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Single-cell epigenomic variability reveals
functional cancer heterogeneity
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Abstract

Background: Cell-to-cell heterogeneity is a major driver of cancer evolution, progression, and emergence of drug
resistance. Epigenomic variation at the single-cell level can rapidly create cancer heterogeneity but is difficult to
detect and assess functionally.

Results: We develop a strategy to bridge the gap between measurement and function in single-cell epigenomics.
Using single-cell chromatin accessibility and RNA-seq data in K562 leukemic cells, we identify the cell surface
marker CD24 as co-varying with chromatin accessibility changes linked to GATA transcription factors in single cells.
Fluorescence-activated cell sorting of CD24 high versus low cells prospectively isolated GATA1 and GATA2 high
versus low cells. GATA high versus low cells express differential gene regulatory networks, differential sensitivity to
the drug imatinib mesylate, and differential self-renewal capacity. Lineage tracing experiments show that GATA/
CD24hi cells have the capability to rapidly reconstitute the heterogeneity within the entire starting population,
suggesting that GATA expression levels drive a phenotypically relevant source of epigenomic plasticity.

Conclusion: Single-cell chromatin accessibility can guide prospective characterization of cancer heterogeneity.
Epigenomic subpopulations in cancer impact drug sensitivity and the clonal dynamics of cancer evolution.
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Background
Epigenetic aberrations are a key driver of cancer patho-
genesis. Altered chromatin states can activate oncogenes
and silence tumor suppressor genes, leading to uncon-
trolled growth and metastasis. In contrast to genetic mu-
tations, epigenetic changes are dynamic and potentially
reversible, leading to heterogeneity during development,
within tumors, or in response to environmental stimuli,
drugs, or diseases [1–4]. Epigenomic variability can arise
as cell-to-cell differences in the patterning of DNA
methylation, histone modifications, or expression of pro-
tein coding genes or noncoding RNAs. This epigenomic
variation at the single-cell level can create heterogeneity
in cancer. However, the functional relevance of this vari-
ation is difficult to assess, often due to a lack of methods
capable of quantifying it.
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Methods for profiling the epigenomic landscape include
bisulfite sequencing for analyzing DNA methylation,
DNase-seq and MNase-seq [5–7] for accessibility or
nucleosome positioning information, and chromatin
immunoprecipitation followed by sequencing (ChIP-seq)
for binding sites of individual factors or modified nucleo-
somes [8, 9]. These methods have proven invaluable for
identifying the epigenomic features dictating cell states
within large cellular populations but are generally unable
to detect single-cell epigenomic cell-to-cell variability.
Methods for measuring single-cell gene expression have
begun to provide genome-wide measures of cell-to-cell
differences; however, these methods provide only an in-
direct readout of genome-wide epigenomic variance
[10, 11]. Recently, single-cell methods for measuring
DNA methylation [12, 13], histone modifications [14],
and chromatin accessibility have been developed to
directly quantify epigenomic variation within cellular
populations [15–17]; nevertheless, the functional rele-
vance of this observed epigenomic variability remains
to be elucidated.
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ATAC-seq measures regions of open chromatin using
the Tn5-transposase, which preferentially inserts sequen-
cing adapters into accessible chromatin [16]. As applied
to single cells [18, 19], this method quantifies cell-to-cell
variation in regions of chromatin accessibility. Single cell
(sc)ATAC-seq has been used to identify specific tran-
scription factors associated with cell-to-cell regulatory
variability, such as GATA1 and GATA2 in K562 cells
[19]. While this signal of increased regulatory variation
provides a rich platform for hypotheses regarding a po-
tential functional role of GATA factor variation, further
experiments are required to identify the phenotypic con-
sequences of this epigenomic variability. Data generated
from single-cell techniques like scRNA-seq, scDNA-seq,
and scATAC-seq are purely descriptive and require
downstream functional validation to link observed hetero-
geneity to functional subpopulations, such as those with
metastatic capabilities or stem cell-like properties that
might inform possible treatment strategies. Because most
techniques for genomic analysis destroy the cell, it is diffi-
cult to combine single-cell approaches with functional
cellular assays unless single cells can be identified and
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Fig. 1 Strategy for identifying a cell surface marker co-varying with identifi
single-cell ATAC-seq is followed by sequencing and analysis of cell-to-cell v
single-cell RNA-seq data are used to correlate cell surface expression with e
The expression of the cell surface protein is subsequently used to isolate subp
characteristics. b Hierarchical clustering of cells (rows) and high-variance trans
reproduced from Buenrostro et al. [19]. c Single-cell RNA-seq data of K562 cel
are colored by distance to running mean. Red dots indicate CD expression ma
K562 cells. Control FPKM is plotted against knockdown FPKM; data points
FACS fluorescence-activated cell sorting, qRT-PCR quantitative reverse tran
sorted using cell surface markers. However, cell surface
markers for partitioning cellular populations based on
epigenomic state are often unknown. Here we combine
scATAC-seq and RNA-seq to identify a potential co-
varying surrogate for cell surface markers (Fig. 1a) that
enable prospective isolation of relevant subpopulations,
allowing downstream functional dissection of the
importance of these single-cell observations.

