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Abstract

The Ensembl Variant Effect Predictor is a powerful toolset for the analysis, annotation, and prioritization of genomic
variants in coding and non-coding regions. It provides access to an extensive collection of genomic annotation,
with a variety of interfaces to suit different requirements, and simple options for configuring and extending analysis.
It is open source, free to use, and supports full reproducibility of results. The Ensembl Variant Effect Predictor can
simplify and accelerate variant interpretation in a wide range of study designs.
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Background
Analysis of variant data resulting from genome or exome
sequencing is fundamental for progress in biology, from
basic research to translational genomics in the clinic. It
is key for investigating function and for progressing from
a system of medical care based on standardized treat-
ment to one targeted to the individual patient.
For sufferers of common or rare disease, the potential

benefits of variant analysis include improving patient
care, surveillance, and treatment outcomes. In cancer,
there have already been numerous successes using data
from genetic tests. For example, patients testing positive
for the inheritance of BRCA mutations have the option
of selective preventative surgery; lung cancer patients
showing EGFR gene mutations or triple negative breast
cancer patients can have their drug prescriptions tailored
to improve success [1, 2].
Rare diseases can individually be difficult to diagnose

due to the low incidence and the incomplete penetrance
of implicated alleles. However, variant analysis of whole-
genome sequencing (WGS) or whole-exome sequencing
data can lead to the discovery of underlying genetic
mutations [3]. Identifying an associated mutation is ad-
vantageous for researching treatment options and for fu-
ture drug discovery. Meanwhile, even the immediate
benefit of diagnosis may result in a more accurate prog-
nosis and remove the burden of additional medical
investigations.

The most common non-infectious diseases worldwide
are cardiovascular disease, cancer, and diabetes [4]. Des-
pite many array-based genome-wide association studies
(GWAS) searching for risk loci, only a relatively small
heritable component in these conditions has been eluci-
dated [5]. WGS in large numbers of samples is required
to yield enough statistical power to detect rare variants
with potential phenotypic or disease associations [6, 7].
WGS studies will also detect variants in regulatory and
non-coding regions of the genome, which are thought to
comprise the majority of trait-associated variants [8] and
play a role in cancer [9].
The potential of large-scale sequencing and variant

analysis is revolutionary. Recognizing this value, major
population sequencing initiatives have been launched in
Iceland [10], the UK [11], and the USA [12]. In other
species, efforts such as Genome 10 K [13], the 1001
Arabidopsis genomes [14], and 1000 bull genome project
[15] have similar goals but operate under different fund-
ing models, often with less support than the Homo sapi-
ens-focused projects.
Ongoing improvements in DNA sequencing technol-

ogy, and a current cost around $1000 per human gen-
ome, have resulted in high volumes of genome, exome,
and subsequent variant data requiring interpretation.
Meanwhile, the cost of the analysis to determine func-
tional consequences remains substantially higher due to
the difficulty of variant interpretation. For example, a
typical diploid human genome has around 3.5 million
single nucleotide variants (SNVs) and 1000 copy number
variants [16] with respect to the genome reference
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sequence. Around 20,000–25,000 of these variants are
protein coding, of which 10,000 change an amino acid
but only 50–100 are protein truncating or loss of func-
tion variants [16]. Manual review of large numbers of
variants is impractical and costly and there are add-
itional difficulties, such as a lack of functional annota-
tion or the interpretation of multiple variants within a
haplotype.
Variant interpretation often considers the impact of a

variant on a transcript or protein. It is dependent, there-
fore, on transcript annotation and localizing variants to
protein-coding or non-coding regions. There are two
major sources of Homo sapiens annotation: GENCODE
[17] and Reference Sequence (RefSeq) [18] at the National
Center for Biotechnology Information (NCBI). Both sets
of transcript annotation are subject to version changes
and updates that can modify variant reporting and inter-
pretation. For data reproducibility, transcript isoforms and
transcript versions must be rigorously tracked, although in
some cases even including the version is not sufficient to
avoid all potential misinterpretations [19]. There are
differences in how the transcript sets are produced:
GENCODE annotation is genome-based while RefSeq
transcripts are independent of the reference genome. Al-
though RefSeq transcripts may correct for errors in the
reference assembly and provide transcripts with improved
biological representation (such as for the genes ABO,
ACTN3, and ALMS1 in the GRCh37 reference), dif-
ferences between a genome and a transcript set can
cause confusion and errors when reporting variants at
the cDNA and genomic levels (e.g., these descriptions
refer to the same variant: NM_000059.3:c.7397C>T,
NC_000013.11:g.32355250T=). GENCODE’s aim is to
create a comprehensive transcript set to represent ex-
pression of each isoform across any tissue and stage
of development and, as a result, there are, on average,
nearly four transcript isoforms per protein-coding
gene. Most genes, therefore, have several annotations
for a given variant due to multiple transcript isoforms
(the G protein-coupled receptor 56 gene (GPR56) in
Ensembl release 79 has 61 transcripts). This number
will increase as more experimental data accumulate.
Choosing the correct transcript isoform and version
for consistent variant annotation is challenging. Fi-
nally, in loci where the reference genome has several
alternative haplotype representations (“ALTs”), variants
may have different interpretations with respect to dif-
ferent ALTs. For example, rs150580082 has mappings
to multiple ALTs but introduces a stop codon in only
some of these. In this case, considering the primary
assembly mapping alone will give misleading results.
Variant reporting using Human Genome Variation So-

