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It has proven exceedingly difficult to ascertain rare copy number alterations (CNAs) that may have strong effects in
individual tumors. We show that a regulatory network inferred from gene expression and gene copy number data of
768 human cancer cell lines can be used to quantify the impact of patient-specific CNAs on survival signature genes. A
focused analysis of tumors from six tissues reveals that rare patient-specific gene CNAs often have stronger effects on
signature genes than frequent gene CNAs. Further comparison to a related network-based approach shows that the
integration of indirectly acting gene CNAs significantly improves the survival analysis.
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Background

Tumor cells harbor combinations of mutations that
together impair molecular pathways, which results in neo-
plastic transformation. Although only a relatively small
fraction of all mutations in any given cancer cell con-
tributes to tumorigenesis, it is emerging that many more
genes than previously thought determine clinically rel-
evant endpoints such as proliferation rates, metastatic
potential, or drug resistance [1, 2]. Clearly, hundreds of
genes have the potential to contribute to tumor pheno-
types [3], but we are still far from being able to quantify
individual cancer risks. The frequency at which specific
genes are mutated in a certain cancer cohort is an indi-
cator of clinical importance. Even though frequent muta-
tions (i.e. mutations that are more frequent than expected
by chance in a specific cohort) are more likely to have
tumor-related effects, individual cancer risks are most
likely not fully explained by frequent mutations alone
[1, 2]. Rare mutations could act in combination with fre-
quent mutations or they may, entirely independent from

*Correspondence: michael seifert@tu-dresden.de

!Carl Gustav Carus Faculty of Medicine, Technische Universitat Dresden,
Institute for Medical Informatics and Biometry, Fetscherstr. 74, 01307, Dresden,
Germany

National Center for Tumor Diseases (NCT), Dresden, Germany

Full list of author information is available at the end of the article

( ) BiolVled Central

frequent mutations, establish a significant risk for the
patient on their own. Quantifying the risks associated
with rare mutations has been complicated by the follow-
ing reasons: (1) by definition, only a few patients carry
these mutations, which reduces the probability of observ-
ing them in clinical studies, (2) even if they are observed,
it is often difficult to quantify cancer risks statistically
by comparing carriers with non-carriers due to insuffi-
cient statistical power, (3) complex interactions with other
mutations (epistasis) may hide effects when analyzing sin-
gle mutations in isolation, and (4) rare mutations of indi-
vidual genes may have weak effects, but the co-occurrence
of a sufficient number of such mutations in the same cell
could significantly increase cancer risks. For example, a
set of oncogenes with small individual effects but residing
on the same chromosomal arm may establish a significant
selective advantage if this chromosomal arm is amplified
[3]. Essentially, we do not know how important rare muta-
tions are in comparison to frequently observed mutations,
simply because we are lacking the means to quantify their
effects. The specific pattern of small mutations (single
nucleotide variations or SN'Vs and small indels) in candi-
date genes can be used to prioritize putative driver genes
without using epidemiological information [2-5]. Also, it
has been shown that molecular networks can be used to
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better stratify patient populations by considering frequent
and rare mutations together [1].

Apart from SNVs, DNA copy number alterations
(CNAs) and chromosomal instability are a hallmark of
cancer [6—8]. Further, CNA-affected genes with altered
expression levels are more likely to be involved in tumori-
genesis than affected genes with unchanged expression
levels [9]. This has been exploited in previous studies
to identify driver genes [10]. However, since CNAs fre-
quently alter the expression levels of directly affected
genes [9], these methods typically make many false posi-
tive predictions and require a large number of samples for
areliable prediction of potential key drivers. Other model-
based approaches for the integrative analysis of gene copy
number and gene expression data have been developed
utilizing genetic linkage analysis [11] or network-based
approaches [12—14] to identify major regulators driving
tumorigenesis. All these methods (and many others) have
greatly contributed to the identification of potential CNA
tumor driver mutations and a better understanding of
tumorigenesis, but none of these methods allows us to
quantify the impact of rare gene CNAs.

Hence, novel computational methods are required to
explore the long tail of rare mutations in cancer. An
important step in this direction was done by [1], which
enables the stratification of tumors that rarely share
the same mutational profile into clinically relevant sub-
types. Recently, another study proposed a network-based
method that enables the identification of rare mutations
involved in the perturbation of pathways and protein
complexes involved in tumorigenesis [15]. This study
predicted significantly mutated sub-networks containing
dozens of genes rarely affected by mutations across dif-
ferent cancer types. Importantly, a common feature of [1]
and [15] is the use of specifically designed network prop-
agation algorithms to identify rarely mutated, but poten-
tially relevant genes. However, we are still lacking methods
for directly quantifying the impact of rarely affected genes
on clinical endpoints such as survival.

Here, we present an approach exploiting the additional
information contained in gene expression data to quan-
tify potential effects of rare CNAs on clinically relevant
endpoints. Our framework rests on the notion that regu-
latory relationships between genes are fairly robust across
tumors, whereas the specific mutational pattern of a given
tumor is virtually private [1, 16]. Put differently, most
CNAs increase or decrease the activity of genes, while
potentially only a small fraction of them alter the regu-
latory relationships between genes. Hence, by using large
compendia of expression and mutation data sets, we can
establish regulatory relationships between genes in cancer
cells and quantify the effects of CNAs on gene expression.
Such a model can subsequently be used to analyze indi-
vidual tumors with known mutational patterns to quantify
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the impact of specific CNAs on global expression. Further,
by relating those expression changes to clinical endpoints,
we are able to quantify the effects of single CNAs on the
survival of an individual patient. Using this framework,
we can quantify direct (cis) effects and indirect (trans)
effects of CNAs, we can identify key regulators in CNA
regions (driver genes) with a particularly strong impact on
the expression of clinically relevant genes, we can compare
the importance of rarely mutated genes with frequently
mutated genes, and we can quantify the combined effects
of all CNAs on survival risk for an individual patient.
Our analysis shows that usually many gene CNAs together
influence individual patient survival by together impact-
ing on common molecular pathways. At the individual
level, it turns out that rare gene CNAs (less than 1 % fre-
quency in a given cancer cohort) can be as important as
frequent gene CNAs and we are able to specifically pin-
point potential candidate genes that are the most risky
rare and frequent gene CNAs in individual patients.

Results and discussion

Cancer cell transcriptional network

To predict the potential effects of gene CNAs in the
specific environment of tumor cells, we computation-
ally inferred a genome-wide transcriptional regulatory
network from human cancer cell lines of 24 differ-
ent tumor sites (Additional file 1: Figure S1) [17]. We
termed this model the cancer cell transcriptional network
(CCTN, Fig. 1). The input data for CCTN, consisting
of genome-wide gene copy number and gene expression
data, were strongly quality controlled for hybridization
artifacts (e.g. Additional file 1: Figure S2): each microar-
ray of the 991 cell lines was manually checked for potential
artifacts and 768 cell lines were kept after this filtering
step (Additional file 2: Table S1). To identify putative reg-
ulator genes for each of the considered 15,942 genes, we
modeled the expression level of each gene (target gene)
as a linear combination of the gene-specific copy number
and the expression levels of all other potential regulator
genes. Sparse regression based on lasso (least absolute
shrinkage and selection operator) [18] was used to select
those variables (target gene-specific copy number and
expression levels of other regulator genes) that best pre-
dict the expression level of a specific target gene, while
keeping the number of variables small. This approach has
previously been shown to perform well in similar tasks
[14, 19, 20]. We quantified the significance of the selected
predictors of each target gene [21] and kept only edges
with p values below 5 x 107> (unless stated otherwise).
Further, we removed potentially spurious regulator genes
in the chromosomal proximity of target genes that actu-
ally just reflect the copy number state of the target (see
‘Methods’ for details). This resulted in a sparse transcrip-
tional regulatory network (CCTN) comprising 36,786
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Fig. 1 Methodological overview. Left A cancer cell transcriptional regulatory network (CCTN) was inferred from gene expression and corresponding
gene copy number data of 768 cancer cell lines of the Cancer Cell Line Encyclopedia (CCLE) and validated using data of thousands of tumor patients
from The Cancer Genome Atlas (TCGA) and thousands of gene-specific perturbation experiments from the Library of Integrated Network-based
Cellular Signatures (LINCS). Right Signature genes whose expression correlated with patient survival were determined for individual TCGA cohorts
and validated on independent test data. Center CCTN was applied to gene copy number profiles of individual tumor patients of TCGA cohorts to
predict the impacts of individual gene CNAs on cohort-specific survival signature genes and to separate short- from long-lived patients. The impact
prediction was validated using LINCS data, known cancer genes, and data from two independent clinical cohorts and new TCGA patients. CCLE
Cancer Cell Line Encyclopedia, CNA copy number alteration, CCTN cancer cell transcriptional regulatory network, LINCS Library of Integrated

directed trans-acting edges between regulator and tar-
get genes (Additional file 1: Figure S3; Additional file 3:
Table S2). We refer to all genes affecting the expression
of at least one other gene in CCTN as regulator genes
(i.e. genes with at least one outgoing edge in CCTN).
Note that this regulator definition is driven by the network
inference approach that selects the most relevant predic-
tors of each response gene. Not every regulator gene is
necessarily a direct transcriptional regulator of a corre-
sponding response gene. Genes affected by at least one
regulator gene are regarded as target genes (at least one
incoming edge in CCTN; see ‘Methods’ for details).

In total, 88 % of the genes (14,029 of 15,942) in
CCTN were target genes, 60.6 % of the genes (9654
of 15,942) were selected as trans-acting regulators, and
27.3 % of the genes (4356 of 15,942) had a direct copy
number effect that was always positively correlated with
the underlying gene expression level (Additional file 3:
Table S2). We further characterized the genes in CCTN
based on their number of outgoing and incoming reg-
ulatory edges and found that the number of activator
edges (32,521 of 36,786) is much greater than the num-
ber of repressor edges (4265 of 36,786) (Fig. 2a and b). In
addition, CCTN is characterized by a few central hub
genes that have a large number of incoming and out-
going edges. Well-known cancer genes [2, 22] (e.g.
TNFRSF17, FUS, IKZF1, GATA1, PAXS8, SFPQ, IRF4,
KLK2, COL1A1, MSL2, HSP90AB1, PHOX2B, CD79B,

and LYL1) were significantly overrepresented among the
219 hub genes with more than 20 trans-acting regula-
tory edges to or from other genes (Fisher’s exact test:
p < 0.006; Additional file 4: Table S3). Further, regulator
genes with a large number of outgoing edges (i.e. major
regulators) were enriched for known transcription factors
and signaling pathway genes (Fig. 2c and d).