Results and Discussion
Selection of cell surface marker co-varying with highly
variable motifs identified by scATAC-seq
In previous work, scATAC-seq measurements of K562
chronic myeloid leukemia (CML) cells identified high
cell-to-cell variability in the accessibility of the GATA
motif (Fig. 1b) [20]. As expected from proliferating cells,
we find increased variability within different replication
timing domains, representing variable ATAC-seq signal
associated with changes in DNA content across the cell
cycle. Importantly, the variability in GATA motif accessi-
bility is not influenced by the cell cycle variation [19].
Interestingly, in addition to epigenomic variability
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associated with GATA binding, we also find high epi-
genomic variability within transcription factors that
are expressed in hematopoietic progenitors, like ERG,
HOXA9, SPI1 (PU.1), and RUNX1 [21–24]. We also
observe variability associated with STAT1 and STAT2
binding, further reflecting hematopoietic differentiation,
as the JAK-STAT pathway is an important regulator enab-
ling cells to respond to interferons and cytokines. In
particular, K562 cells contain a BCR-ABL fusion resulting
in constitutive STAT activity and ultimately defective
erythropoiesis. Furthermore, STAT transcription factors
can promote oncogenesis by inducing anti-apoptotic gene
expression [25, 26]. These observations suggest that
multiple transcription factors involved in regulating the
progenitor state significantly vary among K562 cells,
pointing to a possible difference in the phenotype of
these subpopulations.
Here, we focus on variation in GATA motif accessibility

because GATA1 and GATA2 play pivotal roles during
erythropoiesis and leukemogenesis [27–30]. Notably,
GATA factors have a highly similar binding consensus
sequence, WGATAA. Recent genome-wide ChIP-seq
analysis using K562 human leukemia cells revealed that
35% of GATA1-binding sites are not occupied by
GATA2, while the remaining 65% overlap with GATA2-
binding sites [31]. The fact that GATA1 and GATA2
often bind the same subset of genomic locations suggests
an underlying mechanism for molecular competition via
association and disassociation at the transcription factor
binding site. Interestingly, it has also been previously
shown that transcription factor crowding on the DNA
may increase transcriptional noise through increased vari-
ability of the occupancy time of the target sites, leading to
cell-to-cell variation [32].
GATA factor interplay is thought to be a common

mechanism for controlling developmental processes
[33, 34]. During erythropoiesis, GATA2 is expressed
prior to GATA1, which suggests that GATA2 binding
may promote GATA1 accessibility to GATA motifs.
GATA1 occupancy on chromatin has been shown to acti-
vate transcription of a differentiation program leading to
committed erythroid cells. Here, we test whether the
observed variation of DNA accessibility at GATA binding
sites resembles functionally distinct developmental cell
states. We hypothesize that the accessibility variation
results mainly from differential expression levels of GATA
in K562 cells (Additional file 1: Figure S1a). To analyze
the functional impact of GATA expression and motif
accessibility variability, we set out to find a cell surface
marker that co-varied with GATA expression levels to
allow sorting of live cells from a mixed population for sub-
sequent functional experiments.
Our strategy (Fig. 1a) to identify co-varying transcrip-

tion factor–cell surface marker pairs starts with analysis
of scATAC-seq data, in which we focus on transcription
factor motif variability, identifying a transcription factor
of interest with variable binding between cells (Fig. 1b).
Second, we investigate existing RNA-seq data for cell
surface marker expression. scRNA-seq data helps to
focus on highly abundant and variably expressed genes.
The addition of transcription factor knockdown RNA-seq
data allows us to further narrow down candidates. The
third phase is the confirmation of co-variation of the tran-
scription factor with the cell surface marker.
Here, K562 scRNA-seq data [35] were analyzed focusing

on highly expressed, yet highly variable, cluster of differen-
tiation (“CD”) cell surface genes (red dots in Fig. 1c). In
addition, we re-analyze published GATA1 and GATA2
knockdown RNA-seq data [36], identifying CD-annotated
genes which were both highly expressed and changed
expression following GATA knockdown in K562 cells
(Fig. 1d). Combining both datasets, we identified CD24,
CD44, and CD52 mRNAs as encoding candidate cell
surface genes that were highly variable.

