rs11550880 resulted in
a decrease of ATF7IP expression, consistent with our hy-
pothesis (Fig. 4d). ATF7IP is a transcriptional cofactor that
has been shown to be critical for heterochromatin forma-
tion by interacting with the histone methyltransferase
SETDB1 [37], an oncogene product promoting tumorigen-
esis in melanoma, lung cancer, and liver cancer [38–40].
Therefore, the association of the rs11055880-containing
locus with breast cancer susceptibility may be related to
modulation of the expression levels of ATF7IP.

The acute lymphoblastic leukemia risk-associated SNP
rs12142375 modulates PDE4B gene expression
Among the regulatory SNPs that have the most distinct al-
lele activities was rs12142375, which is in LD with a risk
SNP identified in a GWAS of childhood acute lympho-
blastic leukemia [41]. In lymphoblastoid cell line GM12878,
rs12142375 was located within the DNase I hypersensitive
site and a RNA polymerase II binding site. The rs12142375-
containing region is also occupied by several histone marks
of active enhancers such as H3K4me1, H3K4me2,

H3K4me3, H3K27ac, and H3K9ac (Fig. 5a). Together, these
ENCODE project data suggested an active enhancer role for
the rs12142375-containing region in its native chromatin
context. We then validated the enhancer activity of the re-
gion using a dual-luciferase reporter assay. Consistent with
the result of the screen (Fig. 5b), the rs12142375-containing
region with risk-associated allele G showed significantly
higher enhancer activity than the region containing allele A
(Fig. 5c). Next we aimed to explore the relationship between
the regulatory SNP rs12142375 and the acute lymphoblastic
predisposition. rs12142375 is located in the seventh intron
of phosphodiesterase 4B (PDE4B), and about 15 kb far away
from the nearest exon. PDE4B was reported to be highly
expressed in CD4+ lymphoid cancer cells [42], with a role
in promoting angiogenesis in B-cell lymphoma [43]. It also
limits cAMP-associated PI3K/AKT-dependent apoptosis in
diffuse large B-cell lymphoma [44]. By analyzing the PDE4B
gene expression levels of cases with childhood acute
lymphoblastic leukemia from microarray-based gene ex-
pression profiling [45], we also found that PDE4B was
highly expressed in the cases (n = 359) compared to non-

Fig. 4 Regulatory SNP rs11055880 is in an intergenic enhancer regulating the expression of the ATF7IP gene. a Genomic context of rs11055880 shown
in the integrative genome viewer. ChIA-PET signals in MCF7 cells (the interaction between rs11055880 and ATF7IP shown by the purple boxes), ENCODE
annotations of DNase hypersensitive sites, H3K4me3, and H3K27ac in MCF7 cells, and DHSs and H3K4me3 marks in HEK293 cells are shown in tracks
1–6. The regulatory activities are shown in track 7. Red dots represent SNPs in PREs and the enlarged one is rs11055880. The blue dots represent SNPs
in NREs and the black dots represent other tested SNPs in this region. b Activities of two alleles of rs11055880 in our screen. Two-tailed paired t-test
was used, *p value = 0.047. c Activities of two alleles of rs11055880 in the luciferase reporter assay. Two tailed t-test, ***p value = 2.0 × 10−4. d Expres-
sion levels of ATF7IP by qPCR in HEK293T cells expressing sgRNAs targeting the rs11055880 loci (rs11055880-sg2 and rs11055880-sg5) after KRAB-dCas9
activation. P values were calculated by t-test compared to a non-targeting (NT) group from three replicates; *p value = 0.016, ***p value = 4.0 × 10−4.
For b–d, the error bars represent standard erorrs
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leukemia and healthy bone marrow (n = 74) (Fig. 5d;
Mann–Whitney U test, p value = 1.66 × 10−9). To test
whether the PDE4B expression was regulated by the
rs12142375-containing enhancer, we used CRISPRi to in-
hibit the activity of the enhancer region. Indeed, the two
sgRNAs targeting the rs12142375 region both significantly
down-regulated PDE4B expression (Fig. 5e). To further test
the allele-specific regulation of PDE4B expression by the
SNP rs12142375 in B cells, we performed an eQTL analysis
using the TCGA diffuse large B-cell lymphoma data. We in-
ferred the genotypes of rs12142375 from the closely linked
SNP rs546784 in the SNP array (r2 = 1). We observed that
individuals with the GG genotype of rs12142375 have the
highest expression of PDE4B, while individuals with hetero-
zygosity genotype GA have significantly lower PDE4B ex-
pression levels (Fig. 5f; one-tailed Student’s t-test, p value =
0.026). We did not see a difference in PDE4B expression be-
tween the AA and GG genotype groups, probably due to a
lack of statistical power with only seven individuals in the
AA genotype group. Taken together, our results suggest that
the association of rs12142375 with acute lymphoblastic