ciety (HGVS) nomenclature is also based on transcripts
or proteins. Therefore, the difficulties with transcript

annotation described above may cause confusion and
ambiguities when using HGVS nomenclature. Many
possible annotations exist for variants in genes with
multiple transcript isoforms. For example, rs121908462
is a pathogenic variant associated with polymicrogyria
that falls in ADGRG1, an adhesion G protein-coupled
receptor G1. This variant has 126 HGVS descriptions in
Ensembl [20] (and even more valid HGVS descriptions
exist), as it overlaps 75 transcripts, and another 103 dif-
ferent descriptions in dbSNP. Multiple transcripts per
locus result in greater numbers of annotations. These re-
quire filtering in a consistent manner, which increases
the instability and complexity of variant interpretation.
Given these analysis challenges and the increasing vol-

ume of sequencing data being produced, there is a need
for a robust computational tool to aid prioritization of
variants across transcripts and manage the complexities
of variant analysis. To facilitate this, we developed the
Ensembl Variant Effect Predictor (VEP) [21], which dif-
fers significantly from other tools [22] (see Table 1 and
the “Discussion” section) and from the previously pub-
lished Ensembl SNP Effect Predictor [23]. The VEP is a
software suite that performs annotation and analysis of
most types of genomic variation in coding and non-
coding regions of the genome. From disease investiga-
tion to population studies, it is a critical tool to annotate
variants and prioritize a subset for further analysis.
The VEP has been used for analysis of traits in farm

animals [24, 25], for patient diagnosis in the clinic and
for research on GWAS [26–30]. It has been used for
analysis in numerous large-scale projects, including the
1000 Genomes [31] and Exome Aggregation Consortium
(ExAC) [32]. VEP’s annotations are used as input to
tools for deep exploration of variant annotation such as
GEMINI [33]. It is a flexible tool of value to any project
requiring detailed annotation of sequence variants.

Results
The VEP annotates two broad categories of genomic
variant: (1) sequence variants with specific and well-
defined changes (including SNVs, insertions, deletions,
multiple base pair substitutions, microsatellites, and tan-
dem repeats); and (2) larger structural variants (greater
than 50 nucleotides in length), including those with
changes in copy number or insertions and deletions of
DNA. For all input variants, the VEP returns detailed an-
notation for effects on transcripts, proteins, and regula-
tory regions. For known or overlapping variants, allele
frequencies and disease or phenotype information is
included.
The VEP can be used to analyze data from any species

with an assembled genome sequence and an annotated
gene set. The data files necessary for annotation in 80
vertebrate species and many invertebrates are distributed
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Table 1 Comparison of features of VEP with Annovar [95] and SnpEff [66]

Class Feature VEP Annovar SnpEff

General Language Perl Perl Java

Availability (non-commercial) Free Registration required Free

Availability (commercial) Free License required Free

Licence Apache 2.0 Unspecified, not open
source

LGPLv3

Input VCF Yes Yes Yes

rsID Yes No No

HGVS Yes No No

BED No No Yes

Sequence variants Yes Yes Yes

Structural variants Yes Yes Yes

Output VCF Yes Yes (non-standard) Yes

HGVS Yes Yes Yes

Summary statistics Yes Yes Yes

Graphical summary Yes No Yes

Customizable output Yes No No

Transcript sets Ensembl Yes Yes Yes

RefSeq Yes Yes Yes

GENCODE Basic Yes Yes No

Species supported ~5000 94 ~4500

User-created databases Yes Yes Yes

Interfaces Local package Yes Yes Yes

Submission-based web interface Ensembl Tools wAnnovar Galaxy

Instant prediction web interface Yes No No

Cloud/VM Yes No Yes

API access Perl, REST No No

Consequence types Sequence Ontology Yes No Yes

Impact classification Yes No Yes

Number of classes 33 19 42

Default reporting level Transcript Gene Transcript

Summary level reporting Optional, customisable Default, customisable No

Splicing predictions Yes (via plugins) Yes (via external data) Yes (experimental)