CCTN was derived from cancer cell lines, ie. in
vitro data. To test the validity of CCTN for in vivo
tumor cells, we used independent data of 13 different
cancer cohorts from The Cancer Genome Atlas (TCGA)
[23]. We downloaded gene expression and correspond-
ing gene copy number data of 4548 tumor patients
(Additional file 5: Table S4) and tested the predictive
power of CCTN on each TCGA cohort separately by
predicting the expression level of each gene for each
tumor using its corresponding copy number and expres-
sion data. To quantify the quality of the prediction, we
computed the correlation between the originally mea-
sured TCGA gene expression levels and the correspond-
ing expression levels predicted by CCTN for each gene
across all patients in a cohort. A strong positive corre-
lation between originally measured and CCTN-predicted
expression levels suggests that the respective gene is well
predictable by CCTN. The vast majority of genes had a
positive median correlation (median across the 13 TCGA
cohorts) between the predicted and measured expression
levels (Fig. 2e): 94.7 % when using CCTN with all
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Fig. 2 Cancer cell transcriptional network (CCTN) characteristics and validation. a, b Node degree distributions. ¢, d Functional annotation of

network genes with respect to their node degrees. a, € Regulator genes. b, d Target genes. e Median gene-specific correlations between predicted
and originally measured gene expression levels of individual genes in 13 TCGA cancer cohorts for CCTN including only significant edges (pink),
CCTN using all edges (blue), and for random networks with the same complexity as CCTN with significant edges (gray). CCTN with significant edges
predicts gene expression levels significantly better than CCTN with all edges (p < 6 x 107'%%) and random networks (p < 2.2 x 1073%, Wilcoxon
test). CCTN with significant edges was used for all subsequent analyses. f Cumulative p value distributions correlating experimentally measured and
computationally predicted single-gene perturbations pooling results from all 13 TCGA cancer cohorts. Forward: p values of correlations between
computed impacts flowing from a perturbed regulator to its targets and the corresponding experimentally measured impacts. The forward model
specifies the basic CCTN properties that were used to make impact predictions (one-sided correlation test quantifying for each single-gene
perturbation if the observed correlation between predicted and measured impacts is significantly greater than zero). Reverse: p values of correlations
between computed impacts flowing in the reverse direction from the responding targets to their perturbed regulator and experimentally measured
forward impacts. Random: Baseline for non-significant enrichment of small p values. See ‘Results and discussion’ and ‘Methods' for details of the
forward and backward models. The forward model predicted responses of single-gene perturbations significantly better than the reverse model

(p < 0.015 for each cohort) and than randomly expected (p < 2.1 x 10~23 for each cohort, one-sided Kolmogorov-Smirnov test). CCTN cancer cell
transcriptional regulatory network, sig. significant, TCGA The Cancer Genome Atlas

edges and 95.1 % when reducing CCTN to significant
edges. Restricting CCTN to significant edges had an even
more dramatic effect on the magnitude of the correla-
tion between predicted and observed expression (Fig. 2e;
Wilcoxon—Mann—Whitney test: p < 6 x 1071, Fig. 3).
An additional comparison of CCTN to random networks
with the same complexity showed that CCTN makes

significantly better predictions of expression levels for the
vast majority of genes (Fig. 2e; Wilcoxon—-Mann—Whitney
test: p < 2.2 x 107308), We further confirmed that both
target gene-specific direct copy number effects and trans-
acting regulator genes contributed to the correct predic-
tion of expression levels (Additional file 1: Figure S4).
Although the predictive power of CCTN was variable
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Fig. 3 CCTN-based prediction of gene expression levels for cancer cell lines and tumor patients. Gene-specific correlations between predicted and
originally measured gene expression levels of individual genes comparing CCTN including only significant edges (pink) to CCTN using all edges (blue). A
greater proportion of positive correlations reflects a better predictive power. a Prediction quality for human cancer cell lines used to train CCTN. As
expected, CCTN using all leared edges is better than CCTN with significant edges only. b-I Prediction quality of CCTN for tumor patients of 11 independent
TCGA cohorts. CCTN including only significant edges reaches strongly improved predictions for the vast majority of cohorts in comparison to CCTN
with all learned edges. See Additional file 1: Figure S5 for all cohorts. AML acute myeloid leukemia, BRCA breast invasive carcinoma, CCLE Cancer Cell
Line Encyclopedia, CCTN cancer cell transcriptional regulatory network, GBM glioblastoma multiforme, HNSC head and neck squamous cell
carcinoma, LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, OV ovarian serous cystadenocarcinoma, sig. significant, SKCM skin
cutaneous melanoma, TCGA The Cancer Genome Atlas, COAD Colon adenocarcinoma, STAD Stomach adenocarcinoma, THCA Thyroid carcinoma

between individual genes and between tumor types, our  cutoffs for including significant edges (Additional file 1:

model resulted in significant predictions for all consid-  Figure S6).
ered patient cohorts (Fig. 3; Additional file 1: Figure S5) We additionally compared CCTN, which was derived
and was also very robust with respect to different p value  from in vitro cancer cell line data, to two network models
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derived from in vivo data of specific tumor types. These
tumor type-specific network models tended to reach a
slightly or moderately improved predictive power com-
pared to CCTN on independent test data cohorts of the
same tumor type (Additional file 1: Figure S7a and b).
This is expected, because CCTN was trained on a mix-
ture of cancer cell lines and is, therefore, not specific for a
certain tumor type. However, CCTN reached nearly iden-
tical or slightly improved predictive power in comparison
to non-tumor type-specific network models (Additional
file 1: Figure S7c and d). This again suggests that CCTN
can be generalized to different tumor entities.

In conclusion, CCTN works well on independent data
and correctly captures the majority of potential regulatory
relationships between genes in the in vivo tumor situation.

Quantifying CNA impact on gene expression

Next we devised a method to quantify the impact of indi-
vidual regulator genes on all other genes in the network
(Fig. 1). This framework creates an impact matrix quanti-
fying for each gene pair (a, b) the direct and indirect effect
of gene a on the expression of gene b according to all
existing directed regulatory network paths that link a to b
in CCTN. The scoring also accounts for how well CCTN
can predict the effects of mutations, i.e. CNA—target gene
relationships that are poorly predicted get lower weights.
Here, we operationally define the impact of a copy number
change of gene a as its contribution to expression changes
of gene b. That is, the impact is the (predicted) fraction of
variance in the expression of a target gene caused by a spe-
cific gene CNA (see ‘Methods’ for details). The resulting
impact matrix also accounts for the possibility of feed-
back cycles in CCTN, which could amplify (or dampen)
the CNA effects.

We validated the correct prediction of impacts using
individual gene perturbation data (LINCS L1000; see
‘Methods’ for details) [24, 25]. In these experiments, 933
genes (representatives of the human transcriptome) over-
lapped with CCTN genes and were perturbed on aver-
age 54 times and the expression responses of all other
representative genes were measured, resulting in a total
of 50,306 perturbation experiments (Additional file 6:
Table S5). Note that the perturbations were repressing
(knock-down) and increasing (overexpression) the tran-
script levels, which functionally mimics the effects of
CNAs. We determined the significance of positive corre-
lations between predicted and observed impacts across all
13 TCGA cancer types (see ‘Methods’) and found a strong
enrichment of small p values (Fig. 2f; Additional file 1:
Figure S8), confirming that the impact score is predictive
for direct and indirect effects (one-sided Kolmogorov—
Smirnov test comparing the p value distribution under the
forward model to a uniform distribution expected under
a random model: p values across TCGA cohorts ranging
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from 1.2 x 10~% for thyroid carcinoma to 2.1 x 10~23 for
skin cutaneous melanoma). The perturbation-expression
data also allowed us to validate the direction of predicted
effects: the correlated expression of two genes does not
reveal which of the two genes is affecting which or if
they are together under the control of a third gene. Since
for perturbation experiments the direction of effects is
known, we can use these data to assess the correct pre-
diction of directional effects. We, therefore, compared the
quality of CCTN predictions using a forward model (i.e. a
model with correctly pointing interactions) with those of
a reverse model (i.e. a model with inverted interactions).
If the directionality information in CCTN is not mean-
ingful, we would expect both models to perform equally
well on the LINCS L1000 data. However, we observed that
the forward model performed significantly better than the
reverse model (Fig. 2f; Additional file 1: Figure S8: for-
ward model contains more small p values than the reverse
model: p values across TCGA cohorts ranging from 0.0004
for stomach adenocarcinoma to 0.015 for skin cutaneous
carcinoma), suggesting that CCTN mostly correctly pre-
dicts the direction of effects.

Identification of tumor type-specific survival signatures
The CCTN-derived impact matrix has the ability to pre-
dict how a CNA of a gene affects the expression of all other
genes in the network. To quantify the clinical relevance
of individual gene CNAs, we determined genes whose
expression levels are predictive of patient survival (Fig. 1).
We developed an approach based on a random forest
(RF) [26] to determine genes whose expression levels were
significantly correlated with patient survival in individ-
ual TCGA cohorts (see ‘Methods’ for details). We chose
RF for this task, because RF is particularly robust against
overfitting, can handle complex non-additive relation-
ships between predictor variables, and is able to exploit
the molecular heterogeneity within a tumor cohort, which
is essential for robust survival prediction and the char-
acterization of survival-associated genes. In addition, an
in-depth model comparison has previously shown that RF
is among the best methods for the prediction of patient
survival from gene expression data [27].