Validation of a co-varying “surrogate” marker for GATA
motif variation
To test CD24, CD44, and CD52 as surrogate cell surface
markers for GATA variation, we sorted cells with
fluorescence-activated cell sorting (FACS). CD44 was only
weakly expressed and CD52 did only partially correlate
with GATA expression (Additional file 1: Figure S1b).
CD24 is expressed and is highly variable in K562 cells
(Fig. 2a, left panel); in addition we found two popula-
tions, CD24hi (red square) and CD24lo (blue square)
(Additional file 1: Figure S1c). GATA1 and GATA2 are
also heterogeneously expressed in K562 cells (Fig. 2a,
middle panel), with cells expressing low levels of GATA1
also tending to express low levels of GATA2. In a cell with
high CD24 expression, GATA1 and GATA2 tend also to
be more highly expressed (Fig. 2a, right panels). To further
link high expression of CD24 with GATA high cells, cells
sorted for CD24 high and low expression were stained
and analyzed for GATA. The result shows that in
CD24hi cells, protein as well as mRNA levels of GATA1
and GATA2 are higher compared to CD24lo sorted cells
(Fig. 2b; Additional file 1: Figure S1d). Notably, expres-
sion of phospho-JUN, another transcription factor which
displayed high variation in motif accessibility in K562
scATAC-seq experiments [20], does not differ between
sorted populations (Additional file 1: Figure S1e). In
summary, our data show that CD24 cells are GATA
positive and CD24 is thus a surrogate marker for GATA
factor expression level in K562 cells.

Molecular analysis of the identified subpopulations
Focusing on molecular and functional differences of
CD24 high versus low K562 subpopulations, we used



Fig. 2 Molecular characteristics of identified subpopulations. a Flow cytometric analysis of K562 cells for CD24, GATA1, and GATA2. Right panels:
CD24 correlates with GATA1 (R2 = 0.68) and GATA2 (R2 = 0.44). b Representative histogram FACS plots of the re-analysis of K562 cells for GATA1
(left) and GATA2 (right) after sorting for CD24. CD24hi sorted population is labeled red, CD24lo sorted population is labeled blue, isotype control
gray. Mean fluorescent intensity (MFI) 2565 for GATA1 high, 2098 for GATA1 low, 2930 for GATA2 high, and 2457 for GATA2 low. c ATAC-seq of
CD24hi and CD24lo sorted K562 cells (replicates); 2757 peaks are differentially regulated with a fold change of 1.5 and p value <0.001. Blue represents
genomic locations less accessible, red locations with higher accessibility compared to the mean of all samples. d Representative UCSC genome
browser tracks of open chromatin regions in K562 CD24hi sorted cells (upper track, red) and K562 CD24lo sorted cells (lower track, blue). Example regions
shown are the GATA2 and CD24 locus. e Gene Ontology term analysis of chromosomal regions, which are more accessible in the CD24hi population. f
Enrichment of ATAC-seq peaks more open in CD24hi (top) or CD24lo (bottom) in K562 and hematopoietic stem cell ChIP-seq datasets. Shown are odds
ratios calculated using Fisher’s exact test. Values below zero demonstrate de-enrichment (blue) and above zero enrichment (orange). g Overlap
of ATAC-seq peaks more accessible in CD24hi (red) or CD24lo (blue) with DNAse peaks across 72 different cell types. Left: Number of cell types
with overlap is quantified. Right: The different cell types are shown; K562 and CMK leukemia cell lines are highlighted in green
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our CD24 surrogate marker to identify epigenomic dif-
ferences of the two subpopulations with ATAC-seq. In
contrast to other cell lines, the mitochondria are particu-
larly highly represented in K562 cells, resulting in high
mitochondrial DNA representation in ATAC-seq libraries.
Therefore, we developed an optimized ATAC-seq protocol
for K562, which includes an optimized cell lysis and
additional nuclei washes prior to transposition, redu-
cing mitochondrial representation from approximately
75 to 35% (see “Methods” for details). Differential peak
analysis showed 2757 differentially accessible peaks (fold
change (FC) of 1.5, p value 0.001; Fig. 2c; Additional file 2:
Figure S2a), of which 1698 were more accessible in
CD24lo and 1059 more accessible in CD24hi sorted K562
cells. Representative UCSC genome browser tracks of
open chromatin regions of CD24hi and CD24lo sorted
K562 cells are displayed in Fig. 2d and Additional file
2: Figure S2b. Interestingly, open chromatin regions
cluster around transcription start sites in CD24hi (26%
in high versus 4% low), whereas in CD24lo K562 cells
distal chromatin regions are more accessible (Additional
file 2: Figure S2c), suggesting general differential chro-
matin regulation in these subpopulations. Next we set
out to confirm that the differentially accessible sites
between CD24hi and CD24lo are functionally relevant.
First, we performed Gene Ontology (GO) analysis [37]
with all regions more accessible in the CD24hi popula-
tion, using total accessible locations of K562 cells as
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background set. These regions are associated with genes
involved in neutrophil versus T-cell differentiation, as well
as in growth hormone signaling. In particular, STAT
signaling is enriched, a signaling pathway involved in
CML and BCR-ABL signaling (Fig. 2e) [38, 39]. The
resulting gene list was further analyzed with the
PANTHER database (http://pantherdb.org), showing
the highest biological process GO term enrichment for
“regulation of hematopoiesis” (GO:1903706). In con-
trast, the GO terms resulting from chromatin regions
more accessible in CD24lo cells are associated with pro-
moters bound by FOXP3, maturation of monocytes in
response to inflammation, MYC overexpression, and
genes up-regulated in response to BCR-ABL (Additional
file 2: Figure S2d). In addition, we correlated the ATAC-
seq peaks more open in CD24lo (1698 genomic regions) as
well as those more open in CD24hi (1059 genomic re-
gions) to all available K562 ChIP-seq datasets using LOLA
(Locus Overlap Analysis: Enrichment of Genomic
Ranges), using total accessible locations of K562 CD24hi