Loss of function prediction Yes (via plugins) No Yes

Nonsense mediate decay assessment No No Yes

Non-coding Regulatory features Yes Yes Yes

Support multiple cell lines Yes No Yes

TFBS scoring Yes No No

miRNA structure location Yes (via plugins) No No

Known variants Report known variants Yes Yes Yes

Filter by frequency Yes Yes Yes

Clinical significance Yes Yes Yes

Other filters Pre-set filters Yes Yes Yes

Arbitrary filtering Yes No Yes
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by Ensembl and Ensembl Genomes [34], respectively.
These are updated regularly, ensuring analysis can be
performed using contemporary biological knowledge.
The VEP also supports both the latest GRCh38 and pre-
vious GRCh37 human assemblies. Importantly, all re-
sults are fully reproducible using Ensembl archived
versions. Finally, researchers may use their own tran-
script data for analysis, e.g., in species not yet in
Ensembl or for novel or private annotations. A script is
included in the VEP script package to create an annota-
tion set from a general feature format (GFF) and FASTA
file pair.
Each version of the VEP is tied to a specific release

of Ensembl. This explicit versioning ensures all results
are stable across a release, which is critical for prov-
enance and reproducibility. To avoid misinterpretation
of a variant based on a previous transcript or protein
version, the output includes the identifier and version
in HGVS coding descriptions. The VEP is open
source, free to use, and actively maintained and devel-
oped. A mailing list [35] provides responsive support
and the benefits of a shared community. The wide
usage helps ensure bugs are found and corrected rap-
idly and enables suggestions to be gathered from a
broad range of project teams.
The nature of the VEP results are described below

along with input and output formats, the different inter-
faces, and details on performance.

Transcript annotation
The VEP results include a wide variety of gene and tran-
script related information (Table 2). Any transcript set
on a primary reference assembly or on ALT sequences
can be used but the VEP selects Ensembl annotation by
default. For Homo sapiens and Mus musculus this is the
GENCODE gene set, which denotes that it is a full
merge of Ensembl’s evidence-based transcript predic-
tions with manual annotation to create the most exten-
sive set of transcript isoforms for these species [36]. The
Ensembl transcripts match the reference genome assem-
bly exactly, which eliminates the potential for errors in
annotation due to differences between the reference and
transcript annotation. If configured to use the RefSeq
transcript set, mismatches between a transcript and the
genome reference assembly are reported to eliminate
possible confusion in the interpretation.

A variant may have more than one alternative non-
reference allele and may overlap more than one tran-
script or regulatory region. Therefore, to present the
most comprehensive annotation the VEP output reports
one line (or unit) of annotation per variant alternative
allele per genomic feature. As yet, there is no robust an-
notation of dominant transcript per tissue type available
so the VEP includes a variety of data to help filter the
many different transcript isoforms. For example, in H.
sapiens and M. musculus the filtered GENCODE Basic
transcript set includes the vast majority of transcripts
identified as dominantly expressed [36] and consensus
coding sequence (CCDS) annotation highlights transcripts
having the same CDS in both RefSeq and Ensembl. In
several species, a ranking of supporting evidence for

Table 1 Comparison of features of VEP with Annovar [95] and SnpEff [66] (Continued)

Other Per-individual annotation Basic No Somatic versus germline

Annotation with custom data Yes Yes Yes

Custom code extensions via Plugin architecture Yes No No

miRNA microRNA, TFBS transcription factor binding site, VM virtual machine

Table 2 Gene and transcript-related fields reported by the VEP

Property Description

Gene ID Ensembl stable identifier for affected gene

Gene symbol Common name for gene, e.g., from HGNC

Transcript ID Ensembl stable identifier for affected transcript

RefSeq ID NCBI RefSeq identifier for affected transcript

CCDS ID Consensus coding sequence (CCDS) identifier
uniting Havana, Ensembl, and NCBI

Biotype GENCODE biotype of affected transcript

cDNA coordinates Coordinates of input variant in unprocessed
cDNA

CDS coordinates Coordinates of input variant in processed
coding sequence (CDS)

Distance Distance to transcript if variant falls outside
transcript boundaries

Consequence type SO consequence type of input variant allele
on transcript

Exon Number(s) of affected exon(s)

Intron Number(s) of affected intron(s)

TSL Transcript Support Level (TSL) highlights
well-supported and poorly supported
transcript models

APPRIS Annotation principle splice isoforms (APPRIS) is
a system to annotate alternatively spliced
transcripts based on a range of computational
methods, assigning primary and alternative
statuses to transcripts

HGVS HGVS notations for input variant relative to
the coding sequence

Phenotype Flag indicating known association with a
phenotype or disease
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transcripts using Transcript Support Level data can
prioritize consequences for review [37] while APPRIS
provides automated annotation of principal transcript
isoforms [38]. Cross-references to known proteins in
UniProt and the option to filter for variants in pro-
tein coding transcripts are also included. In H.
sapiens, for clinically relevant loci requiring stable an-
notation, the VEP can annotate on Locus Reference
Genomic (LRG) sequences. Furthermore, the VEP has a
flexible “plugin” architecture (described in the “VEP
Script” section) to enable for algorithmic extensions add-
itional analysis. For example, an experimental plugin,
GXA.pm, uses data from the Expression Atlas project [39]
to indicate expression levels across tissues for many tran-
scripts, which can be used to filter transcript isoforms.