We initially tested our RF approach on all cohorts with
more than 20 patients with survival information (8 of 13
TCGA cohorts; Additional file 5: Table S4). Testing of
the resulting models on held-out patient samples (cross-
validation) revealed that at least 100 patients with survival
information were required to reach modest or more sig-
nificant survival predictions (Additional file 1: Figure S9),
which is in good accordance with previous findings for
selected TCGA cohorts [28]. Correlations between RF-
predicted and real patient survival on held-out samples
were in the range of 0.12 to 0.35 for six TCGA cohorts
(Additional file 1: Figure S9) with corresponding modest



Seifert et al. Genome Biology (2016) 17:204

significance (p < 0.1) for acute myeloid leukemia (AML)
and skin cutaneous melanoma (SKCM), and stronger
significance (p < 0.013) for head and neck squamous
cell carcinoma (HNSC), glioblastoma multiforme (GBM),
lung adenocarcinoma (LUAD), and ovarian serous
cystadenocarcinoma (OV). The RF approach was not predic-
tive for breast invasive carcinoma (BRCA) and lung squa-
mous cell carcinoma (LUSC) (Additional file 1: Figure S9),
possibly due to limited numbers of tumor samples or inad-
equate follow-up time. In addition, we also compared our
RF approach to random survival forest (RSF) [29]. RSF can
handle right-censored data to gain additional information
from patients that were alive. However, our RF approach
consistently reached better predictions of patient survival
on held-out patient samples than RSF with and without
censoring except for slightly improved survival predic-
tions for AML (Additional file 1: Figure S10). RSF was
also not predictive for BRCA and LUSC (Additional file 1:
Figure S10). We further validated the RF-based survival
prediction on GBM data from an independent patient
cohort that was not part of the TCGA initiative [30]. The
prediction of survival was highly significant, indicating
that our RF model can make robust, potentially clinically
relevant predictions (Additional file 1: Figure S11, r =
0.52, p < 0.0006, 36 patients). Thus, we focused on our
RF approach and only kept the six cohorts (AML, GBM,
HNSC, LUAD, OV, and SKCM) in all subsequent analyses,
but note that the performance on held-out patients indi-
cates a potentially greater clinical utility for HNSC, GBM,
LUAD, and OV than for AML and SKCM.

Next, we ranked all genes based on their importance
for predicting patient survival and filtered for the most
important genes (signature genes) in each cohort by con-
sidering gene-specific contributions to the average corre-
lation between RF-predicted and real patient survival (see
‘Methods’ and Additional file 1: Figure S12). The number
of selected signature genes for the six cohorts ranged from
eight for AML to 199 for GBM for a correlation cutoff
of greater than 0.1 (Additional file 7: Table S6; Additional
file 1: Figure S12). As expected, a complex clinical end-
point such as survival cannot be predicted from a small
number of genes. Accordingly, the correlation of individ-
ual gene expression levels with survival was weak, thus
underlining the need to consider multiple marker genes
in combination to obtain significant predictions of patient
survival (Additional file 1: Figure S13, p < 0.004 for all
cohorts except for a more modest significance for genes
positively correlated with HNSC survival reaching p < 0.043).

We further analyzed the obtained survival signatures
for known cancer genes [22]. We found, for example, that
the tumor suppressor NF1, a marker for mesenchymal
GBMs [31], and the oncogene DNMT3A, a DNA methyl-
transferase impacting on proliferation and cell survival
under hypoxic conditions [32], were part of the GBM
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survival signature. Interestingly, the transcription factor
HOXD13 [33], which has been recently associated with
poor survival of breast cancer patients [34], was part of
the LUAD survival signature. Further, the tumor sup-
pressor CAMTAL, a transcription factor involved in the
regulation of cell growth and differentiation of neuroblas-
tomas [35], and the tumor suppressor NIPBL, a cohesin
regulator involved in developmental regulation, growth
delay, and DNA repair [36], were part of the OV survival
signature. We finally note that signature genes are not nec-
essarily directly affected by CNAs. They should rather be
considered as targets of driver mutations.

Impact of individual gene CNAs on survival signature genes
Using the CCTN-derived impact measures as defined
above, we next quantified the contribution of each gene’s
copy number state on the expression of survival signa-
ture genes in each individual tumor (Fig. 1). First, we
performed an integrated validation of the entire impact
computation pipeline observing a significant positive cor-
relation between patient-specific cumulative impacts of
all individual gene CNAs and patient survival using an
independent GBM cohort [30] that was not used for
learning of any of our models for network effect quantifi-
cation and survival signature prediction (Additional file 1:
Figure S14a, Spearman rank correlation test: rho = 0.33,
p = 0.024, 36 patients, see ‘Methods’ for details). This
significant correlation between our impact scores and sur-
vival was not necessarily expected, as it does not account
for mutations other than CNAs. In addition, these patient-
specific impact scores further enabled a significant classi-
fication into short and long survival groups using Kaplan—
Meier curves (Additional file 1: Figure S14b, p < 0.02).

After validating our impact scoring, we focused on the
TCGA cohorts. For each mutated gene, we averaged its
corresponding impact scores across all signature genes,
yielding a single impact score that quantifies the contri-
bution of this specific gene CNA on the expression of all
survival signature genes. We selected high-impact gene
CNAs for each of the six TCGA cohorts and corrected
for multiple testing by comparing the originally obtained
gene CNA-specific impact scores against corresponding
gene-specific impact scores obtained under ten random
networks of the same complexity as CCTN (Additional
file 1: Figure S15, g < 0.006 for all cohort-specific selected
genes, see ‘Methods’ for details). We further confirmed
that these genes were enriched for known cancer genes
[22] (Fisher’s exact tests: p < 0.03 except for AML and
SKCM).

In addition, our impact scoring identified many genes
with established roles in the respective tumor classes
(Fig. 4). For example, TAL1 had the greatest impact score
among all LUAD-associated genes and had previously
been identified as a hub transcriptional regulator in LUAD
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with effects on TGF-beta signaling [37]. Another example
is TNNCI1, which is involved in the metastatic potential
of ovarian cancer cells [38] and was among the top-
ranking OV impact genes. Further, histone deacetylases
(HDAC) have a well-established role in tumorigenesis
and serve as important cancer drug targets. We cor-
rectly detected HDACS6 as a high-impact gene in GBM
[39, 40]. The predicted high-impact gene CNAs impacting
on AML, HNSC, and SKCM survival signatures are shown
in Additional file 1: Figure S16. Apart from just confirm-
ing well-known tumor markers, our CCTN approach also
provides supporting evidence for previously reported can-
didate genes and has the potential to reveal novel candi-
date genes impacting on survival. Both are demonstrated
by the following examples.

Different gene CNAs putatively impact on the same survival
signature gene

For example, HAX1 has been suggested to be involved
in lung cancer [41]. We confirm that an increased HAX1
copy number contributes to an increased HAX1 expres-
sion level with downstream effects on the expression of
TSEN15 (Additional file 3: Table S2). TSEN15, a LUAD
survival signature gene, is involved in the tRNA splicing
required for cell growth and division [42]. Our impact
analysis further predicts TSEN15 as a downstream tar-
get of two other high-impact gene deletions of PLXNB2
and CHACI that both strongly impact on the expression
of TSEN15. PLXNB2 is involved in cell proliferation and
migration [43]. CHACI1 is a negative regulator of Notch
signaling [44], involved in apoptosis [45] and known to
function in other cancers [46, 47]. Thus, these three genes
impact on a common molecular endpoint that is corre-
lated with patient survival.

Duplication of chromosome 7 in GBM suggests further driver
genes in addition to EGFR

It has previously been suggested that the clustering of
driver genes on chromosomal arms may explain frequent
amplifications or deletions of large chromosomal regions
[3]. Our results support this notion and assist in the
understanding of specific large deletions and amplifica-
tions. For example, the duplication of chromosome 7 is
one of the most prominent chromosomal mutations found
in GBMs [48] (Fig. 4a). Despite the frequency of this
event, we have only an incomplete understanding about
the genes in this region driving the cancerous phenotype.
The amplification of the oncogene EGFR [49] on chromo-
some 7 is involved in GBM etiology. However, most likely
additional genes on chromosome 7 contribute to GBM
development and prognosis [50]. This is supported by our
finding that patient-specific cumulative impact scores of
all genes on chromosome 7 explain survival significantly
better than the EGFR impact score alone (Meng’s -test
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on independent GBM cohort [30]: p < 0.005). We identi-
fied additional candidate genes on chromosome 7 with a
high impact on GBM survival signature genes (Additional
file 8: Table S7), including genes involved in (1) cell adhe-
sion and migration, cytoskeletal organization, and neurite
outgrowth (ARHGEF5, BAIAP2L1, MICALL2, SEMA3C,
and TNS3), (2) transcriptional regulators and chromatin
remodelers (ACTL6B, EZH2, H2AFV, IKZF1, and MLL3),
and (3) cell proliferation, apoptosis, and DNA dam-
age response (GIMAP6, HBP1, MCM7, PAXIP1, PPIA,
SAMDSY, and TBRG4). That EZH2 and MLL3 were found
to be affected by small somatic mutations further supports
their potential role in GBM etiology [48, 51].

Amplifications of tumor suppressors can contribute to longer
survival

Interestingly, we also observed several high-impact genes
that were amplified in some patients and deleted in oth-
ers. The effect of an amplification or deletion may be
conditional on other concurrent mutations, which is one
possible explanation for this observation. However, we
also detected some instances of positive gene CNAs where
the respective CNA was associated with increased sur-
vival. For example, amplifications of the tumor suppressor
genes WAC in GBM (97 tumors with amplifications vs
218 tumors with normal gene copy number, Fig. 4a, chro-
mosome 10, p-arm) and CDH1 in OV (61 tumors with
amplifications vs 174 tumors with normal gene copy num-
ber, Fig. 4b, chromosome 16, q-arm) were associated with
significantly prolonged survival (¢-test p values 0.0005 and
0.009, respectively).