and CD24lo cells as background set [40]. Interestingly,
ChIP-seq signals of TAL-1, GATA1, and GATA2, factors
involved in hematopoietic differentiation [41, 42], are pref-
erentially enriched in accessible locations in CD24lo K562
cells. In CD24hi K562 cells on the other hand, binding
sites of the ubiquitous transcription factors SP1, SP2, and
CHD2 are enriched, as well as PU.1 sites (Fig. 2f). In
addition to the intersection of our ATAC-seq data with
ChIP-seq data, we intersected our differential ATAC-seq
regions with the regulatory elements database DNAse
hypersensitivity data [43]. In line with the previous results,
we found high overlap of CD24lo K562 accessible sites
with K562 enriched DNAse hypersensitivity clusters, but
no enrichment for any specific cell/tissue type for the
CD24hi accessible genomic regions (Fig. 2g; Additional
file 2: Figure S2e).
These molecular analyses of K562 subpopulations

show significantly higher GATA2 expression in CD24hi

cells compared to CD24lo K562 cells (Additional file 1:
Figure S1d). However, the CD24lo population exhibits
more accessibility at GATA and TAL1 binding sites
(Fig. 2f, g; Additional file 2: Figure S2f), transcription
factors regulating differentiation into erythrocytes, sug-
gesting that these cells might be more differentiated
erythro-leukemic cells. In contrast, the CD24hi K562
population exhibits less erythropoietic-specific tran-
scription factor binding and more accessibility at
hematopoietic progenitor maintenance factors, like PU.1
(Fig. 2f, g). PU.1 is a key regulator of hematopoietic differ-
entiation, which is tightly regulated transcriptionally and
not expressed in differentiated erythroid or myeloid cells
[44] and thus implicates CD24hi as a less differentiated
“stem-like” subpopulation. Importantly, GATA2, and not
GATA1, is highly expressed in hematopoietic stem cells,
but through erythropoetic differentiation GATA1 is highly
expressed while GATA2 expression is lost [45]. This
“GATA factor switch” is at the center of hematopoietic
differentiation and is mediated by GATA factor competi-
tion in erythropoetic progenitors, whereby GATA2 acts as
a repressor by inhibiting GATA1 activation of erythro-
poetic gene expression [46, 47]. In addition, the over-
expression of GATA2 strongly promotes hematopoietic
stem cell self-renewal, altogether implicating GATA2 as
a stem-ness factor [48].
We observe on the one hand higher expression of

GATA1 and GATA2 in the CD24hi population, an
expression signature for more differentiated erythroid
cells; on the other hand CD24hi has more accessible
binding sites for stem-ness transcription factors. We
assume that the high expression of GATA in the CD24hi

state leads to the overall loss in GATA motif accessibility,
whereas GATA motif chromatin accessibility is higher in
the more differentiated CD24lo cells, in which GATA is
also less expressed.

Functional analysis of the identified subpopulations
Next, we set out to analyze the functional effects of the
observed epigenomic variability. The K562 cell line is
derived from female human chronic myelogenous
leukemia cells, which are positive for the Philadelphia
chromosome and bear characteristics of multipotent
progenitors [49, 50]. To further elucidate the phenotypic
differences of the two subpopulations we treated the
CD24hi and CD24lo sorted cells with imatinib mesylate
(Gleevec) [51], a BCR-ABL tyrosine kinase inhibitor
approved for CML treatment, and observed the effects
on proliferation and apoptosis (Fig. 3a, b; Additional
file 3: Figure S3a, b). We assayed proliferation by
monitoring the incorporation of alkyne-containing
thymidine analog EdU (5-ethynyl-2′-deoxyuridine), which
is incorporated into DNA during active DNA synthesis
[52]. EdU incorporation was significantly inhibited in both
subpopulations upon treatment, but 2.9% of CD24hi

sorted cells continued proliferating, in contrast to CD24lo

sorted cells (Fig. 3a lower right panel; Additional file 3:
Figure S3a). To further analyze the differential drug
response in more detail, the apoptosis rate of the two
cell populations after drug treatment was measured.
The percentage of annexin V–propium iodide (PI)-
positive cells increased from 14% in control to 32% in
the CD24lo population, whereas the number of CD24hi

cells undergoing apoptosis was similar (13.8 to 16.5%)
(Fig. 3b; Additional file 3: Figure S3b). Therefore, we
conclude that CD24hi cells are more resistant to ima-
tinib mesylate treatment than CD24lo cells.
To further support our hypothesis that the CD24hi

subpopulation might resemble the more stem cell-like
population, whereas the CD24lo subpopulation might be