leukemia risk might be due to a direct regulatory role of
rs12142375 in PDE4B gene expression.

Discussion
In this study, we have developed an approach to systematic-
ally screen for regulatory GWAS variants associated with
cancer risk based on a modified STARR-seq method. Our
assay robustly detected a range of expression changes be-
tween 0.5- and 16-fold, allowing the concurrent detection
of elements with positive or negative effects on transcrip-
tion. The 575 positive regulatory elements and 758 negative
regulatory elements we identified are endogenously associ-
ated with regulatory markers such as TF binding, DHSs,
specific histone modifications, and CTCF binding. Interest-
ingly, a difference in endogenous POL2 binding was found
between these two types of elements, indicating that POL2
binding may be used to differentiate active enhancers.
Additionally, we found a group of GWAS variants that
appear to modulate the transcription suppression role of
certain DNA elements, which has not been reported before
and warrants further investigation. Furthermore,

Fig. 5 rs12142375 confers acute lymphoblastic leukemia risk mechanistically through modulating PDE4B gene expression. a Genomic map of the
rs12142375 locus, with tracks of DNase I hypersensitive sites, H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K9ac marks, and Pol2 ChIP-seq signals in
GM12878 cells. The red dots repesent the SNPs in PREs and the black dots represent other tested SNPs in this region. rs12142375 is represented as the
big red dot. b Two alleles of rs12142375 conferred different activities in our screen. Two-tailed t-test was used to calculate the p value, n = 4, **p value
= 0.008. c Activities of two alleles of rs12142375 in the dual-luciferase reporter assay. The p value was calculated by two tailed t-test, n = 3, ***p value =
0.001. d PDE4B expression levels in peripheral blood mononuclear cells (normal, n = 74) and B cells of childhood acute lymphoblastic leukemia (tumor,
n = 359) (data from the Haferlach Leukemia study). The p value was assessed by the Mann–Whitney U test. e Expression levels of PDE4B by qPCR in
HEK293T cells expressing sgRNAs targeting the rs12142375 loci (rs12142375-sgRNA2, 24 bp upstream of the SNP, and rs12142375-sgRNA5, 11 bp
downstream of the SNP) after KRAB-dCas9 activation. P values were calculated by Student’s t-test compared to the non-targeting (NT) group, n = 3,
***p value < 0.001. f eQTL results in TCGA diffuse large B-cell lymphoma dataset for the association of rs12141375 with PDE4B expression. The p value
was calculated by one-tailed Student’s t-test, *p value = 0.023; ns not significant. For (b, c, e), the error bars represent standard errors
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widespread co-existence of positive and negative regulatory
elements were observed in the same genomic loci in LD
with individual GWAS tag SNPs, suggesting that gene ex-
pression associated with these regions may be regulated by
multiple enhancers and silencers in a complicated way.
Overall, our approach provided a convenient high-
throughput method for directly testing the regulatory ef-
fects of GWAS variants, and serves as a complement for
other MPRA approaches.
Based on the rate of detecting eQTLs, our assay has an

estimated sensitivity between 10 and 12%, which is in line
with the estimate that 23–64% of eQTLs act on promoters
and enhancers [46]. Several factors could affect the sensi-
tivity of our assay. First, some of the regulatory variants
may be cell type-specific; the fact that we tested variants
from GWAS studies of different cancer types, but only
used one cell line, could limit the ability of detecting all
variants. Second, for some of the SNPs showing allelic im-
balance in expression, the numbers of reads covering the
SNPs were lower than the threshold we set. Increasing the
depth of sequencing, as well as the complexity of library,
would increase the sensitivity in future studies.
Our assay also has a number of limitations. First, start-