Rare patient-specific gene CNAs strongly impact on survival
signatures

After having established confidence in the impact scoring,
we next determined the number of genes that have to be
considered in combination to explain a certain fraction
of survival risk in a given patient (Additional file 1:
Figure S17). We revealed considerable variation between
patients with respect to how many and to what extent
gene CNAs affect survival signature genes. Up to 100 gene
CNAs contributed together to the individually explained
risk. Next, we focused on the relationship between impact
and frequency at which gene CNAs occur in a tumor
cohort (Fig. 5 for GBM, OV, and LUAD; Additional file 1:
Figure S18 for AML, HNSC, and SKCM). As expected,
more frequently mutated genes are more likely high-
impact genes (Fig. 5a and b, correlation tests: p < 0.03)
and accordingly, the median impact of frequently mutated
genes tends to be higher than that of rarely mutated genes
(Fig. 5¢ and d). Also, known tumor suppressor and onco-
genes are enriched among more frequently mutated genes
with high impact (Fig. 5e and f, correlation tests: p < 0.005
except LUAD deletions). However, even though frequently



Seifert et al. Genome Biology (2016) 17:204

Page 10 of 25

a b
100 100
g 3
2 go- ov 2 goq ov
()] LUAD (] LUAD
> 604 > 604
3] 5]
S 404 S 40
£ 20 £ 20
* n.L.J..hJLL & h-uLJM.]LL
0 - b kbl I.L_. 0 - b o b
r T T T T 1 T T T T T 1
0.1 0.5 2 6 20 60 0.1 0.5 2 6 20 60
% patients (deletions) % patients (amplifications)
C
2.0 5 2.5 1
OV 20-4 ov
8 151 Luao 8 LUAD
E E 154
c 1.0 4 [ =
i 8 1.0 1
o o
© 054 | ] =
< ‘ | ﬂ S 05
0.0 - P N Y PR '| aulll - 0.0 - b b whiadband ! !_.1_._
i T T T T 1 T T T T T 1
0.1 0.5 2 6 20 60 0.1 0.5 2 6 20 60
% patients (deletions) % patients (amplifications)
e
100 100
o @
804 ov 804 ov
% LUAD CIC} LUAD
O 60 O 60
c =
3 40 - 2 40-
£ £
it ®
o | o i
od 1 L Hhall | od 4 dwblul LT
r T T T T 1 T T T T T 1
0.1 0.5 2 6 20 60 0.1 0.5 2 6 20 60
% patients (deletions) % patients (amplifications)
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mutated genes had on average larger impacts on signature
genes, a substantial number of rarely mutated genes (fre-
quency <1 %) also had strong impacts (Fig. 6 for GBM,
OV, and LUAD; Additional file 1: Figure S19 for AML,
HNSC, and SKCM). Importantly, some of these genes
with CNAs in only one, two, or three individuals per
cohort had impacts that were larger than those of many
frequently mutated genes (Fig. 6a—f; Additional file 1:
Figure S19a—f; Additional file 8: Table S7). In addition,
a significant fraction of the low-frequency high-impact
genes in GBM, OV, and LUAD have previously been

reported as cancer genes [22] in other tissues (Fisher’s
exact tests: p < 0.009). In conclusion, the patient-specific
expression pattern of survival signature genes can sub-
stantially be driven by individual rare gene CNAs, which
is consistent with recent findings that patient-specific
mutation patterns impact on survival [1].

Number of gene CNAs alone or single-gene tests do not allow
to quantify survival impacts

The previous examples have shown that CCTN allows
us to pinpoint rare and frequent gene CNAs that act on
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patient survival. We further analyzed if similar results can ~ with survival, but as expected there were no rare gene
also be obtained using two alternative approaches. First, CNAs among those genes (Additional file 1: Figure S20;
we considered the gene CNA burden of each patient, but  see Additional file 1: Text S3 for details). Thus, our CCTN-
we did not find any significant correlation between the based impact scoring approach allows us to gain novel
number of CNA-affected genes (rare, frequent, or both  insights into the putative impacts of specific gene CNAs.
together) and survival in any of the six TCGA cohorts

(see Additional file 1: Text S2 for details). Second, we con-  Chromosomal location instead of gene function explains
sidered single-gene tests to determine if patients with a  CNA frequency

specific gene CNA had significant differences in survival  Genes with very similar survival impact scores can have
compared to patients without this gene CNA. Considering  very distinct CNA frequencies in the same tumor class
the six TCGA cohorts, we were able to detect only some  (Fig. 6a—f). We sought to identify factors explaining why
gene CNAs for AML that were significantly associated  some of those gene CNAs are observed much more rarely
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than others. A first hypothesis was that rare high-impact
mutations occur later in the tumor etiology and affect
different endpoints than frequent gene CNAs. For exam-
ple, frequent mutations might primarily drive the neo-
plastic transformation and thus affect proliferation, DNA
damage response, and apoptosis, whereas rare CNAs
might affect angiogenesis, metastatic potential, or drug
resistance. However, functional classification of rare and
frequent gene CNAs did not yield striking differences
between the two CNA groups (Fig. 6g—i). Instead of
function, the chromosomal location of genes seems to
explain variable gene CNA frequencies better. The close
placement of two tumor-relevant genes with antagonistic
effects reduces the frequency of observing the respective
CNAss [3]. For example, an oncogene and a tumor suppres-
sor gene located in close chromosomal proximity reduce
the chance that a CNA in that region will be beneficial
for the tumor. We observed similar effects that distin-
guished rare from frequent gene CNAs in our data (Fig. 7;
Additional file 1: Figure S19). For example in LUAD,
frequent gene deletions are on average significantly fur-
ther away from oncogenes [2, 3] and essential genes [52]
than rare gene deletions (Fig. 7a and b, one-sided
Wilcoxon tests: p < 0.003, average distance from onco-
genes: 14.5 vs 6.3 Mbp, average distance from essential
genes: 3.8 vs 2.9 Mbp), while gene amplifications are typ-
ically significantly further away from tumor suppressor
genes [2, 3] (Fig. 7¢c, one-sided Wilcoxon test: p < 0.002,
average distance from tumor suppressor genes: 7.2 vs
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3.7 Mbp). Our data further show that the distance to
fragile genomic sites [53] is correlated with the observed
frequency of gene CNAs impacting on survival signatures.
For example, in GBM, frequently amplified genes are sig-
nificantly closer to fragile sites than rarely amplified genes
(Fig. 7d, one-sided Wilcoxon test: p < 5 x 107>, average
distance from fragile sites: 4.7 vs 10.7 Mbp). Finally, the
distance to frequently observed germ-line copy number
variations (CNVs) [54] is correlated with the observed fre-
quency of high-impact gene CNAs acting on survival sig-
natures. For example, frequently amplified genes in GBM
and OV are significantly closer to known germ-line CNV
sites than rarely amplified genes (Fig. 7e and f, one-sided
Wilcoxon tests: p < 0.016, average distance from tumor
germ-line CNV sites for GBM is 0.98 vs 1.7 Mbp and 1.4 vs
1.7 Mbp for OV). Interestingly, these correlations between
CNA frequency and genomic positioning were indepen-
dent of survival impact, but highly specific for tumor type
(Fig. 4; Additional file 1: Figure S21), suggesting that the
molecular mechanisms leading to and maintaining CNAs
are tissue-specific. Taken together, these analyses sup-
port that the chromosomal location of a gene rather than
its function determines variable CNA frequencies among
genes with similar impact.

Indirectly acting tumor-specific gene CNAs clearly improve
survival prediction

Our CCTN-based impact quantification approach utilizes
all patient-specific gene CNAs that directly or indirectly
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Additional file 1: Figure S21 for distance distributions of all tumor cohorts. a Distances of rare and frequent LUAD gene CNAs from known
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known tumor suppressor genes. d Distances of rare and frequent GBM gene CNAs from known fragile sites. e Distances of rare and frequent GBM
gene CNAs from known frequently occurring germ-line CNVs. f Same as (e), but for OV. Significant differences in distances of rare and frequent CNAs
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act on patient survival to distinguish between short- and
long-lived patients (Additional file 1: Figure S14). We fur-
ther analyzed the value of integrating indirectly acting
gene CNAs by comparing our approach to a basic ver-
sion that only considers CNAs of genes in the direct
network neighborhood of survival signature genes. Both
impact scoring approaches utilize CCTN as the basis for
enabling a fair comparison (see Additional file 1: Text S4
for details). To compare both approaches, we considered
five independent test cohorts [Rembrandt: GBM [30];
Clinical Lung Cancer Genome Project (CLCGP): LUAD
[55]; newly added TCGA patients: LUAD, SKCM, and
HNSC; Additional file 5: Table S4]. First, we determined
the numbers of patients that could be assigned to the
short or long survival group based on their individual gene
CNAs. We found that the integration of indirectly act-
ing gene CNAs led to significantly increased numbers of
classifiable patients for four out of five cohorts (Fig. 8a,
p < 22 x 10716, Fisher’s exact test). This is explained
by the observation that many patients did not have gene
CNAs in the direct network neighborhood of survival
signature genes, which prohibits a classification by the
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basic version. Second, we compared the separation qual-
ity between patients classified as short- and long-lived
by both impact scoring approaches. In two out of five
cohorts (Rembrandt and CLCGP), we did not find a sig-
nificant difference in the separation between short- and
long-lived patients (Fig. 8b). For all other cohorts (LUAD,
SKCM, and HNSC), including indirect effects significantly
improved the survival prediction compared to considering
only direct effects (Fig. 8b). For example, this significant
performance improvement is also observed when compar-
ing the survival curves of short- and long-lived CLCGP
and SKCM patients utilizing only frequent or all gene
CNAs (Fig. 8c and d). Thus, the integration of indirectly
acting gene CNAs into the prediction of short or long
patient survival is an important factor to improve the
classification of patients.

Frequent and rare tumor-specific gene CNAs contribute to
survival prediction

We have already shown that individual frequent and rare
tumor type-specific gene CNAs can have strong impacts
on survival signature genes (Fig. 4). This motivated us
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to analyze further if tumor-specific gene CNAs of indi-
vidual patients can be used to distinguish between short
and long survival. A slight modification of our impact
quantification algorithm enabled us to compute person-
alized impacts for each gene CNA in a patient-specific
tumor (see ‘Methods’ and Additional file 1: Text S1 for
details). This personalized impact score quantifies if the
corresponding gene CNA has an inhibitory impact (nega-
tive impact value) or an activating impact (positive impact
value) on a tumor type-specific survival signature gene.
To account for the direction of the survival association of
each signature gene, we multiplied this regulatory impact
with the corresponding sign of the correlation observed
between the expression levels of the signature gene and
the survival of patients. This resulted in a personalized
score that quantifies the impact of each tumor-specific
gene CNA on survival. The score captures, for example,
that a gene CNA with an inhibitory impact on a signa-
ture gene that is negatively correlated with survival has a
potential positive impact on survival (may increase sur-
vival), whereas a gene CNA with an inhibitory impact
on a positively correlated survival signature gene has a
potential negative impact on survival (may decrease sur-
vival). To get an integrated survival score for all gene
CNAs of a patient-specific tumor, we summarized the
tumor-specific gene CNA scores to an average patient-
specific survival impact score. Based on the score deriva-
tion, negative scores are expected to be associated with
shorter patient survival than positive scores. We used
these patient-specific average survival impact scores to
analyze if the CCTN-based impact quantification allows
us to distinguish between short and long survival coupled
with a systematic analysis to quantify how frequent and
rare gene CNAs contribute to the discrimination. In total,
we utilized data of 292 tumor patients from five indepen-
dent tumor cohorts including GBM patients from Rem-
brandt [30], LUAD patients from CLCGP [55] and newly
added TCGA patients from LUAD, SKCM, and HNSC
(Additional file 5: Table S4; no new GBM and AML
patients were added to TCGA and only too few new
OV patients were available from TCGA) that were not
involved in any step of the CCTN inference nor in any
step of the survival signature gene prediction before. To
analyze these new patient samples, we used CCTN as
derived from the cancer cell lines in combination with
the corresponding tumor type-specific survival signature
genes derived for the TCGA cohorts representing the
same tumor entity to perform patient-specific impact
quantification. An analysis of the contributions of (1) all
patient-specific gene CNAs, (2) only patient-specific fre-
quent gene CNAs, and (3) only rare patient-specific gene
CNAs to the separation of long- and short-lived patients
is shown in Fig. 9 for selected cohorts (Rembrandt: GBM;
CLCGP: LUAD and SKCM; new TCGA patients). Results
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obtained for the other cohorts are shown in Additional
file 1: Figure S22 (new LUAD and HNSC patients from
TCGA). Importantly, this patient stratification was better
than using random networks of the same complexity as
CCTN, which led to a collapse of the impact quantifica-
tion system (Fig. 9; Additional file 1: Figure $23), implying
that our scoring is able to prioritize successfully gene
CNAs with strong impacts on individual patient survival.