http://pantherdb.org/
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Fig. 3 Functional characteristics of identified subpopulations. a Proliferation measured by EdU incorporation by K562 cells treated with 1 μM imatinib
or DMSO control for 24 h. Upper panel (blue) shows CD24lo sorted cells, lower panel (red) shows CD24hi sorted cells. Experiments were performed in
triplicate. b Annexin–propium iodide FACS of K562 cells treated with 1 μM imatinib or DMSO control for 24 h. Upper panel shows CD24lo sorted cells,
lower panel shows CD24hi sorted cells. Experiments were performed in triplicate. c Colony formation assay of CD24hi and CD24lo K562 cells for 5 days.
Left: representative microscopy pictures of the colonies formed: CD24lo upper panel, CD24hi lower panel. Right: Quantification of colonies formed. Blue
indicates CD24lo, red CD24hi sorted K562. Experiments were performed in triplicate, error bars represent standard error, and asterisks indicate significant
difference with p value <0.01
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more differentiated, we performed a colony forming cell
(CFC) assay, which measures the capacity of single cells
to replicate in a semisolid medium, with both sorted
subpopulations. The CFC assay allows us to assess the
amount of leukemic progenitors within these popula-
tions. CD24hi sorted cells formed over fourfold more
colonies CD24lo cells (Fig. 3c) and these colonies were
generally larger, with a dense core and some outgrowing
cells surrounding a ring (Fig. 3c, left panels). These
results suggest that the CD24hi population has more
progenitor capacity than the CD24lo subpopulation.
We harvested cells from more than four individual
colonies or from the whole plate after the CFC assay to
further assess their numbers and differentiation states
using FACS. We analyzed the CD24 status of the har-
vested colonies and were surprised to find that the
CD24hi subpopulation contained only 30% CD24hi

expressing cells; thus, the majority lost their CD24
expression (Additional file 3: Figure S3c). In contrast,
the majority of the CD24lo population stayed in the low
state, gaining only 6.68% CD24 positive cells. These
results suggest that the differentiation state of cancer
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cells is dynamic, consistent with findings in other cancer
stem cell systems [53].

Epigenomic plasticity of K562 subpopulations
To further investigate these dynamics, K562 cells were
sorted for the two subpopulations and immediately
stained with the cell tracker 5-(and 6)-carboxyfluores-
cein diacetate succinimidyl ester (CFSE). CFSE readily
crosses intact cell membranes, and after staining cell
division can be measured as successive halving of the
fluorescence intensity. For five consecutive days CD24
and CFSE signals of the two subpopulations were mea-
sured using flow cytometry. Both populations re-
established the initial population distribution of CD24hi

and CD24lo cells, suggesting that both correspond to
metastable, temporally dynamic epigenomic states. We
observed a rapid loss of CD24 high expressing cells of
a
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subpopulation dynamic changes occurred more slowly
(Fig. 4a, c). Both populations proliferated at an equal
rate during that time (Fig. 4b). These observations lead
to the conclusion that the CD24-GATA-high population
is dynamic, and contributes to epigenomic plasticity of
K562 cells (Fig. 4c).
To validate the epigenomic plasticity of the identified

K562 populations, we cultured the sorted cells (d0) for 5
days (d5) and performed ATAC-seq on CD24 d5 sub-
populations. The CD24hi population is able to generate
both CD24hi and CD24lo populations within 5 days. We
compared the epigenome of the new CD24hi-CD24lo

populations to each other as well as to the initial sorted
(parental) population (Additional file 4: Figure S4a, b):
2884 peaks are differentially accessible in the d5 K562
cells started from the CD24hi population, 1372 more
b
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accessible in d5 CD24hi, 1512 more accessible in d5
CD24lo. The peaks of the parental CD24 sorted K562
cells correlated with the peaks accessible after 5 days
with an R of 0.78 and 0.79, respectively (Additional file
4: Figure S4b). Moreover, the new CD24hi and CD24lo

populations show the same molecular and phenotypic
features as their respective parental line. We analyzed
differentially accessible regions between day 5 CD24lo and
CD24hi originating from CD24hi using LoLa. The enrich-
ment of accessibility for the respective hematopoietic or
more stem factors is in line with what we found with the
parental population (Additional file 4: Figure S4c). In
addition, we confirmed the functional difference between
day 5 CD24lo and CD24hi by apoptosis assay after drug
treatment. We sorted day 5 CD24hi and CD24lo K562
cells, treated those with 1 μM imatinib and analyzed them
for apoptosis by annexin–PI FACS after 24 h (similar to
Fig. 3b). The second-generation CD24hi population cells
were less susceptible to the drug (11.1% (standard de-
viation = 0.84) annexin- and annexin–PI-positive cells
compared to 18.5% (standard deviation = 1.56) annexin
and annexin–PI positive cells of the second generation
CD24lo) (Additional file 4: Figure S4d). These results
recapitulate the functional heterogeneity found after
the first CD24 sort.