ing with DNA from ten different individuals, we recov-
ered both alleles of the variants for only 84% of the
designed SNPs. Although the distribution of the allele
frequency in our library correlated well with that in the
population, it is possible that we missed some rare SNPs
that are more likely to exert larger functional impact.
Future studies may overcome this latter limitation by in-
cluding more samples at the start. In their study, Vock-
ley et al. [47] used genomic DNA from a cohort of 95
people and had both alleles covered for 88% of the 104
candidate elements they selected, including rare variants
with population frequencies less than 1%. Second, al-
though we focused on identifying the transcription
modulating regulatory elements, attaching the testing se-
quences after the luciferase inevitably results in discov-
ery of other types of regulators, such as those affecting
mRNA stability. Therefore, the screen could only be
used to narrow down the candidates for transcription
regulation but not fully demonstrate their modes of
function. Nevertheless, when we validated the PREs and
NREs we identified in the luciferase assay by inserting
them before the start site of the reporter gene, we ob-
served good correlation between the activities in the lu-
ciferase assay with those in the modified STARR-seq
assay. These results suggest that changes in STARR-seq
activities in our assay were likely primarily driven by the
modulating effects on transcription rather than by any
effects on post-transcriptional regulation affected by the
expression of the regulatory element itself. Third, like
other assays performed on cell lines, this study is limited
in detecting cell type-specific regulatory elements. Here

we chose HEK 293T cells as a proof of principle and the
strategy could be easily adapted to different types of cell
lines for studying tissue-specific enhancer variants.
In the future, it will be important to combine different

methods, computational and experimental, to uncover the
functional impacts of GWAS variants [48]. Our discovery
of target genes for two of the regulatory variants demon-
strated a first step in this direction. By combining the EN-
CODE ChIA-PET data and CRISPR-Cas9 technology, we
were able to show that the strong intergenic enhancer
covering the rs11055880 position endogenously regulates
the expression of ATF7IP. We also validated the direct link
between the risk-associated G allele at rs12142375 and in-
creased PDE4B expression by eQTL analysis in clinical
samples of B-cell lymphoblastic leukemia.

Conclusions
We have developed a STARR-seq approach to systemat-
ically identify SNPs in both PREs and NREs of gene ex-
pression and, more importantly, to directly assess the
impacts of the allelic change in SNPs on the regulatory
activities of such elements. Applying the method to
study the functional impacts of GWAS-identified cancer
risk SNPs, we have uncovered 70 SNPs in regulatory ele-
ments with allele-specific activities on transcription. For
two of them, we found their association with cancer risk
may be explained by transcriptional regulation of cancer
genes. Further studies on these regulatory variants will
greatly improve our knowledge of cancer development
and help develop better cancer risk assessment.

Methods
Design of the screen
Selection of cancer risk-associated SNPs
To select all the SNPs associated with cancer risk, we
downloaded the publicly available GWAS catalogue data
from the NHGRI website (http://www.genome.gov/gwas-
tudies/, accession date 20150104). A total of 264 studies
with the keywords matching at least one cancer type were
included. All the tag SNPs with a significant association (p
value < 10−5) were selected from these studies, resulting in
996 GWAS tag SNPs (Additional file 2: Dataset S1). SNPs
in high linkage disequilibrium (LD) with the 996 SNPs
were identified from the population matching the original
GWAS using the HapMap project data (HapMap release
#27). With the r2 set to 0.8, a total of 10,673 SNPs were
defined as cancer risk-associated SNPs.