Protein annotation
Protein sequence changes are annotated with the infor-
mation in Table 3. The VEP also provides an indication
of the effect of the amino acid change using protein bio-
physical properties. These data can improve interpret-
ation of protein variants with no associated phenotype
or disease data by predicting how deleterious a given
mutation may be on the functional status of the result-
ant protein. Scores and predictions are pre-calculated
for all possible amino acid substitutions and updated
when necessary, ensuring that even the annotation of
novel variants is rapid. Sorting Intolerant From Tolerant
(SIFT) [40] results are available for the ten species that
are most used in Ensembl. PolyPhen-2 [41] results are
available for human proteins. Other pathogenicity pre-
dictor scores such as Condel [42], FATHMM [43], and
MutationTaster [44] are available for human data via
VEP plugins (Table 4).

Non-coding annotation
Variants in non-coding regions may have an impact on
transcriptional or translational regulation if they fall in
regulatory regions. The VEP reports variants in non-
coding RNAs, genomic regulatory regions, or transcrip-
tion factor binding motifs and also reports changes to
the consensus score of binding motifs (Table 5), which
have been shown to be implicated in disease [45]. The
Ensembl Regulatory Build [46], which uses data from
ENCODE [47], BLUEPRINT [48], and the NIH Epige-
nomics Roadmap [49], is the primary regulatory annota-
tion but the VEP analysis can be limited to regulatory
regions observed in specific cell types. GERP [50] and
other conservation scores derived from genomic mul-
tiple alignments, which may predict functional import-
ance in non-coding regions, can be added via a plugin.
GWAVA [51], CADD [52], and FATHMM-MKL [53]
plugins are also available, which integrate genomic and
epigenomic factors to grade and prioritize non-coding
variants.

Frequency, phenotype, and citation annotation
The VEP searches the Ensembl Variation databases,
which contain a large catalogue of freely available germ
line and somatic variation data in vertebrates [54, 55].
Ensembl integrates and quality checks variants from
dbSNP [56] and other sources for 20 species. Additional
human data include mutations from COSMIC [57] and
the Human Gene Mutation Database [58] and structural
variants and copy number variants from the Database of
Genomic Variants archive [59]. Therefore, the VEP can
reference millions of variants to identify those previously
reported. The VEP reports allele frequencies from the
1000 Genomes, NHLBI exome sequencing [60], and
ExAC projects. These can be used as filters, allowing
common variants to be excluded as candidates for
pathogenicity (see Table 6 for a list of the annotations
provided and Table 7 for filters). The VEP includes
PubMed identifiers for variants which have been cited
and also annotates those associated with a phenotype,
disease, or trait using data from OMIM [61], Orphanet
[62], the GWAS Catalog [63], and other data sources
[64]. Clinical significance states assigned by ClinVar [65]
are also available for human variants.

Input and output formats
The VEP supports input data in variant call format
(VCF), the standard exchange format used in next-
generation sequencing pipelines. Unlike other tools
(Table 1), the VEP can also process variant identifiers
(e.g., from dbSNP) and HGVS nomenclature notations
(e.g., HGVS using Ensembl, RefSeq, or LRG transcripts
and proteins ‘ENST00000615779.4:c.102944T>C’;
‘BRCA2:p.Val2466Ala’; ‘Q15118:p.Val42Phe’). These

Table 3 Protein-related fields reported by the VEP

Property Description

Protein ID Ensembl stable identifier for affected protein
product

RefSeq ID NCBI RefSeq identifier for affected protein

SWISSPROT ID Manually curated protein identifier from UniProt

TrEMBL ID Automatically generated identifier from UniProt

UniParc ID Combined protein identifier from UniProt

Protein coordinates Coordinates of input variant in protein product

Codons Reference and alternative codons as generated
by input variant

Amino acids Reference and alternative amino acids as
generated by input variant

SIFT SIFT pathogenicity prediction and score

PolyPhen PolyPhen-2 pathogenicity prediction and score

Protein domains Protein domains overlapping input variant

HGVS HGVS notations for input variant relative to the
protein sequence
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identifiers are commonly used in publications and
reports. This functionality can also be used to “re-
verse map” variants from cDNA or protein coordi-
nates to the genome and vice versa.
VEP output consists of an HTML or text format sum-

mary file and a primary results file in tab-delimited,
VCF, GVF, or JSON format. The default tab-delimited
output is designed to present key data in a human-
readable format that is easily parsed and can include de-
tailed and complex data alongside. The VEP’s VCF out-
put follows a standard agreed with other annotation tool
providers [66] to promote transparent cross-comparison
and benchmarking of results.
Variant consequences are described using a standard-

ized set of variant annotation terms [67] which were de-
fined in collaboration with the Sequence Ontology (SO)
[68]. Each consequence term has a stable identifier and
definition, thereby removing ambiguity in definition or

meaning. Structuring the consequences ontologically en-
ables powerful querying: it is possible to retrieve all cod-
ing variants in one query without the need to specify
each sub-category such as stop_gained, missense, syn-
onymous, etc. The SO terms are used widely, including
by the UCSC Genome Browser [69], the 1000 Genomes
Project [70], ClinVar, the ExAC project, and the Inter-
national Cancer Genome Consortium [71], allowing
transparent interoperability and cross-validation.