Conclusions
We demonstrate an integrative strategy to prospectively
isolate epigenomic subpopulations of cells defined by
single-cell chromatin activity. Data mining of available
knockdown as well as scRNA-seq data allow correlation
of cell surface marker expression with transcription fac-
tor variability. scRNA-seq data are generally sparse,
making gene–gene correlations, especially of often lowly
expressed transcription factors, a particularly difficult
task. Our approach, described above, circumvents these
issues by looking at functional co-variation using bulk
transcription factor knockdowns. This strategy nomi-
nates co-varying cell surface markers, which can then be
used to identify functional distinct subgroups in cancer
cells. A similar approach has been described to resolve
heterogeneity within stem cell populations, combining
RNA-seq with flow cytometry data [54]. With new gen-
etic perturbation tools like CRISPR [55, 56] and CRISPRi
[57], we anticipate this strategy to become more generally
applicable and a common tool for single-cell epigenomics.
In addition, we anticipate that new high-throughput
single-cell genomics methods will be invaluable for effi-
ciently discovering co-varying cell surface markers. Spe-
cifically, high-throughput scRNA-seq profiling has been
shown to uncover gene-expression networks [58, 59].
Currently, low throughput epigenomics methods pre-
clude identification of the individual regulatory ele-
ments within cell populations; however, we anticipate
that high-throughput epigenomic methods may enable
de novo identification of hidden epigenomic states. This
strategy should be broadly applicable to many cancer
types and disease states to unravel molecular drivers of
epigenomic state and to improve therapeutic targeting.

Methods
Cell culture and reagents
K562 (ATCC) chronic myeloid leukemia cells were main-
tained in Iscove’s modified Dulbecco’s medium (IMDM)
containing 10% fetal bovine serum (HyClone, Thermo
Scientific) and 1% penicillin streptomycin (Pen/Strep).
Cells were maintained at 37 °C and 5% CO2 at recom-
mended density and were treated and harvested at mid-
log phase for all experiments.

Drug treatments
K562 cells were treated with 1 μM imatinib mesylate
(Gleevec, Cayman Chemicals, Ann Arbor, MI, USA) or
DMSO control for 24 h.

FACS and flow cytometric analysis
In a 1.5 mL tube, cells were washed with ice cold
phosphate-buffered saline (PBS). For (CD) cell surface
markers, cells were stained with PE-CD24 (#555428, BD
Biosciences), or APC-CD44 (#559942, BD Biosciences)
or APC-CD52 (Clone HI186, BioLegend) in PBS contain-
ing 2 mM EDTA and 0.5% bovine serum albumin (BSA)
on ice in the dark for 30 min. For subsequent intracellular
staining, cells were fixed in 1% paraformaldehyde (PFA)
for 10 min followed by permeabilization using 0.5% Tri-
tonX100 in PBS for 10 min at room temperature. Cells
were stained with primary antibodies rabbit anti-GATA1
(1:400, Cell Signaling, D52H6), mouse anti-GATA2 (1:100,
Abnova, H00002624-M01), rabbit anti phospho c-JUN II
(Ser63, Cell Signaling), or mouse or rabbit IgG as isotype
control in PBS containing 0.5% TritonX100, 2 mM EDTA
and 0.5% BSA (Sigma) for 1 h at room temperature. After
washing with staining buffer, cells were labeled with
Alexa-conjugated donkey anti-mouse or anti-rabbit Alexa
488 or Alexa 647 antibodies (life technologies) at a dilu-
tion of 1:500 for 30 min at room temperature. Finally, cells
were washed and sorted for CD24 or analyzed using the
BD FACSAriaII.
Flow cytometric analysis and statistics were performed

using FlowJo V.10.0.8.

ATAC-seq
K562 cells were stained and sorted for CD24 as
described above. ATAC of 5 × 104 cells was performed
as previously described [20], changing the lysis and
ATAC conditions slightly. Lysis was performed in 100
μl cold buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl,
3 mM MgCl2 + 0.1% IGEPAL CA-630 + 0.1% Tween 20),
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transposition was performed in 50 μl buffer containing
25 μL 2× TD buffer (Illumina #FC-121-1030), 2.5 μL
Tn5 transposase (Illumina #FC-121-1030), 22.5 μL nu-
clease free H2O, 0.5 μL Tween-20 (0.1% final), followed
by the recommended library preparation protocol. The
resulting libraries were quantified and sequencing data
were generated on an Illumina HiSeq 4000 that was
purchased with funds from NIH under award number
S10OD018220.

