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Abstract

A study examining blood lipid traits takes epigenomics
approaches to the next level by using carefully
performed Mendelian randomization to assess
causality rather than simply reporting associations.
Mendelian randomization as a tool for causal
inference
Epidemiology is concerned with identifying modifiable
etiological factors for health outcomes in the population,
but it faces the challenge of distinguishing causal
influences from mere statistical associations. Causality
between a risk factor or exposure X and a trait or disease
outcome Y can be established by conducting an experi-
ment; however, in many cases ethical and practical
limitations rule this out. Researchers must then rely on
observational studies to establish associations between
exposures and outcomes, but these associations might
not reflect true causal effects owing to the inability to
exclude possible alternative mechanisms.
When genetic variations are studied as exposures,

reverse causality is ruled out because the DNA sequence
remains unchanged throughout life (although the genetic
markers might not be the actual causal variants but only
in linkage disequilibrium (LD) with them [1, 2]). When
epigenetic states are investigated as mediating mecha-
nisms between exposures and health outcomes, the
challenges of causal inference equal those faced in
traditional epidemiological studies. Epigenetic states are
unstable and tissue specific; thus epigenetic differences
between cases and controls could be either causes or
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consequences of the disease, or arise owing to confound-
ing factors. In a new study, Dekkers and colleagues [3]
show how a Mendelian randomization approach can be
used to address these challenges.
Even if real experiments are not possible, various quasi-
experimental designs could still be available to aid in
testing causal hypotheses. One such design is Mendelian
randomization (MR), which has become well known in
observational epidemiology [4, 5]. MR applications for
epigenetic epidemiology have been developed [6] and
have recently been applied by Dekkers and colleagues to
study causality between blood lipids and DNA methyla-
tion in circulating cells [3].
MR is a form of instrumental variable analysis and is

based on the concept that, if X affects Y, factors affecting
X must also have an effect on Y. In MR, a genetic variant
Z that is known to associate with X is utilized as an
‘instrumental variable’ to investigate the causal nature of
the association between X and Y (Fig. 1a). If the under-
lying assumptions (see below) are met, an association
between Z and Y can be taken as evidence for causality
between X and Y [4]. The random segregation and as-
sortment of alleles from parent to offspring during
gamete formation ensures that associations between
genetic variation and outcomes of interest are usually
not susceptible to confounding. Because an individual’s
genotype precedes the outcome, reverse causality is also
not an issue. The segregation of alleles during meiosis
can thus be seen as analogous to the randomization
process in randomized controlled trails (RCTs) [4].
While the scope of applications is limited by its

assumptions, MR has been applied to various exposures,
such as cholesterol levels, alcohol intake, body mass
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Fig. 1 a Illustration of Mendelian randomization to study causality
between exposure and outcome in the presence of confounders.
b Illustration of a situation when the assumptions of Mendelian
randomization are violated because the genetic instrument has
pleiotropic effects, influencing both the exposure and the outcome.
c The assumptions are violated because the genetic instrument is in
linkage disequilibrium with another variant that is associated with the
outcome. d The genetic instrument is associated with confounding
factors, violating the assumptions of Mendelian randomization. X,
modifiable exposure of interest; Y, outcome of interest; Z, genetic
variant (a single allele or a linear combination of several alleles) used as
an instrumental variable; U, (measured or unmeasured) confounding
factors; G, genetic variant that is in linkage disequilibrium with Z. The
broken arrow denotes an assumed, but unknown, causal effect
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index, and C-reactive protein, with varying findings
regarding their effects on diverse outcomes, such as car-
diovascular disease, Alzheimer’s disease, exercise levels,
and depression [5]. Epigenetic applications are still rela-
tively rare but include studies of maternal hyperglycemia
affecting epigenetic regulation of the leptin gene in
newborns [7] and methylation near the gene encoding
interleukin-4 influencing serum immunoglobulin E
levels [8].

Assumptions and pitfalls of Mendelian
randomization
Causal inferences drawn from MR studies are only valid
if the rather strict assumptions of the method are met
[4]. First, the genetic instrument Z must be associated
with the exposure X. This must be a reliably established
association, not merely based on the study sample at
hand. Second, the genetic instrument Z must not be as-
sociated with the confounding factors U. Third, the gen-
etic instrument Z should only be related to the outcome
Y through its association with the exposure X. Figure 1a
shows a directed acyclic graph of the situation when
these assumptions hold.
The first assumption is the least problematic. Indeed,
large-scale genome-wide association studies (GWASs)
have produced large numbers of rather reliable gene–
trait associations [1, 2]. Assuming that a genetic instru-
ment (either a single allele or a linear combination of
several alleles) for X is available, the remaining assump-
tions become crucial. As has been pointed out, it is
never possible to prove definitively that these assump-
tions hold. Instead, their validity must be weighed based
on biological knowledge [4, 5].
If the genetic instrument is directly (or via some inter-