Construction of the new STARR-seq vector pGL4.23-SCP1-
ccdB
To construct a modified STARR-seq vector for screen, the
pGL4.23 (Promega, E8411) was first digested with HindIII
and NcoI to remove the minimal promoter sequence. A
synthesized Super core promoter 1 (SCP1) sequence
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(GTACTTATATAAGGGGGTGGGGGCGCGTTCGTCC
TC AGTCGCGATCGAACACTCGAGCCGAGCAGAC
GTGCCTACGGACCG) was inserted into the digested
pGL4.23 backbone using Gibson assembly. The CmR-
ccdB suicide gene was PCR amplified from the STARR-
seq vector (kindly provided by Dr. Alexander Stark) using
primers containing the SphI-HF and the NdeI recognition
site. It was then assembled with the linearized pGL4.23-
SCP1 vector (digested by FseI) using Gibson assembly to
generate the pGL4.23-SCP1-ccdB vector.

Genomic library preparation and capture
Human saliva was collected using a saliva DNA Sample
Collection Kit (ZEESAN, 401002) and genomic DNA was
isolated using a genomic DNA extraction kit (ZEESAN,
602001). Genomic DNA (1 μg) from each of the ten indi-
viduals of the Chinese Han population were pooled and
sheared into ~ 500-bp fragments by sonication (Covaris
S220). DNA fragments between 450 and 500 bp were size-
selected on a 1.2% high-resolution agarose gel and recov-
ered by TIANgel midi purification kit (TIANGEN,
DP209). Recovered DNA fragments were analyzed by
Bioanalyzer (Agilent) to validate the size distribution. End-
repair and dA-tailing were performed with a NEBNext
Ultra End Repair/dA-Tailing Module (NEB, E7442) with
all recovered DNA fragments. Illumina multiplexing
adapters were ligated to DNA fragments using a NEBNext
Ultra Ligation Module for DNA (NEB, E7445) and puri-
fied with 1.2× Agencourt AMPure XP beads (Beckman,
A63881). Adapter-ligated DNA fragments were amplified
by PCR with amplification primers containing both illu-
mina adapter sequences and homology arms with the vec-
tor (forward primer, GTAATAATTCTAGAGTCGGGGC
GGGcatgAATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT; reverse
primer, TATCATGTCTGCTCGAAGCGGCAtaGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATCT) using
NEBNext® High-Fidelity 2× PCR Master Mix (NEB,
M0541L) and purified with 1.2× Agencourt AMPure XP
beads.
A custom Nimblegen capture system (Roche) was de-

signed to capture the genomic regions from 250 bp up-
stream to 250 bp downstream of each of the 10,673
selected cancer risk-associated SNPs using the online
NimbleDesign Software with the default settings (http://
sequencing.roche.com/products/software/nimbledesign-soft
ware.html). The prostate cancer SNP rs339331 was in-
cluded as a positive control. The capture was carried out
according to the manufacturer’s instructions (SeqCap EZ
Library SR User’s Guide, Nimblegen) starting with 1 μg
DNA genomic library. We then amplified 50 μL of the cap-
tured DNA fragments in five independent 50-μL PCR reac-
tions using NEBNext® High-Fidelity 2× PCR Master Mix
(NEB, M0541L) with the amplification primers. The PCR

products were pooled and purified with 1.2× AMPureXP
DNA beads (Agencourt) for plasmid library cloning.

Cloning of plasmid library
The pGL4.23-SCP1-ccdB vector was linearized by
double digestion with SphI-HF (NEB, R3182) and NdeI
(NEB, R0111), and purified through electrophoresis and
gel extraction. The captured DNA was cloned into the
vector by mixing the DNA and linearized vector at a 5:1
ratio in 16 Gibson assembly reactions (NEB, E2611),
each 20 μL. After purification, half of the assembled
products were transformed into DH10B electrocompe-
tent bacteria (Life Technologies, C6400-03) by electro-
poration using the default bacteria transformation
setting of the electroporator (Biorad). After 1-h recovery
at 37 °C in SOC, electroporated bacteria were split and
plated to 80 LB plates supplemented with 100 μg/mL of
ampicilin (Sigma-Aldrich, A9518) and grown overnight
at 32 °C. Gradient dilute aliquots of the transformation
were plated to estimate the size of the cloned library.
The colonies were harvested by pipetting 10 mL of LB
onto each plate and scraping the colonies off with a cell
spreader. The plasmid library was then extracted using a
Qiagen Plasmid Plus Mega Kit (Qiagen, 12981) and di-
luted to 1 μg/μL for all the following transfections.
To determine the sequences of the inserted DNA frag-