Data processing
All ATAC-seq libraries were sequenced using paired-end,
dual-index sequencing using 76 × 8 × 8 × 76 cycle reads on
a NextSeq. Adapter sequences were trimmed from
FASTQs using custom python scripts to enable mapping
fragments smaller than 50 bp. Paired-end reads were
aligned to hg19 using BOWTIE2 (http://bowtie-bio.sour-
ceforge.net/bowtie2/index.shtml) with the parameter
–very-sensitive. Duplicates were removed and library size
was estimated using PICARD tools (http://picard.source
forge.net). Reads were subsequently filtered for alignment
quality of > Q30 and were required to be properly paired.
Reads mapping to the mitochondria or chromosome Y
were removed and not considered. We used MACS2
(http://pypi.python.org/pypi/MACS2) to call all reported
ATAC-seq peaks. MACS2 was used with the following pa-
rameters (–nomodel –shift 0). Peaks were filtered using
the consensus excludable ENCODE blacklist (http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/enco-
deDCC/wgEncodeMapability/) and a custom blacklist
designed to remove high-signal-causing repeats and mito-
chondrial homologues. Using the filtered peak set, peak
summits were extended ±250 bps. The top 50,000 non-
overlapping 500-bp summits, which we refer to as accessi-
bility peaks, were used for all downstream analysis.
Peaks from all samples were merged and normalized.

For differentially accessible peaks a cutoff of 1.5-fold
change and p value <0.01 between CD24hi and CD24lo

were used. For ATAC-seq peak–ChIPseq and DNAse-
seq correlation analysis we used the LOLA bioconductor
package with all K562 peaks from these ATAC-seq experi-
ments as background set. For enrichment of GATA2-
bound motifs in ATAC-seq peaks, ChIP-seq dataset
GSM935373 was intersected with ATAC-seq peaks.
GO term analysis was performed using GREAT

(http://great.stanford.edu) [37].
K562 CD24 sorted ATAC-seq data from day 0 and day

5 have been deposited in the Gene Expression Omnibus
(GEO) with accession GSE76224.

Quantitative RT-PCR
Total RNA was isolated with an RNeasy isolation kit
(Qiagen) and cDNA was synthesized using the Super-
script III First Strand synthesis kit according to the
manufacturer’s instructions (Invitrogen). qRT-PCR reac-
tions were performed in a Roche Lightcycler 480 using
2× Brilliant II SYBR QRT-PCR Master Mix from Agilent
according to standard protocols. All primers were sepa-
rated by at least one intron on the genomic DNA to
exclude amplification of genomic DNA. PCR reactions
were checked by including no-RT controls, by omission
of templates, and by examining melting curves. Standard
curves were generated for each gene. Relative quantifica-
tion of gene expression was determined by comparison
of threshold values. All samples were analyzed in duplicate
in two different dilutions. All results were normalized
to actin. All experiments were performed in biological
triplicates.
Primer sequences were (5′–3′ forward, reverse): actin,

CCGGCTTCGCGGGCGACG, TCCCGGCCAGCCAGG
TCC; GATA1, TGCTCTGGTGTCCTCCACAC, TGGGA
GAGGAATAGGCTGCT; GATA2, AGCGTCTCCAGCC
TCATCTTCCGCG, CGAGTCTTGCTGCGCCTGCTT.
Proliferation measurements
K562 cells were sorted for CD24 and cultured in the pres-
ence of 1 μM imatinib mesylate or DMSO for 24 h before
proliferation analysis. EdU (10 μM) was added directly to
the media for 4 h before cells were harvested. After that,
cells were fixed and stained according to the manufac-
turer’s protocol (Click-iT EdU kit #C10340, Invitrogen).
Briefly, cells were fixed with 3.7% formaldehyde for 15
min and permeabilized using 0.5% Triton X-100 in PBS
for 20 min at room temperature. Incorporation of EdU
was observed by incubating fixed cells with 2% BSA in
PBS for 30 min and Alexa fluor 647 for a further 30 min
under Cu(I)-catalyzed click reaction conditions, as de-
scribed by the manufacturer. Cells were washed with PBS
and counterstained with DAPI in PBS right before flow
cytometric analysis using the BD FACSAriaII.
Experiments were performed in triplicate; the standard

10,000 cells per gate were recorded and analyzed.
Apoptosis measurements
K562 cells were sorted for CD24 and cultured in the
presence of 1 μM imatinib mesylate or DMSO for 24 h
before proliferation analysis. Cells were washed with
cold PBS containing 0.5% BSA and then resuspended in
Annexin V Binding Buffer (BioLegend, #422201). Cells
were then incubated for 15 min with 5 μl of FITC
annexin V (BioLegend, #640906) and 10 μl of 1 mg/ml
PI solution (BioLegend, #421301) at room temperature
in the dark. Apoptosis was measured by flow cytometry
using the BD FACSAriaII.
Experiments were performed in triplicate; the standard

10,000 cells per gate were recorded and analyzed.

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://picard.sourceforge.net/
http://picard.sourceforge.net/
http://pypi.python.org/pypi/MACS2
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
http://great.stanford.edu/
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Colony formation assay
K562 cells were sorted for CD24. Immediately after
sorting, 500 cells in 0.5 ml medium were added to 3 ml
methylcellulose-based media (HSC002, R&D Systems).
Using a 10 ml syringe and a 16 gauge needle, 1 ml of
this mixture was added to a 35-mm dish, which was
then placed in a 15-cm dish filled with water to maintain
the humidity necessary for colony formation. After 10
days, colonies were counted on a grid using a light micro-
scope. After that, methylcellulose was dissolved in media
to make a single-cell suspension. Cells were washed and
stained as described above for flow cytometric analysis of
CD24 expression using the BD FACSAriaII. Experiments
were performed in triplicate.