VEP interfaces
The VEP is platform independent and available as (1) an
online tool, (2) an easily installed Perl script, or (3) via
the Ensembl Representational State Transfer (REST) ap-
plication program interface (API) [72]. Each interface is

Table 4 Examples of VEP plugins

Plugin Maintained by Functionality

CADD Martin Kircher Integrates multiple annotations into one metric by contrasting variants that survived natural selection
with simulated mutations

dbNSFP Ensembl Provides pre-calculated scores from dbNSFP for many pathogenicity prediction tools for every possible
missense variant in the human genome [96]

dbscSNV Ensembl Retrieves data for splice variants from dbscSNV [97]

ExAC Ensembl Retrieves ExAC allele frequencies from the Exome Aggregation Consortium (ExAC) project [32]

GWAVA Graham Ritchie Predicts the functional impact of variants on non-coding elements from, e.g., ENCODE using GWAVA

GXA Ensembl Reports data from the Expression Atlas

LD Ensembl Finds variants in linkage disequilibrium with any overlapping existing variants

LOFTEE Konrad Karczewski Predicts if stop gain, splice site, or frameshift variants lead to loss of function (LoF) in the affected protein

MaxEntScan Ensembl Compares scores for reference and mutant splice site sequences using a maximum entropy method

miRNA Ensembl Reports whether a variant is predicted to fall in a stem or loop region of a mature miRNA

UpDownStream Ensembl By default the VEP searches 5 kb either side of input variants for transcripts. Configures this distance
which is useful in species with small intergenic distances or for investigating long-range trans-acting
regulatory interactions

VAX Michael Yourshaw Incorporates data from KEGG, Human Protein Atlas, MitoCarta, OMIM, and more into VEP output

For a full list of plugins see [76]

Table 5 Regulatory element-related fields reported by the VEP

Property Description

Regulatory or Motif feature
ID

Ensembl identifier for affected regulatory
element

Motif name External name for transcription factor binding
motif

Motif position Coordinates of input variant in transcription
factor binding motifs

Motif score Score reflecting effect of input variant on
closeness of binding motif sequence to
consensus

Informative position Flag indicating if the position occupied by
the variant in the binding motif is important
in the consensus sequence

Table 6 Co-located variant-related fields reported by the VEP

Property Description

Variant ID External identifier for variant co-located with input,
e.g., rsID from dbSNP

Somatic Somatic status of co-located variant

GMAF Global minor allele and frequency of co-located
variant from combined 1000 Genomes phase 3
populations

Other frequencies Frequency data from continental level 1000
Genomes phase 3 data and two NHLBI–Exome
Sequencing Project populations

Clinical significance Clinical significance status of co-located variant as
reported by ClinVar

Phenotype Flag indicating known association with a phenotype
or disease

PubMed ID NCBI PubMed IDs of publications citing co-located
variant
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optimized to support different quantities of data and
levels of bioinformatics experience. All three use the
same core codebase to ensure results are consistent
across each interface. A comprehensive test suite backs
all code, with continuous integration performed by Tra-
vis CI [73], ensuring high quality code, which must pass
stringent quality tests before release.

VEP Web
VEP Web [21] offers a simple point-and-click interface.
This is ideal for exploring annotation in an interactive
manner. The portal is most suited to first-time use or
small-scale analysis. The maximum compressed uploaded
data file size currently supported is 50 megabytes, large
enough for around two million typical lines of VCF data.
For single variant analysis, the web interface incorpo-

rates ‘Instant VEP’ functionality. Pasting or typing a sin-
gle variant such as a variant in HGVS notation from a
manuscript will rapidly return basic consequence predic-
tion data. To submit a request for more than one vari-
ant, data can be uploaded, pasted or given via URL and
options selected using a simple online form. A limited
set of the VEP’s most commonly used plugins is available
to use via the web interface. Requests are processed by a
resource management system on the Ensembl web
servers to distribute the request load.
The output web page (see example in Fig. 1) shows

summary statistics and charts to provide an overview of
the results. It also has a table with a preview of the de-
tailed results, with a simple interface to configure filter-
ing of the output. Via a series of drop-down menus,
multiple filters (see examples in Table 7) can be com-
bined using basic logical relationships, thereby allowing
the creation of complex customized queries. This is

designed to aid prioritization of smaller numbers of vari-
ants. Results can be stored by logging into an Ensembl
account.

VEP script
The downloadable Perl script [74] is the most powerful
and flexible way to use the VEP. It supports more op-
tions than the other interfaces, has no limit on input file
size, and includes extensive input, output, filtering, and
analysis options.
To install the script, simply download the VEP pack-

age and run the installer script, which automatically
downloads the necessary API and annotation files (or
‘cache’ files). Updates with the latest data are available
for each Ensembl release. The full source code is freely
available on the Ensembl GitHub repository.
To process large volumes of data, the VEP script

works most efficiently in “offline” mode using a local
cache of transcript annotations rather than online public
databases. As well as optimizing runtime, this ensures
data privacy for clinically or commercially sensitive data.
Furthermore, the VEP input can be configured to query
overlaps with local, potentially private, variant and
phenotype data or other custom data sets in a manner
similar to vcfanno [75]. In this way annotation in for-
mats including BED, GFF, GTF, VCF, and bigWig can be
incorporated into the VEP output.
Advanced filtering options are available for a

smaller result set, either during runtime or as a post-
run process (Table 7). Filtering can be performed as a
post-run process by an accompanying script that uses
a simple field-operator-value language. Filtered results
can be fed back to the VEP for further analysis or
exported.