ments, 1 ng plasmid library was amplified with PCR
using primers AATGATACGGCGACCACCGAGATCT
ACACTCTTTCCCTACACGACGCTCTTCCGATCT
(universal primer) and CAAGCAGAAGACGGCATACG
AGATGATCTGGTGACTGGAGTTCAGACGTG (Illu-
mina index 7 primer). The PCR products were purified
using 0.8 × Agencourt AMPureXP DNA beads, quanti-
fied with an Agilent DNA1000 Chip (Agilent, 5067-
1504), and then sequenced on a HiSeq 2500 (Illumina)
with 250-bp paired-end sequencing.

Cell culture and plasmid library transfection
HEK293T cells were cultured in DMEM medium
(Hyclone) supplemented with 10% heat-inactivated FBS
(Gibco) at 37 °C. Library transfection was performed using
the Neon Transfection System (Life Technologies). A total
of 40 × 106 cells were transfected. Each 5 × 106 cells were
suspended in 500 μL Buffer R (Life Technologies,
MPK10096) with 30 μg library plasmids, then electropo-
rated using conditions of 1260 V-20 ms-2pulses. Trans-
fected cells were transferred to 10 mL pre-warmed growth
medium and incubated for 24 h before RNA isolation.

RNA isolation and reverse transcription
Twenty-four hours post-electroporation cells were
washed in 1 × PBS and harvested. Total RNA was ex-
tracted from all surviving cells using a Qiagen RNeasy
maxi prep kit (QIAGEN, 75162), eluted with 1.5 mL
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nuclease-free water (Ambion, AM9938). The poly(A)-
positive RNA was isolated using a Dynabeads mRNA
Purification Kit (Life Technologies, 61006) following the
manufacturer’s instructions. Then the mRNA was
treated with TURBO DNase (Life Technologies,
AM1907) for 30 minutes at 37 °C, followed by DNase
inactivation and purification according to the kit proto-
col. Finally, the purified mRNA was quantified by Nano-
Drop 2000.
First strand cDNA synthesis was performed with

SuperScript® III First-Strand Synthesis SuperMix (Life
Technologies, 18080400) using a reporter RNA specific
primer (5′ CAAACTCATCAATGTATCTTATCATG)
and 450–500 ng mRNA per reaction for a total of 30 re-
actions. Five reactions were pooled (100 μL) and incu-
bated at 37 °C for 1 h after adding 1 μL of 10 mg/mL
RNaseA and 1 μL RNaseH (NEB, M0297).

cDNA amplification and sequencing
The cDNA was amplified in 120 PCR reactions (98 °C for
30 s, followed by 16 cycles of 98 °C for 10 s, 65 °C for 30 s,
72 °C for 30 s) using NEBNext® High-Fidelity 2X PCR
Master Mix (NEB, M0541L), each started with 5 μL cDNA
product with primers AATGATACGGCGACCACCGAG
ATCTACACTCTTTCCCTACACGACGCTCTTCCGAT
CT (universal primer) and CAAGCAGAAGACGGCAT
ACGAGATTCAAGTGTGACTGGAGTTCAGACGTG
(Illumina index 8 primer), or CAAGCAGAAGACGGCA
TACGAGATTACGTACGGTGACTGGAGTTCAGACG
TG (Illumina index 22 primer). The PCR products were
pooled and purified using 0.8× Agencourt AMPureXP
DNA beads, eluted in 20 μL H2O, and quantified with an
Agilent DNA1000 Chip (Agilent, 5067-1504). The output
library was sequenced on an Illumina HiSeq 2500 using
paired-end 250-bp reads.

Data analysis
Simulation of SNP coverage with different numbers of
individuals
Individual genotype data and sample information were
downloaded from the 1000 Genomes Project (ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/).
The genotypes of the targeted 10,673 SNPs from the 98
Chinese Han individuals in Beijing (CHB cohort) and
Southern Han Chinese (CHS cohort) were assembled as
a pool. Different numbers (i) of individuals were ran-
domly selected from the pool and the proportion of tar-
geted SNP coverage at each sample size i was calculated
as Pi =Ni/10673, where Ni is the number of SNPs with
both alleles covered. At each sample size i, the random
sampling was repeated five times to calculate the stand-
ard deviation of Pi.