Cell tracing experiments (CFSE staining)
K562 cells were sorted for CD24. Immediately after sorting,
200,000 cells of the high- and low-sorted population were
stained with 5 μM CFSE (Cell Trace Proliferation Kit, Life
Technologies) according to the manufacturer’s protocol.
Cell proliferation (CFSE dilution) and CD24 surface
expression were analyzed every 24 h for 8 days using the
BD FACSAriaII.
Experiments were performed in triplicate; the standard

10,000 cells per gate were recorded and analyzed.

Additional files

Additional file 1: Figure S1. Molecular characteristics of identified
subpopulations. a Left: QRT-PCR of GATA1 and GATA2 in K562 cells measured
relative to ACTIN. Error bars represent standard error. Right: Representative
FACS analysis of K562 cells stained for GATA1 and GATA2. b Histograms
showing expression (fluorescent intensity) of CD44 (light blue) and CD52
(dark blue) in K562 cells. c Dot plots displaying the gating strategy for sorting
CD24hi and CD24lo expressing K562 cells. d Expression analysis of GATA1 and
GATA2 in CD24 sorted K562 cells measured by qRT-PCR relative to ACTIN.
*P value <0.05 (t-test), error bars represent standard error. e Representative
FACS analysis of CD24hi and CD24lo sorted K562 cells, stained after sort
for pJUN. Mean fluorescent intensity (MFI) was 152 (high), and 137
(low). (PDF 616 kb)

Additional file 2: Figure S2. Molecular characteristics of identified
subpopulations. a Heatmap of the correlation coefficient of K562 CD24
sorted ATAC-seq samples using Spearman correlation. b UCSC tracks
showing examples of open chromatin in CD24lo (blue) and CD24hi (red)
K562 cells. Top: JUN locus, which is more accessible in CD24lo. Bottom:
SOD1 locus, which is equally accessible in both subpopulations. c Bar plot
illustrating the distribution of ATAC-seq peaks across genomic locations;
promoter proximal (light blue) and distal (dark blue). The difference in promoter
accessibility between CD24hi and CD24lo K562 cells is significant (using
Chi-squared), p < 0.001. d Gene Ontology terms for accessible chromatin
locations in CD24lo cells. e Q-Q plot illustrating the differences in the overlap
of ENCODE DNAse-seq peaks and ATAC-seq peaks of CD24lo and CD24hi

populations (shown in Fig. 2g). P values for Wilcox (WX), t-test (TT), and
Komorov–Smirnov (KS). f Enrichment of GATA2 ChIP-seq binding sites in
CD24hi and CD24lo K562 ATAC-seq peaks. (PDF 507 kb)

Additional file 3: Figure S3. Functional characteristics of identified
subpopulations. a Quantification of EdU incorporation as a measurement
of proliferation. Experiments were done in triplicate; asterisk indicates
significance, calculated using t-test, p value <0.05. b Quantification of
apoptosis of K562 cells treated with 1 μM imatinib or DMSO control for
24 h. AnnexinV–PI negative cells are counted as live, annexin V-positive–
PI-negative cells as early apoptotic and annexin V–PI double positive as late
apoptotic. Experiments were done in triplicate; asterisk indicates significance,
calculated using t-test, p value <0.01. Error bars represent standard error.
c Representative FACS analysis of CD24hi and CD24lo sorted K562 cells for
CD24 expression after 5-day colony formation assay. (PDF 138 kb)

Additional file 4: Figure S4. Molecular and functional analysis of
epigenetic dynamics. a Heat map of differentially accessible ATAC-seq
peaks of day 5 CD24hi and CD24lo K562 cells (replicates). CD24hi as
parental line: 2884 peaks are differentially accessible, 1372 more accessible in
day 5 CD24hi, 1512 more accessible in day 5 CD24lo. Fold change of 1.5 and
p value <0.001. Blue represents genomic locations less accessible, red locations
with higher accessibility compared to the mean of all samples. b Spearman
correlation of day 5 K562 CD24hi (top) and CD24lo (bottom) ATAC-seq peaks
(log counts) and day 0 (parental) ATAC-seq peaks. R = 0.78 and 0.79,
respectively, p value of the correlation <2.2e-16 and 0.0012, respectively.
c LoLa analysis of differentially accessible peaks of new (day 5) CD24hi and
CD24lo. List of the highest odds ratios in untreated K562 datasets.
d AnnexinV–PI apoptosis FACS of day 5 CD24hi and CD24lo 24 h after
imatinib treatment. Bar plots demonstrate percentage of total cells in
different phases of apoptosis. Red bars represent cells originating from
CD24hi, blue bars demonstrate CD24lo descendants. N = 3. (PDF 7944 kb)
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