vening variable other than X) associated with the out-
come of interest, MR will produce incorrect or at least
biased results because an observed association between
Z and Y would not only tell about the association be-
tween X and Y. This would happen if the genetic variant
had pleiotropic effects, influencing not only X but also Y,
as in Fig. 1b. Notably, recent genome-wide analyses
point towards significant pleiotropic effects for different
health outcomes [1, 2]. The situation is more challenging
when polygenic scores (PSs) combining several alleles
are used as instruments. Crucially, in this situation, the
assumptions of MR should hold for all variants included
in the allele score [9]. Thus, for unbiased MR results,
none of the included alleles should have a pleiotropic
effect on the outcome Y. This can be problematic for
studies using PSs as instruments—which is increasingly
common as the GWAS approach points towards highly
polygenic effects for complex traits—if pleiotropy turns
out to be more widespread than has been previously
thought. Recently, multivariable MR has been developed
to address pleiotropy [5].
Besides pleiotropic effects, LD between the genetic in-

strument Z and some other allele(s) that influence Y
would violate the assumptions of MR (Fig. 1c). While
the LD structure is generally known, using a PS as an
instrument complicates the situation here also. Finally,
the assumptions would be violated also by a pleiotropic
effect on (or LD with a pleiotropic variant on) the
confounding factors U (Fig. 1d). For example, socioeco-
nomic status is an important confounder for many
health outcomes. A recent GWAS identified 74 loci as-
sociated with educational attainment, many of them in
regions regulating gene expression in the brain [10].
Thus, if researchers were to include some of these loci
in a PS genetic instrument for some X for which educa-
tional level is a confounder, bias might be introduced
through the association of the genetic instrument and
educational attainment.
Furthermore, even if the assumptions of MR hold,

there are additional limitations. One potential concern is
that genetic variants (including PSs) are often only
weakly associated with exposures of interest, making
them weak instruments [4]. This is reflected in imprecise
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estimates, necessitating large samples for adequately
powered studies. However, in addition to this statistical
limitation, there is a potential biological concern: do we
expect the (typically) small change in X, induced by Z,
to have a biologically meaningful effect on Y?
Despite the underlying assumptions and potential limi-

tations, MR is a promising tool for causal inference in
(epi)genetic epidemiology, as is illustrated by the study
of Dekkers and colleagues [3]. These authors interro-
gated the causal relationship between blood lipids and
genome-wide DNA methylation, and show that diffe-
rential methylation is the consequence, rather than the
cause, of inter-individual variation of blood lipids. To do
this, they used a clever strategy that involved performing
MR in a stepwise manner.

MR as a tool to infer causality between blood
lipid levels and DNA methylation
The first step taken by Dekkers and colleagues was to
establish reliable instrumental variables. Recent GWASs
for blood lipid levels had shown robust associations be-
tween 40, 57, and 69 single nucleotide polymorphisms
(SNPs) with levels of triglycerides, low-density lipopro-
tein cholesterol (LDL-C), and high-density lipoprotein
cholesterol (HDL-C), respectively, providing reliable in-
strumental variables (i.e., unbiased predictors of lipid
levels) for a MR to test for causality. Instead of using
single SNP genotypes, Dekkers et al. generated PSs to in-
crease the effect size. Still, however, the effect sizes were
as small as around 5 % for each lipid, leading to rather
low power in the MR analysis.
The next step was to establish lipid–methylation asso-

ciations. The authors performed three epigenome-wide
association studies (EWASs) to identify CpG sites whose
methylation associates with triglycerides, LDL-C, and
HDL-C. This was performed in a population of 3296 in-
dividuals, which is a considerably large population in the
current EWAS era. With the EWAS, they showed robust
associations with small effect sizes, common for any
non-cancer EWAS, between CpG methylation and lipid
levels in six Dutch cohorts. They identified 21 CpGs
whose methylation associated with triglyceride levels,
three with LDL-C, and four with HDL-C, and replicated
some of the previous EWASs on blood lipids and associ-
ated traits.
The third step was to remove direct associations.

Genotypes have a large effect on DNA methylation vari-
ation both globally and locally. SNPs that affect local
DNA methylation are called methylation quantitative
trait loci (meQTL). As the assumption in the MR is that
the effect of a SNP upon CpG methylation is mediated
through lipid levels, all identified direct effects between
SNPs and DNA methylation (i.e., meQTL) at the lipid-
associated CpG sites were discarded.
An additional step was to test for reverse causation.
This was addressed by using a SNP in cis for each
MR-identified CpG as a proxy for DNA methylation.
No evidence for methylation affecting the lipid levels
was observed—thus, reverse causation was unlikely.
Testing for pleiotropy was also an important step of

this study. As pleiotropy is a common confounder in
MR analyses, especially when using PSs as instrumental
variables, the possibility of each SNP affecting the levels
of multiple lipids was addressed. Here, multivariable MR
and Egger regression were successfully applied to iden-
tify any pleiotropic effects.
Finally, this carefully designed stepwise MR analysis

resulted in a small number of CpG sites whose methyla-
tion was affected by the circulating lipid levels, and that
associated with the expression of the respective gene
that the CpG site was located in. All these genes have a
role in lipid metabolism.

Concluding remarks
MR approaches provide useful tools to infer causality in
(epi)genetic epidemiology. However, MR studies are only
valid if the rather strict assumptions of the method are
met. In addition, it is never possible to prove definitively
that these assumptions hold. Instead, their validity must
be weighed based on prior biological knowledge. Thus,
Mendelian randomization is an effective tool in (epi)genetic
epidemiology, but the method needs to be handled with
care. Ideally, causality in epigenetic analyses should be
supported by multiple independent approaches with
different assumptions, including animal models, longitu-
dinal studies of exposure-discordant monozygotic twins,
and MR.
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