In more detail, for Rembrandt GBMs and new SKCM
patients from TCGA, we observed a significant stratifi-
cation into long- and short-lived patients (Fig. 9a and i,
p < 0.02). Interestingly, rare gene CNAs (frequency <1 %
in the training cohort) strongly contributed to the cor-
rect impact scoring for GBM and SKCM (Fig. 9c and k).
In contrast to GBM and SKCM, the full scoring based
on all patient-specific gene CNAs was not predictive for
LUAD samples from CLCGP (Fig. 9¢), whereas a scoring
based only on frequent gene CNAs (frequency >1 % in the
training cohort) was predictive for long and short survival
(Fig. 9f, p < 0.05). Rare gene CNAs did not improve the
LUAD patient stratification (Fig. 9g). These trends were
also confirmed by an independent analysis of new LUAD
patients from TCGA (Additional file 1: Figure S22a—c,
p < 0.01 for frequent gene CNAs). Finally, we note that
our impact scoring was not predictive for HNSC patients
(Additional file 1: Figure S22i-1, Figure S23q-t), possibly
due to the great molecular heterogeneity of HNSC tumors
containing subtypes with only very few CNAs [56, 57].

In summary, frequent and rare gene CNAs are both
important for the prediction of survival impacts. Over-
all there is no general trend that frequent gene CNAs
tend to be more important than rare gene CNAs for
the prediction of patient survival. The contributions of
patient-specific rare and frequent gene CNAs tend to be
rather tumor type-specific.

Conclusions

Multiple mutational patterns can perturb molecular path-
ways in similar ways leading to clinically almost indistin-
guishable phenotypes [1]. Thus, although the number of
cellular endpoints that have to be altered is limited [6], the
space of possible mutational patterns affecting the aggres-
siveness of a tumor (and ultimately patient survival) is
practically unlimited. As a corollary of that, frequency-
based approaches for detecting clinically relevant muta-
tions will be capable only of detecting the mountains,
leaving much of the phenotypic variation unexplained [2].
This study demonstrates the feasibility of an alternative
strategy: the impact of gene CNAs on the expression of
signature genes can be predicted using large compendia
of independent data. Importantly, gene—gene relation-
ships inferred from such data are largely conserved across
multiple tumor types and enable statistically significant
predictions of in vivo expression levels of most genes.
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Fig. 9 Impact of rare and frequent patient-specific gene CNAs on survival. Kaplan—Meier curves for patients with negative (blue) and positive (red)
average impact of their corresponding tumor-specific gene CNAs on cancer type-specific survival signature genes. Shown are results for
independent tumor cohorts (Rembrandt: GBM; CLCGP: LUAD; TCGA: SKCM new patients) that were not involved in any step of CCTN network
inference or RF-based prediction of survival signature genes. CCTN derived from cancer cell lines and cancer type-specific survival signature genes
identified from TCGA cohorts were used to investigate the impact of rare and frequent gene CNAs on patient survival for these cohorts. Separation
of long- and short-lived patients by CCTN is expected to be predictive if patients with positive average survival impact scores (red) tend to survive
longer than patients with negative impact scores (blue). The corresponding p value quantifies if the red curve is significantly above the blue curve in
comparison to random class label permutations. a—d GBM results. a Patients with positive average impact scores on survival signature genes (red)

melanoma, TCGA The Cancer Genome Atlas

tend to survive significantly longer than patients with negative impact scores (blue). b Frequent patient-specific gene CNAs (frequency >1 % in
corresponding training cohort) alone cannot explain the significant difference in (a). ¢ Rare patient-specific gene CNAs (frequency <1 %)
significantly contribute to the observed significant differences in (a). d Loss of patient separation into short and long survival for patient-specific
survival impact scores computed based on all patient-specific gene CNAs under a random network. e=h LUAD results. Similar to GBM, but in
contrast to GBM, frequent mutations alone contribute to a significant separation between long- and short-lived patients. i-I SKCM results. Overall
trends are comparable with those observed for GBM. CLCGP Clinical Lung Cancer Genome Project, CCTN cancer cell transcriptional regulatory
network, CNA copy number alteration, GBM glioblastoma multiforme, LUAD lung adenocarcinoma, RF random forest, SKCM skin cutaneous

Thus, although the expression variation of individual reg-
ulators changes the activity of molecular sub-networks,
the topology of regulatory relationships as such turns out
to be remarkably robust across cell types [58]. Because
of that, we were able to quantify the importance of gene
CNAs for individual tumor risks leading to the observa-
tion that rare variants can be as important as frequent
variants. Although this observation is not unexpected in
light of recent research [1-3, 15], our framework allows
us to specifically identify individual CNA-affected genes
with a potentially high impact on survival. Importantly,
the frequency at which a high-impact gene gets mutated
seems to be determined by factors that are indepen-
dent of its function or impact. Thus, the fact that some

high-impact genes have higher CNA frequencies may sim-
ply be due to their placement in genomic regions that
are more amenable for CNAs than others. Because of the
higher CNA frequency in those regions, these genes will
preferentially be selected during tumor evolution leading
to increased average impacts of high-frequency CNAs.
In short, impact does not affect frequency, but high fre-
quency still correlates with high impact.

In addition, we noticed striking differences between
tissues and between tumor types. For example, the cor-
relation between CNA frequencies and genomic features
was highly dependent on the tumor type. In addition, the
importance of rare and frequent gene CNAs to distin-
guish between short and long patient survival was also
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highly tumor type-specific. Further, we found many sur-
vival impact genes that are well-established cancer genes
in one tissue to be also mutated (with a large predicted
impact) in other tumors. However, the CNA frequency in
those new tissues was mostly low, explaining why many
of these genes have not been detected as being relevant
in those tumors before. These observations imply that
tissue-specific factors such as chromatin state, cell-cycle
rates, exposure to DNA-damaging agents, number of stem
cell divisions, or even the expression of specific genes
could considerably impact on mutational mechanisms
[59-61] that in the end affect patient survival.

Our conclusions rest on two computational models: the
first, CCTN, describes transcriptional regulatory relation-
ships between genes in a tumor context, i.e. in fast pro-
liferating cells, but independent of a specific tumor type.
The second model predicts signature genes associated
with patient survival given cohort-specific expression and
survival data. Three lines of evidence suggest that these
models are robust and predictive. First, CCTN was pre-
dictive on a large set of in vitro perturbation-expression
measurements. Second, CCTN was predictive on in vivo
tumor data from all TCGA cohorts that we tested. Third,
the impact scoring (which integrates both models) was
predictive for survival in four out of five independent
clinical cohorts that were not used for any of the previ-
ous analyses, revealing the tumor type-specific contribu-
tions of rare and frequent gene CNAs for the separation
into long- and short-lived patients. However, despite our
efforts to validate the models using a wide range of exter-
nal data, this study is just a proof of principle. Obviously,
improved models will have to account for a much wider
range of mutation types, consider epigenetic effects, and
include non-coding genes. Further, CCTN was learned
from cancer cell lines to exclude variations in tumor cell
purity between tumor samples that may have caused spu-
rious dependencies between genes. Clearly, the usage of
cancer cell line data has also disadvantages in compari-
son to tumor samples. Cell lines may not always correctly
reflect the in vivo situation in tumors due to limitations
set by cell cultures. We have designed the CCTN-based
impact computation such that only those genes whose
expression can adequately be predicted in the respective
tumor entity contribute to the impact estimate. Thus, our
framework makes no statement about genes whose regu-
latory networks differ significantly between cell lines and
tumors. The list of genes that can be included in this
analysis is further restricted by the use of different experi-
mental platforms that did not cover identical gene sets. In
addition, the quality of the predicted survival signatures
varied greatly between the different tumor types, which is
in agreement with previous reports on the limited usabil-
ity of TCGA gene expression data for the prediction of
patient survival [28]. This variability is in part due to the
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different sizes of patient cohorts or inadequate follow-up
time. Further, the complexity of the mutational patterns
and the relevance of CNAs in particular for the etiology of
a tumor entity may further contribute to the differences in
the predictive power of CCTN.

Our study provides clear indications that personalized
analyses of patient-specific gene CNA profiles are feasi-
ble. The potential impacts of each patient-specific rare
and frequent gene CNA on clinically relevant signature
genes can be determined. So far we have only analyzed
the impacts of rare and frequent gene CNAs on sur-
vival, but our framework is much more general, enabling,
for example, other studies that may focus on impacts
of rare and frequent gene CNAs on cancer-relevant sig-
naling pathways or molecular signatures associated with
treatment resistance. In addition, our framework also
allows us to pinpoint potential high-impact genes in large
chromosomal regions or on chromosomes that are recur-
rently affected by deletions or amplifications. We have
demonstrated this potential for the recurrent duplica-
tion of chromosome 7 in glioblastomas, suggesting addi-
tional driver genes apart from the known role of EGFR.
Further, comparative analyses of single-gene tests and a
related network-based approach clearly demonstrated the
value of our approach. Thus, our framework enables us
to study the impacts of rare and frequent gene CNAs.
Since copy number changes play a role in many other dis-
eases or genetic disorders (e.g. trisomy 21), we anticipate
applications of our framework beyond other interesting
applications in cancer research.

Future work yet has to establish the value of accounting
for rare gene CNAs to improve diagnostic and therapeu-
tic measures. Fortunately, the availability of a regulatory
model facilitates the detection of genes that are com-
monly affected by different rare gene CNAs, which might
open a window of opportunity for developing therapeutic
strategies against such rare mutations.