Table 7 Example filters available in the VEP

Option or command Description

Runtime filters

–no_intergenic Filter out variants that fall in intergenic regions

–pick Choose one consequence for each variant; priority is given to the canonical
transcript for each gene, protein coding transcripts, and more severe
consequence types e.g., missense_variant is more severe than intron_variant

–per_gene Picks one consequence using the same methodology as –pick but chooses
one per overlapping gene

–filter_common Filter out variants that are co-located with a known variant that has a minor
allele frequency greater than 1 %.

Results filters using filter_vep.pl

SIFT is deleterious OR PolyPhen is probably_damaging Filter for results where SIFT or PolyPhen-2 predicts the variant protein will be
non-functional

AFR >0.1 AND EUR <0.05 Filter for variants co-located with those that are common in African populations
but rare in European populations

Gene in gene_list.txt AND Phenotype matches cancer Filter for results for variants that fall in the genes with IDs listed in gene_list.txt
and that have been annotated with a cancer phenotype from a custom
dataset (VEP script only)

McLaren et al. Genome Biology  (2016) 17:122 Page 7 of 14



With some familiarity of Perl, the VEP can truly be
customized, extended, and integrated with other sys-
tems. As almost all of the algorithmic content of the
VEP is contained within the Ensembl API, the features
of the VEP can be accessed using API calls. It is trivial,
therefore, to extend the VEP results and perform sec-
ondary analyses, such as retrieving all OMIM IDs associ-
ated with the genes in the VEP results or calculating
known variants in linkage disequilibrium with a subset
of variants. Alternatively, the VEP is also customizable
via its plugin architecture, which was developed to pro-
vide greater scope for expansion. This architecture sup-
ports the use of VEP as the backbone of a customized
analysis pipeline by writing additional code to extend
the VEP’s functionality for specific use cases. Example
uses include filtering output, adding annotation from
local or remote sources, executing external programs, or
rendering graphical representations of the output. Ensembl
provides a number of VEP plugins, hosted on GitHub [76],
and a variety are published [51, 77] (Table 4).

VEP REST API
Ensembl’s language-independent REST API provides ro-
bust computational access in any programming language
and returns basic variant annotation and consequence
data. Individually or in batches of up to 1000, variants
can be submitted to the API server in a single request.
Results return in JSON, simple for parsing in most mod-
ern programming languages (see Fig. 2 for an example

of JSON output). Using this interface, dynamic VEP
queries can be integrated into custom-built software for
on-demand results, as used, e.g., in the Decipher Gen-
ome Browser [78]. For documentation see [79].
As with the web interface, a limited set of the VEP’s

most commonly used plugins is configured for use via
the REST API.

Discussion
Performance
The VEP script can be threaded for rapid performance
on systems with multiple CPU cores. A typical human
individual’s variant set can be processed in around an
hour on a modern quad core machine; the 4,474,140
variants in NA12878 from Illumina’s Platinum Genomes
set [80] took 62 minutes to process (Table 8). This re-
duces to 32 minutes using the smaller GENCODE basic
gene set. A negligible startup time means the VEP
achieves similar throughput rates on both small and
large datasets. A typical exome sequencing data set
(100,000 to 200,000 variants) is processed in under
5 minutes.
To improve runtime, individual VEP jobs can be

threaded across multiple processor cores. Larger scale
parallel processing architectures such as compute farms
enable further subdivision of the VEP job (for example,
by chromosome).
The VEP’s runtime performance is compared with

Annovar and SnpEff in Table 8. For smaller input files,

Fig. 1 A typical VEP Web results page. Section (1) gives summary pie charts and statistics. Section (2) contains a preview of the results table with
navigation, filtering, and download options. The preview table contains hyperlinks to genes, transcripts, regulatory features, and variants in the
Ensembl browser. The results can be downloaded in VCF, text, or custom VEP file formats
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the VEP performs as well as or faster than other tools.
The VEP concedes time to SnpEff by being written in
Perl (an interpreted language) versus compiled Java for
SnpEff [81]. SnpEff loads its entire annotation database
into memory at start-up, unlike VEP, which loads the
relevant genomic segments on demand; this accounts

for VEP performing better than SnpEff on smaller data-
sets. Annovar, while also written in Perl, does not pro-
vide the same depth of annotation as VEP and so runs
faster. It should also be noted that the VEP, through the
REST API or through the Instant VEP functionality of
the VEP web interface, returns predictions for single var-
iants in a fraction of a second. This is available to users
without any software download or installation, some-
thing neither Annovar nor SnpEff can offer.
Run time varies with the number and complexity of

overlapping genomic features, resulting in faster analysis
times for species with sparse annotation than those with
rich annotation such as human and mouse.
As the web and REST implementations are based on

the same underlying code as the VEP script, perform-
ance is broadly comparable to the above, with allow-
ances made for job queues (for web), network transfer of
data (for web and REST), and request limits (for REST).