Identification of positive and negative regulatory elements
The sequencing reads from two input libraries and two
output libraries were mapped to the reference human
genome (hg19) using BWA (version 0.7.12-r1039) [49].
Only fragments ranging from 400 to 600 bp and overlap-
ping with at least one selected SNP were kept for further
analysis. The fragment counts were normalized with a
median-of-ratio method by DESeq2 [25]. For each SNP-
containing fragment, the log2 fold change between the
input library and the output library was calculated using
DESeq2. Wald’s test was used to calculate the signifi-
cance level for differences in expression between two
conditions and the p values were corrected to control
the false discovery rate (FDR) by the Benjamini–Hoch-
berg procedure [50]. Due to their low fragment counts
in the library, 2948 SNPs failed to pass the filter for the
mean of normalized counts. At FDR less than 0.01, we
classified the fragments to be PREs if their log2 (fold
change) was greater than 0 or NREs if their log2 (fold
change) was less than 0.

Identification of regulatory SNPs in PREs and NREs
For each of the 7725 SNPs passing the mean of normal-
ized counts filter in DESeq2, the counts of reference and
alternative alleles in the input library and the output li-
brary were calculated by SAMtools and bcftools [51, 52].
The counts were normalized by the SNP coverage for
each library. The normalized reference and alternative
allele counts from two replicates were pooled to increase
statistical power. SNPs with pooled normalized reference
or alternative allele counts less than 10 were excluded
from further analysis. The effect size for each SNP was
calculated as the fold change of allele ratios in the out-
put library over the input library. Two-tailed Fisher’s
exact test was applied to test the significance of differ-
ences in allele ratios between the two libraries. The p
values were corrected using a Benjamini–Hochberg pro-
cedure to control the FDR to less than 10%.

Annotations used for epigenetic marker enrichments
For epigenetic marker enrichments with the screen hits,
we obtained ChIP-seq data, DHS data, and TF binding
data for HEK293 and HEK 293T cells from the EN-
CODE database. The ChIP-seq data from fetal kidney
data were downloaded from the Roadmap Epigenomics
Project (Additional file 3: Table S4 for data links) [53].
SNP-containing PREs and NREs were considered to
overlap with the peaks if the SNP position was covered
by the peak. Odds ratios were calculated as enrichment
scores and Fisher’s exact test was applied to test the sig-
nificance of the enrichment (Additional file 3: Table S1
for PRE and NRE enrichment, Table S2 for regulatory
SNPs enrichment).
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TF binding score analysis
The 500-bp SNP-containing regions were scanned using
Fimo with human motif database HOCOMOCO v10 to
predict TF binding [54, 55]. The predicted reference al-
lele and alternative allele binding scores were calculated.
Only those SNPs with either allele located in a predicted
motif region and validated by the corresponding tran-
scription factor binding from the ENCODE ChIP-seq
peaks were considered. The delta score represents the
binding score difference between the alternative allele
and reference allele.

Topologically associating domain (TAD) viewer
The HiC data of interesting genomic regions were dis-
played using online tools (http://www.3dgenome.org) de-
veloped by the YUE lab.

eQTL analysis
We used a two-step linear regression model to perform
the eQTL analysis in diffuse large B-cell lymphoma
(DLBL) following the procedure of Li et al. [11]. Briefly,
three factors were considered for gene expression level
(Ei): the somatic copy number variation (Ci), the methy-
lation of gene promoter region (Mi), and the individual
genotypes (Gi). We downloaded these data for all the 48
DLBL cases from the TCGA project. A first step linear
regression model was performed to normalize the
methylation and the somatic copy number effect on gene
expression, and the gene expression residual (εi) was
calculated:

Ei ¼ Ci þMi þ εi

The genotype effect on gene expression level was de-
termined by the second linear regression:

εi ¼ Gi þ ωiðωi represents the random errorÞ
The analysis pipeline was applied to identify eQTL

peaks in the following cancer types using TCGA datasets:
breast invasive carcinoma (BRCA), colon adenocarcinoma
(COAD), lung squamous cell carcinoma (LUSC), liver he-
patocellular carcinoma (LIHC), prostate adenocarcinoma
(PRAD), and stomach adenocarcinoma (STAD).