Methods

Cancer cell line data for CCTN inference

We initially considered all 991 human cancer cell lines
from the Cancer Cell Line Encyclopedia (CCLE) [17]
and reconstructed hybridization images of corresponding
gene expression and aCGH microarrays to systematically
screen for and remove all cancer cell lines with hybridiza-
tion artifacts. This resulted in a cancer cell line data set
of 768 cell lines from 24 primary tumor sites (Additional
file 2: Table S1). We normalized the gene expression
experiments using GCRMA [62] in combination with
a BrainArray design file (HGU133Plus2_Hs_ENTREZG
15.0.0). The resulting gene expression levels of each can-
cer cell line were further standardized by subtracting the
corresponding average gene-specific expression level of all
cell lines leading to log-ratios. We removed genes that did
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not show any variation in gene expression across all cancer
cell lines leading to 15,942 genes that were finally con-
sidered. The corresponding gene copy number data of all
cancer cell lines were taken from CCLE. The copy num-
ber of a gene in a cell line was given by the log-ratio of
the gene-specific copy number measured in the cell line in
comparison to a normal reference.

CCTN inference

We divided the genome-wide transcriptional regula-
tory network inference problem into independent gene-
specific sub-network inference tasks to obtain CCTN. For
each target genei € {1,..., N}, we assume that the expres-

sion level e;; of gene i in a cancer cell line d € {1,...,D}
can be predicted by a linear combination,
eid = aii - Cia + Y @i - €, (1)

J#i

of the gene-specific CNA c;; and the expression levels ej;
of other potential regulator genes j # i. The unknown
parameters of this gene-specific linear model are speci-
fied by @; := (a1;,...,an;))T € RN. Here, a;; quantifies
the direct local gene copy number effect and aj; with
j # i specifies the impact of the expression level of
gene j on the expression level of gene i. The integration
of gene-specific copy number data into the linear model
extends gene expression-based correlation network infer-
ence approaches [19] and contributes to predicting the
directionality of regulatory effects. We assume that a CNA
of a regulator gene can lead to an altered expression of
the regulator. This altered regulator expression can fur-
ther lead to expression changes of target genes of the
mutated regulator. Thus, each model parameter aj; has a
straightforward interpretation: (1) aj; < 0 implies that the
putative regulator j is associated with the repression of tar-
get i, (2) @; > O implies that the putative regulator j is
associated with the activation of target i, and (3) a;; = 0
implies that no putative regulatory edge between j and i
exists.

All unknown parameters of the gene-specific linear
model can be learned from the gene expression and gene
copy number data of the 768 curated CCLE cancer cell
lines. The use of cancer cell line data (which is free of
normal cells) circumvented the variation in tumor cell
purity between tumor samples that could lead to a spu-
rious correlation between CNAs and expression levels of
affected genes. Obviously, using cell line data also has
disadvantages compared to data from tumors. For exam-
ple, cell lines may incorrectly reflect the in vivo situation.
However, our in-depth validation on TCGA tumor data
suggests that the regulatory relationships are strongly
conserved between cancer cell lines and patient-specific
tumors (Fig. 2e and f; Additional file 1: Figures S4, S5).
We utilized lasso regression [18] to compute a sparse
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solution for the linear model in Eq. (1). Lasso minimizes
the residual sum of squares,

D 2 N
a; = argmin Z eiq — | @i - Cia + Z aji - €jq + A Z lajil,
j=1

i d=1 J#L
(2)

of the measured expression e;; of gene i and the model-
based predicted expression of gene i under consideration
of all cancer cell lines in dependency of a fixed complexity
parameter A; > 0. The complexity parameter X; deter-
mines the amount of shrinkage of the individual model
parameters a;; toward zero, where larger values of 1; lead
to greater shrinkage. This also enables us to select relevant
predictors (gene-specific copy number impact and regula-
tor genes) that best explain the expression of the response
gene, because irrelevant model parameters can be shrunk
to zero. The values of the fitted model parameters depend
on the choice of the gene-specific complexity parame-
ter. We utilized the R package glmnet [63] to determine
an optimal gene-specific complexity parameter and corre-
sponding optimal model parameters. We determined A; by
averaging the optimal complexity parameters (cv.glmnet:
lambda.min) obtained from ten independent repeats of
a tenfold cross-validation across all cancer cell lines. We
then used this gene-specific complexity parameter A; to
compute the corresponding optimal model parameters a;
considering all cancer cell lines. We further determined
the significance of model parameters when they first enter
the lasso model in Eq. (2) using a recently developed sig-
nificance test for lasso [21]. This provides an efficient way
to get p values instead of using computationally expensive
permutation strategies. To realize this, we first computed
the lasso solution paths for the active predictors (model
parameters in 4} that are unequal to zero) with respect to
all cancer cell lines using the R package lars [64]. These
results were then evaluated using the R package covTest
[65] to obtain p values that characterize the importance
of individual active predictors in the gene-specific linear
model.

The p value distributions of active predictors and a
quantile—quantile plot are shown in Additional file 1:
Figure S24a and b for ten learned CCTN instances. We
observed a strong enrichment of non-significant p val-
ues close to one and a smaller peak for highly significant
p values with values close to zero. p values between these
two extremes tended to be uniformly distributed. This
highly left-skewed p value distribution (strong enrich-
ment of non-significant p values) favors the parsimony of
the model and is expected from the mathematical theory
behind the significance test for lasso [21] (see Additional
file 1: Text S5 and Figure S24c and d for details). Thus,
as expected for lasso-based network inference, only very
few predictor genes are required for the prediction of
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the expression levels of specific response genes, whereas
the majority of predictors shrink to zero. Note that the
selected predictors remained significant after correction
for multiple testing (Additional file 1: Figure S24e). Thus,
regularization via lasso (reduction of the potential predic-
tor test space) followed by additional filtering based on the
significance of individually selected predictors represents
an appropriate strategy to account for multiple testing.

We further removed all potentially selected local chro-
mosomal regulator genes that were 50 genes upstream or
downstream of each target gene to avoid the inclusion of
genes that may simply reflect the copy number state of
the target gene rather than regulatory dependencies. The
choice of the local predictor cutoff is motivated by the
observation that local chromosomal correlations of gene
expression levels quickly approach zero with increasing
distance between genes (Additional file 1: Figure S25a).
Further, the structure of CCTN was hardly affected by
varying local gene predictor cutoffs considering 20, 50, or
80 genes upstream or downstream of each response gene
(Additional file 1: Figure S25b and c). Importantly, removing
local chromosomal predictors did not affect the CCTN
prediction accuracy, which was stable for the varying
local predictor cutoffs (Additional file 1: Figure S25d-f).
We just note that one could replace the fixed cutoff by
a nucleotide distance cutoff to account for differences
in local gene density, but as shown in Additional file 1:
Figure S25, this will not have a strong influence on the
results of our study.

We further tested if our network inference approach
was affected by the multicollinearity of predictors by
computing variance inflation factors (Additional file 1:
Figure S26). Collinearity is present when two or more of
the response gene-specific predictors have highly corre-
lated measurements. The vast majority of variance infla-
tion factors were close to one. Only 0.16 % of the predictor
combinations had a variance inflation factor greater than
ten, which is considered as an indicator of high multi-
collinearity [66]. Thus, CCTN is not affected by multi-
collinearity.

We repeated the learning of each gene-specific linear
model ten times to evaluate the stability of our approach.
We observed only very little variation of the gene-specific
optimal complexity parameter, the gene-specific root
mean square error, and the selected gene-specific predic-
tors across the ten independent runs (Additional file 1:
Figure S27a—c). We further selected for each target gene
only those gene-specific predictors that had p < 5 x 107>
(standard numerical precision limit of the R package cov-
Test) in all ten runs (Additional file 1: Figure S25d and e).
This corresponds to a g value cutoff of 0.0032. Note
that also other cutoffs can be used, but we specifically
focused on the resulting most parsimonious network,
which reached substantially better predictive power than
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more complex network instances. In more detail, the pre-
diction accuracy of the resulting ten instances of the gene-
specific linear model was highly similar considering the
CCLE data (Additional file 1: Figure S27f). The resulting
reduced gene-specific linear models also showed signifi-
cantly improved prediction accuracies for all independent
TCGA patient cohorts compared to the initially obtained
linear models, which also included non-significant pre-
dictors (Fig. 2e; Additional file 1: Figures S4—S6). Further,
these predictions were also significantly better than the
predictions of ten random networks of the same complex-
ity as CCTN derived by degree-preserving permutations
obtained by randomly exchanging predictors between the
reduced gene-specific linear models while keeping the
number of incoming and outgoing regulatory links con-
stant for each gene (Fig. 2e). All subsequent analysis was
based on average predictions done by an ensemble of
ten CCTN instances focusing on significant predictors.
The computation of a CCTN instance was computation-
ally demanding and could not be realized on a standard
desktop computer. It took on average 13.03 + 3.06 min
to learn the parameters of a gene-specific linear model
from the 768 CCLE cancer cell lines (AMD Opteron 6274,
2.2 GHz, 2 GB RAM). Thus, it would take more than
140 days to obtain the whole network for the 15,942
genes in a sequential approach. We, therefore, solved the
independent regression problems in parallel on a high-
performance computing cluster (HPC Atlas Cluster TU
Dresden, AMD Opteron 6274).

Generally, the network inference is very time-
consuming because of the large number of potential
gene-specific regulators and the large number of samples
that should be considered to obtain robust networks. So
far, we have removed only genes with constant expression
levels among all cancer cell lines to reduce the number
of potential predictors. This could be further extended
by removing genes that show only little variation of
expression levels for all cancer cell lines. Additionally,
a preselection of potential gene-specific predictors via
a correlation analysis could further help to reduce the
predictor space to reduce the global computation time.
However, such potential future preselection steps should
be done carefully to avoid the loss of predictive power,
because in our final network, about 61 % of all genes were
selected as potential regulators of other genes.