Conclusions
The Ensembl Variant Effect Predictor software provides
tools and methods for a systematic approach to annotate
and prioritize variants in both large-scale sequencing
projects and smaller analysis studies. By automating an-
notation in a standard manner and reducing the time re-
quired for manual review, it helps manage many of the
common challenges associated with analysis of SNVs,
short insertions–deletions, copy number variants, and
structural variants. The VEP annotates variants using a
wide range of reference data, including transcripts, regu-
latory regions, frequencies from previously observed var-
iants, citations, clinical significance information, and
predictions of biophysical consequences of variants.
The quality, quantity, and stability of variant annota-

tion obtained depends on the choice of transcript
set used [82]. As such, the VEP allows flexibility of tran-
script choice. To effectively manage large numbers of
variant annotations and transcript isoforms, the VEP
provides several methods to prioritize results and reduce
the number of variants needing manual review. A selec-
tion of these filters is available and VEP also supports

Fig. 2 Example of JSON output as produced by the VEP script and
REST API (redacted and prettified for display)

Table 8 Comparison of runtime

Tool Chr. 21 All

Annovar 0 m38.933 s (1732 v/s) 21 m50.037 s (3415 v/s)

SnpEff 1 m46.178 s (635 v/s) 46 m39.142 s (1598 v/s)

SnpEff (threaded)* 1 m21.046 s (832 v/s) 10 m28.274 s (7121 v/s)

VEP 0 m47.216 s (1428 v/s) 62 m9.107 s (1200 v/s)

Two datasets from Illumina’s Platinum Genomes were used [93], both on the
GRCh37 assembly: 67416 variants from chromosome 21 and the whole
genome set of 4,474,140 variants. Each tool was configured to use the
Ensembl release 75 gene set, with options configured for the fastest runtime.
Run time and speed in variants per second (v/s) are shown. *SnpEff was run in
threaded mode but multiple warnings and errors were produced during
these runs.
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building of custom filters. Uniquely, the VEP algorithm
can be expanded to perform additional calculations via
plugins [77] and can analyze custom, potentially private,
data.
Interpreting all variants in a genome remains an un-

solved challenge. An increasing number of large-scale
WGS will detect rare variants in both coding and non-
coding regions of the genome and further possible iden-
tification of loci associated with disease. Having these
variants available in public repositories such as dbSNP
and the European Variant Archive or discoverable using
federated resources will be of significant benefit for ana-
lysis. Emerging efforts such as the Global Alliance for
Genomic Health (GA4GH) Beacon project [83] are cur-
rently developing possible distributed solutions.
Improved functional annotation is especially critical

for variants in non-coding regions. Many fall in loci that
regulate gene expression in specific tissues. Characteriz-
ing associations between transcripts and tissues will fa-
cilitate a subset of tissue-specific transcript isoforms to
be selected for variant annotation, tailoring results.
Moreover, upon providing the link from regulatory re-
gion to regulated gene, the potential molecular mechan-
ism underlying disease could be explained. Data from
large scale efforts such as the Genotype-Tissue Expres-
sion project, which aims to systematically characterize
the effects of regulatory variants in different tissues [84],
will be integrated into the VEP reference data in order
to have the most current data available to the VEP for
analysis.
As discussed above, standardized SO terms are used

for describing variant consequences and VEP results can
be output in VCF format. Work is ongoing to develop a
comprehensive variant annotation data exchange format
within the GA4GH. Furthermore, the GA4GH is defin-
ing standards for representation of associations between
variants and phenotypes, traits, and diseases. The VEP
will support such formats when they are mature.
Current annotation tools, including the VEP, annotate

each input variant independently, without considering
the potential compound effects of combining alternate
alleles across multiple variant loci. This limitation means
that having two or more variants affecting the same
codon, or a shift in reading frame being corrected by a
downstream variant, will not be taken into consider-
ation. In future, given genotype data phased into haplo-
types, the VEP will accurately annotate such events.
The VEP is also regularly extended and improved (see

release notes at [85]) with new features added to both
the core VEP code and the plugin library. Although
these developments are frequently driven by new anno-
tations or datasets available for H. sapiens, they are all
designed to be compatible with any species. Once add-
itional annotation and sequencing data are available in

other species, the VEP extensions can be fully exploited
for these too (e.g., 1000 Bulls project, the 1000 Chicken
project, the 1001 Arabidopsis project, and the Functional
Annotation of ANimal Genomes (FAANG) consortium).
To improve genome-wide analysis, the VEP will leverage
data from future sequencing projects, implement new al-
gorithms and adopt data exchange standards and, there-
fore, bring continual benefit to variant interpretation.