Validation experiments and additional analysis
Luciferase reporter assays
Selected SNP-containing fragments were PCR amplified
from HEK293T genomic DNA and cloned into the
pGL4.23-SCP1 plasmid between the digestion sites for
KpnI (NEB, R0142) and BglII (NEB, R0144). Multiple
bacteria colonies were selected and grown individually
for plasmid extraction. The genotype of each SNP in
plasmids grown in each single colony was determined by
Sanger sequencing. If only one genotype was detected,

the construct containing the alternative allele was gener-
ated using a site-specific mutagenesis kit following the
instructions of the manufacturer (NEB, E0554).
For the luciferase reporter assay, 2 × 105 293T Cells

were plated in each well of a 24-well plate; 18 h later,
cells were transfected with 20 ng of renilla vector along
with 500 ng of pGL4.23-SCP1 firefly vector or pGL4.23-
SCP1 vectors containing the selected fragments using
Neofect DNA transfection reagent according to the
manufacturer’s protocol. Twenty-four hours after trans-
fection, cells were washed once with cold 1× PBS and
the luciferase activities were measured with a Centro
XS3 LB 960 Microplate Luminometer using Promega
Dual Luciferase Assay kit (Promega, E1960). The firefly
luciferase activity was normalized to renilla luciferase ac-
tivity for each well. All the luciferase activity measure-
ments were performed in triplicate for each condition.
The Student’s t-test was applied to estimate the statis-
tical significance of the difference in luciferase activities
between the two conditions.

CRISPR interference experiments
For the selected enhancer region, sgRNAs were designed
using online tools (http://crispr.mit.edu/) supplied by
Feng Zhang’s Lab. The sgRNAs and the reverse comple-
mentary sequences were synthesized and annealed, then
cloned into the lentiGuide-Puro plasmid (Addgene,
#52963) and linearized by BsmBI (Thermo, ER0451) fol-
lowing the protocol as described by Zhang et al. [56, 57].
The sgRNA sequences are listed in Additional file 3:
Table S5.
HEK 293T cells were transduced with lentivirus to sta-

bly express dCas9-KRAB [58]. Then the cells were
seeded in a six-well plate and transfected with sgRNA
plasmid using Lipofectamine® 2000 (Thermo, 11668019)
at a density of 80%. After 72 h, cells were lysed by TRI-
zol Reagent (Thermo, 15596018).

qPCR for ATF7IP and PDE4B genes
cDNA synthesis from 1.5 μg total RNA was carried out in a
20 μL reaction using SuperScript® III First-Strand Synthesis
SuperMix (Life Technologies, 18080400) with an oligo dT
primer. cDNA (1 μL) was used as a template for qPCR ana-
lyses with FastStart SYBR Green MasterMix (Roche,
04673484001) with primers listed below. Relative gene ex-
pression was calculated using the ΔΔCt method and the ex-
pression level was normalized by GAPDH. qPCR primers
used were: ATF7IP-sense, GAGGAAGAAGAGCAAGT
AATAC; ATF7IP-antisense, CATTGTCCATGTCTTCTG
ATT; GAPDH-sense, AGCACATCGCTCAGACAC;
GAPDH-antisense, GCCCAATACGACCAAATCC. PDE4B
-sense, ATGGTGTTAGCAACTGATATG; PDE4B-anti-
sense, AGAACGCCTGAACTTGTA.
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Differential gene expression analysis
For differential gene expression analysis, we performed
Mann–Whitney U tests to evaluate the significance for
the comparison of PDE4B expression levels between
childhood acute lymphoblastic leukemia cases and non-
leukemia controls. The microarray data were down-
loaded from Torsten Haferlach’s study [45]. R (version
3.2.2) was used to perform these statistical analyses and
box plots were used to graphically display the distribu-
tion of gene expression between different groups.
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