Tumor data for validation, survival signature prediction
and CNA impact studies

We downloaded gene expression and gene copy number
data of 13 different tumor cohorts (4548 tumor patients
in total) from TCGA [23]. Additional file 5: Table S4 con-
tains all patient identifiers and dates of data freezes for
the individual cohorts. We reorganized these data sets to
obtain for each patient the corresponding gene expression
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levels and gene copy numbers for the 15,942 genes con-
sidered in the CCLE cancer cell line data set. To obtain
gene-specific copy number log-ratios for each tumor
patient, we mapped the tumor-specific aCGH segments
to the corresponding genes. If segment breaks occurred
within a gene, we used the average log-ratio of the
involved segments as a gene-specific copy number mea-
surement. If a gene was not covered by at least one
aCGH segment, we assumed that this gene was not
affected by a copy number change and set its corre-
sponding gene copy number measurement to zero. Note
that personal normal aCGH controls were not available
from TCGA. Instead, copy number signals were normal-
ized against a universal reference. Thus, it is not possible
to distinguish germ-line gene CNVs from somatic gene
CNAs. This, however, does not affect our impact esti-
mates, since our estimates do not require any enrichment
of somatic mutations at driver genes. Microarray gene
expression data were already reported by TCGA as log-
fold changes against a universal reference. For RNA-seq
data, we computed log-fold changes by normalizing to
the average expression of the given gene in a cohort.
Generally, genes that were measured in the CCLE data
set used for CCTN inference, but which were not mea-
sured in some TCGA cohorts due to different exper-
imental platforms, were always included with artificial
measurements of zero, which did not provide any infor-
mation for CCTN. This was done to enable a standardized
application of CCTN to the different cohorts. We finally
added corresponding patient survival information (sta-
tus: dead or alive; survival time; and follow-up time) from
TCGA.

We further downloaded gene expression, gene copy
number, and survival data of five additional tumor cohorts
(292 tumor patients in total) to validate the whole CCTN
impact scoring pipeline based on tumor data that were
not used in any analysis before. We considered inde-
pendent GBM patients from the Rembrandt repository
[30], curated and standardized in [67]. We downloaded
processed data of independent LUAD patients form the
CLCGP cohort [55]. We further downloaded newly added
patients for the TCGA cohorts HNSC, LUAD, and SKCM
and processed them as described above. Corresponding
patient identifiers and dates of data freezes of all cohorts
are provided in Additional file 5: Table S4.

CCTN-based impact computation

We developed a two-step approach to predict the impact
of a specific gene CNA on the expression of a target gene
of interest (here, signature genes) using CCTN, which
represents regulatory relationships between genes learned
from CCLE data. We now use CCTN to infer a cohort-
or patient-specific impact matrix by propagating effects
through CCTN using its regulatory paths between genes.
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Importantly, the resulting impact score is corrected for
the variance that can be explained by CCTN at each
node (gene) on the paths from the CNA gene to the tar-
get. An alternative naive approach would have been to
correlate CNA states of genes directly with the expres-
sion of target genes of interest. Such an approach, how-
ever, has several disadvantages. First of all, such a model
would be unable to predict the effects of CNAs that
were not already contained in the training data, render-
ing it basically useless to investigate the effects of rare
CNAs. Our approach can predict the effects of CNAs that
were not seen in the specific patient cohort before. Sec-
ond, the naive correlation model would lack mechanistic
detail about how effects are propagated through the net-
work, which is important for the interpretation of the
results.

Basic network propagation algorithm

For all these reasons, we developed a network propagation
algorithm that utilized CCTN to compute the informa-
tion flow between genes in the network. This allowed us
to compute the impact of patient-specific gene CNAs on
survival signature genes. We considered a given TCGA
cancer cohort of D patients for which gene expression
and gene copy number profiles were measured for N
genes. For each patient d € {1,...,D}, we took its gene
expression and gene copy number profile to predict the
expression level e;; of each gene i € {1,...,N} using the
corresponding gene-specific linear model in Eq. (1) with
optimal parameters 4} from CCTN. Next, we computed
each gene-specific correlation coefficient r; between the
predicted and the originally measured expression levels
of gene i across all D patients of that cohort. Subse-
quently, we analyzed only genes with a positive corre-
lation between predicted and observed expression levels
(r; > 0), and we termed those genes predictable. The
fraction of predictable genes varied between tumors types
(Additional file 1: Figure S5). Note that poorly predictable
genes (i.e. genes with small positive r;) will contribute only
very little to the total impact score (see below). Thus, it is
not necessary to further increase the minimal r; for calling
predictable genes. Next, we computed the correspond-
ing variance R? = r; - r; explained for predictable genes
that was covered by the underlying linear model in Eq. (1)
and set R% := 0 for unpredictable genes (r; < 0). Thus,
R? directly reflects the network-based prediction accuracy
for the expression level of gene i under CCTN by quantify-
ing to what extent CCTN can explain the variance of gene
i in a specific cancer cohort. Next, we considered each reg-
ulator gene j of gene i and determined for each regulator
its direct contribution to the observed explained variance
Rl.2 of gene i. Therefore, we computed the average propor-
tion of each regulator j on the prediction of the expression
of target gene i by
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and determined the direct average copy number contribu-
tion of target gene i by
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under consideration of the D patients. We used absolute
values in the computation of p;; (and p;;) to account for
regulator genes that act as either inhibitors or activators
of target gene i. If a gene j is not a direct regulator of gene
i (aj; = 0), then pj; is set to zero. In analogy, if target gene
i does not have a direct copy number effect (a; = 0), then
pii is set to zero. Based on that, we defined a basic network
flow matrix,

F= (ﬁi)15;',i§N = pji - R},

by weighting the explained variance Ri2 of target gene i
with the average proportion pj; of its direct predictors
(gene copy number and regulator genes) j. Thus, each col-
umn { of F contains the explained variance of a target gene
i split into average proportions according to the contribu-
tions of its copy number and its target gene-specific regu-
lators. The prediction of gene expression levels in tumors
is of good quality, but of course not perfect (Additional
file 1: Figure S5). For that reason, the explained variance
fulfills 0 < Ri2 < 1 and, thus, the column sum norm of F is
strictly less than one. We utilized this to compute the indi-
rect effects of gene CNAs on other genes (i.e. the network
flow) via:

o0
F* = ZF",
k=1

which sums over the contributions of all network paths
of increasing length k. Here, F¥ specifies the kth matrix
power obtained by a k-fold matrix multiplication of F. An
element ];/f of F¥ represents the impact of a trans-acting
regulator gene j on the explained variance of a target gene
i via all directed network paths from j to i of length k.
Since the basic network flow matrix F has a column sum
norm that is strictly less than one, the network flow F*
will converge to its limit (/ — F)~! — I (geometric series of
matrix F starting at one), where I is the identity matrix and
(I — F)~! specifies the inverse of matrix I — F. However,
the computation of the inverse of a large matrix is very
time-consuming (/ — F has dimension N x N). In addition,
due to the sparsity of F (the majority of entries are zero
because CCTN utilizes only the most relevant predictors)
and its entries in [0, 1), we also know that the values of
the elements in F¥ quickly approach zero. Thus, it is more
efficient to approximate F* by adding only an additional
F¥ if the obtained difference of the sum over FX up to k
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and the previous sum up to k — 1 is greater than a pre-
defined threshold. We stopped the approximation of F* if
the sum of the differences of the column sums of the cur-
rent and the previous approximated matrix was less than
1073, Starting with a TCGA cohort-specific sparse ini-
tial basic flow matrix F, we typically reached convergence
after less than 50 iterations for most of the 13 different
TCGA cohorts. The resulting network flow matrix F* rep-
resents the impact values for each gene pair. All impact
values in F* are equal to or greater than zero. We fur-
ther standardized each column of F* by dividing each
column-specific impact entry by the total sum of column-
specific impacts followed by multiplication by 100 to get
impact values in percentages. The impact of a gene j on
the variation of expression of a gene i is given by ]f
By considering the corresponding entries of F*, we were
able to quantify the impact of each patient-specific gene
CNA on the predicted TCGA cohort-specific survival
signature genes.

Identtification of gene CNAs with a high impact on survival

We applied the basic network propagation algorithm to all
TCGA cohorts for which we obtained survival signature
genes that were significantly associated with patient sur-
vival (AML, GBM, HNSC, LUAD, OV, and SKCM). This
resulted in a cohort-specific impact matrix F* for each
cohort. We next determined for each patient in a cohort
all of their tumor-specific gene CNAs (genes with abso-
lute aCGH log-ratio >0.75; Additional file 1: Figure S17:
results obtained for a more stringent absolute aCGH log-
ratio cutoff >1 were highly similar) and computed the
frequency of all gene-specific deletions or duplications
in the whole cohort. We then took each mutated gene
and considered the cohort-specific impact matrix F* to
compute the average impact that a mutated gene had
on all cohort-specific survival signature genes (Additional
file 1: Figure S12: selection of a stringent set of signa-
ture genes using a correlation cutoff >0.1; Additional
file 1: Figure S13; and Additional file 1: Figure S17: results
obtained for a less stringent correlation cutoff >0.05 were
highly similar). We next considered for each cohort all
genes that had at least one deletion or duplication, sorted
all these genes in increasing order of their impacts, com-
puted the cumulative impact across all mutated genes,
and plotted this cumulative impact clearly highlighting
cohort-specific gene CNAs with a high impact on patient
survival (Additional file 1: Figure S15). We next used a
cumulative impact cutoff of greater than one to select
high-impact gene CNAs for each cohort (Additional file 1:
Figure S15: black dashed line close to zero). We further
ensured that the impact of each selected high-impact gene
on the survival signature genes was significantly greater
than the corresponding gene-specific impacts obtained
under ten random networks of the same complexity as
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CCTN (degree-preserving network permutations). There-
fore, we computed for each CNA gene in a cohort the
difference between its CCTN-based impact score and
each corresponding impact score under a random net-
work leading to ten gene-specific impact score differences
per gene. We then tested for each gene if the gene-specific
differences between the original and the random impact
scores were greater than zero using a one-sided Wilcoxon
test. We further corrected the resulting p values for mul-
tiple testing by computing false-discovery-rate-adjusted
p values (g values) for all genes [68]. We recognized that
also very small impacts close to zero can be highly sig-
nificant, because the observed impacts obtained under
random networks were even closer to zero. However, such
genes with very small impact are less likely to be bio-
logically or clinically relevant. Therefore, we decided to
focus only on stringent selections of cohort-specific high-
impact genes based on Additional file 1: Figure S15 as
described above instead of using a fixed g value cutoff.
The g values of the selected high-impact genes were less
than 0.006 for all TCGA cohorts (g value cutoffs: AML <
0.0053, GBM < 0.0048, HNSC < 0.0058, LUAD < 0.0056,
OV < 0.0046, and SKCM < 0.0049).

Extension to patient-specific impact scores

Further, we note that the proportions p;; and p;
used to construct the basic network flow matrix F
are cohort-specific averages using the basic network
propagation algorithm described above. One can easily
modify the computation to get specific proportions
for each individual tumor patient (Additional file 1:
Text S1: Patient-specific absolute impact scores) to con-
struct a patient-specific basic network flow matrix F,
but these computations and the later network propaga-
tion steps are even more time- and resource-consuming
because one now has to apply the network propagation
algorithm to each individual patient. This takes about
24 hours on an AMD Opteron 6274 with 2.2 GHz, requir-
ing up to and more than 80 GB RAM for one patient. A
compressed basic network flow matrix F required about
1 MB of disk storage for one patient, but the resulting
compressed final impact matrix F* required about 1 GB
of hard disk space. To compare both approaches, we ran-
domly selected 100 patients from each of the six TCGA
cohorts (AML, GBM, HNSC, LUAD, OV, and SKCM)
and found that the obtained patient-specific impact val-
ues acting on survival signature genes or all network genes
are strongly correlated with the corresponding cohort-
specific impact values (Additional file 1: Figure S28). For
that reason, we decided to work with cohort-specific
impact scores in Figs. 4, 5, 6 and 7 and the corresponding
Additional file 1: Figures S15-520. We did notice, how-
ever, that in some cases the patient-specific impact matrix
significantly deviated from the cohort average (Additional

Page 21 of 25

file 1: Figure S28), suggesting that in the future, it might
even be worthwhile to use personalized impact matrices.

In addition to this absolute quantification of impacts of
patient-specific gene CNAs, one can further slightly mod-
ify the computation of the specific proportions p;; and p;;
to obtain relative proportions that enable us to propagate
patient-specific repressive and activating impacts through
the network (Additional file 1: Text S1: Patient-specific
relative impact scores). We used these scores to com-
pute patient-specific survival impact scores considering
all corresponding tumor-specific gene CNAs as described
in ‘Results and discussion’ These patient-specific survival
impact scores enabled us to distinguish between long- and
short-lived patients and to investigate the contributions of
all, frequent, or rare tumor-specific gene CNAs on patient
survival (Fig. 9; Additional file 1: Figures S14, S22, and
$23). This approach was as time and resource intensive as
described above.

Perturbation data for CCTN-based impact validation

We used the L1000 data set of the Library of Integrated
Network-based Cellular Signatures (LINCS) [24] to val-
idate our CCTN-derived impact scores. The L1000 data
set provides information about gene expression changes
of different human cell lines in response to chemical
(small molecule) or genetic (shRNA) perturbations. We
focused on perturbation experiments done for the about
1000 landmark genes defined by the LINCS consortium
as representatives of the human transcriptome. We found
that 933 of these landmark genes were part of CCTN.
We next considered all gold standard perturbation experi-
ments performed for these 933 genes and downloaded for
each perturbation experiment the corresponding acces-
sible top 100 response genes (top 50 up- and top 50
down-regulated landmark genes) via the application pro-
gramming interface accessible under http://api.lincscloud.
org/. Overall, we obtained the top 100 response genes
of 50,306 perturbation experiments leading to on aver-
age 54 perturbation experiments for each of the 933
genes (Additional file 6: Table S5). We used this infor-
mation to create a response gene frequency statistic for
each perturbed gene by taking into account all corre-
sponding gene-specific perturbation experiments, i.e. we
counted how frequently each of the 933 landmark genes
was observed among the top 100 response genes. Next,
we compared the ranks of the corresponding impact
scores from the CCTN-derived impact matrix with these
independently obtained response scores. CCTN-derived
impact scores and LINCS-derived response scores were
correlated gene-wise. The distribution of p values result-
ing from a pan-cancer analysis of the individual impact
matrices obtained for the 13 different TCGA cohorts was
significantly shifted towards small values [Fig. 2f, one-
sided Kolmogorov—Smirnov test comparing the p value
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distribution of the forward model (see below) to a uniform
distribution representing the baseline for non-significant
enrichment: p < 2.1 x 10~23 for each TCGA cohort],
confirming the overall significant predictive power of
our impact scores. Importantly, such a significant shift
towards small p values was also observed for each indi-
vidual impact matrix of a TCGA cohort (Additional file 1:
Figure S8).

In addition, for the perturbation experiments, the direc-
tionality of effects is known. Thus, we utilized the LINCS
data to validate the correct prediction of the directionality
of effects by CCTN. Therefore, we compared the stan-
dard forward model, which quantifies the significance of
correlations between computed impacts flowing from a
perturbed regulator to its targets and the corresponding
experimentally measured impacts, to the reverse model,
which quantifies the significance of correlations between
computed impacts flowing in the reverse direction from
the responding targets to their perturbed regulator and
experimentally measured forward impacts. That means
that in the forward model, both compared impacts flow
in the same direction, whereas in the reverse model, the
compared impacts flow in opposite directions. If CCTN
contained only information about pairwise correlations of
gene expression levels, we would expect that the forward
and the reverse models would perform equally well on the
LINCS data. We found that the forward model reached
a stronger enrichment of small p values than the reverse
model for a pan-cancer analysis of the individual impact
matrices obtained for the 13 different TCGA cohorts
(Fig. 2f, one-sided Kolmogorov—Smirnov test compar-
ing the p value distribution of the forward model to the
p value distribution of the reverse model: p < 0.015 for
each TCGA cohort). This was also found for the impact
matrix of each individual TCGA cohort (Additional file 1,
Figure S8a-m) and further supported by direct gene-
specific comparisons of the forward and backward models
(Additional file 1: Figure S80). This suggests that CCTN
is mostly able to correctly predict the directionality of
effects.

Identification of survival signature genes

We used random forest (RF) [26] to identify genes that
were associated with the survival of patients in TCGA
cohorts. RF was previously found to be one of the best
performing methods for the prediction of patient survival
based on gene expression data [27]. All analyses were per-
formed on uncensored data using the R package random-
Forest [69] with standard settings. We initially applied RF
to patient-specific gene expression profiles of each TCGA
cohort containing more than 20 patients with survival
information (Additional file 5: Table S4: AML, BRCA,
GBM, HNSC, LUAD, LUSC, OV, and SKCM) to evaluate
how many patients are required for significant predictions
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of patient survival. Validations of each cohort-specific
RF on corresponding out-of-the-bag data (patient-specific
gene expression profiles that a specific tree of the RF
has not seen during its construction) showed that for six
TCGA cohorts with more than 100 patients (AML, GBM,
HNSC, LUAD, OV, and SKCM), significant predictions of
patient survival were possible (one-sided correlation tests:
p < 0.1; Additional file 1: Figure S9).

Next, we focused on these six cohorts and developed
an RF-based approach to determine genes that are associ-
ated with patient survival. For each of the selected TCGA
cohorts, we standardized the expression levels of each
gene to a mean of zero and a standard deviation of one
across all patients. We next randomly selected 90 % of the
patients for the training of an RF and utilized the remain-
ing patients as independent test sets for the evaluation of
the performance of survival prediction and the character-
ization of relevant genes. We trained an RF on the training
set and determined the corresponding gene-specific selec-
tion frequencies (SFs) that quantify how frequently each
gene was chosen as a relevant survival predictor. We
repeated the separation into training and test data 100
times and trained the corresponding RFs to evaluate the
stability of the obtained SFs. We found that the standard
deviations of the SFs were close to zero also for genes with
SFs clearly greater than zero. Thus, the RF-based asso-
ciation of genes with patient survival was robust. Next,
we computed the average SF for each gene based on the
100 RFs and corrected them for selection biases. This was
done by subtracting average gene-specific SFs obtained
from 100 corresponding RFs that were trained using ran-
domly permuted survival information. To obtain a ranking
of genes with respect to their strength of association with
patient survival, we ranked all genes in decreasing order
of their average corrected SFs. This allowed us to quan-
tify their importance for the prediction of patient survival
utilizing the independent test data set that we had ini-
tially put aside. Therefore, we considered each of the 100
RFs and its corresponding test data set and predicted the
survival of the test patients with respect to successively
increasing numbers of permuted expression levels (per-
mutation of gene-specific expression levels across all test
patients) for the previously determined top-ranking pre-
dictor genes. For each of these successive permutation
steps, we computed the correlation between the originally
observed test patient survival and the RF-predicted test
patient survival to quantify the importance of the top-
ranking genes associated with survival. We repeated this
procedure ten times for each of the 100 RFs leading to
1000 permutation runs in total. We did this in steps of
single genes for the first 1000 top-ranking predictors fol-
lowed by steps of 100 genes for the remaining top-ranking
predictors. We finally averaged the obtained correlation
profiles for successively permuted top-ranking predictors
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across the 1000 permutations. We found that the average
correlation profile of the top-ranking predictors quickly
approached zero, enabling us to set a cutoff to select the
most relevant genes associated with survival (Additional
file 1: Figure S12). We subsequently considered all predic-
tor genes above a stringent correlation cutoff of 0.1 (also
later used in our in-depth studies) and a less stringent
cutoff of 0.05 as TCGA cohort-specific survival signature
genes and confirmed that the expression of these genes
was correlated with patient survival.

Therefore, we used standard hierarchical clustering
to group the top-ranking predictor genes revealing two
major groups: (1) survival signature genes negatively asso-
ciated with survival and (2) survival signature genes
positively associated with survival. We finally computed
average patient-specific gene expression levels for these
two clusters and confirmed that these average expression
profiles are significantly correlated with patient survival
(one-sided correlation tests: p < 0.05; Additional file 1:
Figure S13), suggesting that our RF approach is well suited
for the identification of survival signature genes.

In addition, we also compared our RF approach to
random survival forest (RSF) [29], which can handle right-
censored data to gain additional information for the pre-
diction of patient survival. We used the corresponding R
package randomForestSRC to determine RSFs. We found
that our RF approach reached clearly better predictions of
patient survival than RSF without and with censoring for
the initially considered TCGA cohorts (Additional file 1:
Figure S10). See ‘Results and discussion’ for more details.

Gene annotations and genomic features

Lists of human transcription factors and co-factors, phos-
phatases, kinases, signaling and metabolic pathway genes,
essential genes, tumor suppressor and oncogenes, and
known cancer genes were compiled from different pub-
lic resources (see Additional file 9: Table S8 for genes
and references). Fragile genomic sites [53] were extracted
and lifted over to hgl9 (Additional file 10: Table S9). Fre-
quently observed CNV sites [54] were available for hg19
(Additional file 11: Table S10).
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