Methods
The VEP algorithms and code are part of the freely avail-
able Ensembl API, coded in the Perl programming lan-
guage. Time-critical components are written in C and
incorporated into the API using the XS framework [86].
Installation of the VEP script triggers automated installa-
tion of the Ensembl API, along with the BioPerl API
[87] upon which the Ensembl API depends. All inter-
faces to the VEP use the same underlying API calls, en-
suring consistency across the different VEP access
platforms when version control is observed.
To process the input data, sequential contiguous

blocks of variants (default block size 5000) are read into
an input memory buffer. Each variant is converted into
an Ensembl VariationFeature object that represents a
genomic location and a set of alleles. Variants in tab-
delimited and Pileup formats are converted directly to
objects; those in HGVS notation are resolved to their
genomic coordinates by extracting the relevant reference
feature (transcript, protein, or chromosome) using the
Ensembl API. VCF input undergoes pre-processing to
account for differences in how VCF and Ensembl repre-
sent unbalanced substitutions and indels. When using
VEP’s forking functionality, the input buffer is divided
amongst a number of sub-processes. Each sub-process
carries out the analysis described hence and then the re-
sults are rejoined and sorted back into input order be-
fore being written to output.
Normalization of insertions and deletions in repetitive

sequence and decomposition of complex variants are
recommended as part of a robust pipeline to ensure
consistency of annotation across datasets. Optionally, in
a process analogous to that described in [88], VEP’s
parser can be forced to decompose alternative alleles in
complex variant descriptions to their most minimal rep-
resentation by stripping identical bases from the 5′ and
3′ ends of the reference and alternative allele. This is
not done by default as it may change the input position
and allele string provided. Similarly, although it is a rec-
ommendation of the VCF format, the VEP does not left-
normalize insertion or deletion variants in repetitive se-
quence. Enforcing this by default would cause discrepan-
cies in input and output coordinates and also for HGVS
nomenclature, whose coordinates must be right-
normalized with respect to the transcript sequence.
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Tools such as vt [88] can be used to pre-process VCF in-
put before use in VEP.
Input variants pass through a configurable quality-

control process that checks for irregularities and incon-
sistencies. Variants that fail are reported via standard
error output and/or in a warnings file. Checks include,
for example, that allele lengths match input coordinates
and the input reference allele matches that recorded in
the reference genome.
The genomic loci overlapped by the variants in the in-

put buffer are resolved to distinct megabase-sized re-
gions. Each region corresponds to a single file on disk in
the VEP cache, which contains objects serialized using
Perl’s Storable framework [89]. For each region, the tran-
scripts, regulatory features, and known variants are
loaded from disk, deserialized into objects, and cached
in memory. This avoids rereading from disk when the
same region is overlapped by variants in consecutive in-
put buffers. The publicly available Ensembl databases
can be used in place of the cache files to avoid down-
loading the data in advance, though doing so incurs a
performance penalty due to network transfer rates.
Transcripts have a configurable flank (default 5000 base

pairs) to allow the VEP to assign upstream and down-
stream status to variants within the region flanking a tran-
script. A hash-based tree structure is used to search for
overlaps between input variants and genomic features. For
each overlap, a VariationFeatureOverlap object is created,
with specific sub-classes for each genomic feature type:
TranscriptVariation, RegulatoryFeatureVariation, Motif-
FeatureVariation. Each VariationFeatureOverlap object has
two or more child VariationFeatureOverlapAllele objects
representing each allele of the input variant—one repre-
senting the reference allele and one or more representing
each of the alternative or mutant alleles. These objects are
also sub-classed, with, for example, a TranscriptVariatio-
nAllele representing one allele of a variant overlapping a
Transcript object.
For each TranscriptVariationAllele object, the API

evaluates consequence types using a set of predicate
functions. These assess whether, for example, a vari-
ant is predicted to cause a change in protein coding
sequence (e.g., missense_variant). Prior to this, a
series of pre-predicate checks are performed to im-
prove runtime; for example, a variant does not need
to be assessed for change to the protein sequence if
it falls entirely within the intron of a transcript. These
pre-predicate checks are also cached at each object
“level”; for example, the location of a variant relative
to the transcript structure is fixed at the Transcript-
Variation level but the allele type can be different for
each TranscriptVariationAllele. The pre-predicate
checks improve runtime by a factor of around two on
a typical resequencing-based input file. Without them,

runtime is proportional to nfp, where n is the number
of input variant alleles, f is the number of overlapped
features, and p is the number of predicates; depend-
ing on a number of factors this can become as low as
nfp/2 with pre-predicate checks enabled.
Predicates also make extensive use of caching: UTR,

coding, and translated sequences are all cached on
the Transcript object with intron structure and other
frequently accessed data. Established components of
the Ensembl API handle tasks such as splicing exons
and re-translating mutated sequences. Alternative
codon tables are used as appropriate for mitochon-
drial sequences and selenocysteines. If a predicate is
true for a given TranscriptVariationAllele, an Overlap-
Consequence object is assigned representing the con-
sequence type; this object contains the appropriate
SO term along with synonyms and ranking informa-
tion. Each OverlapConsequence object type corre-
sponds to one predicate. Hierarchy in the predicate
system preserves the tree structure of the SO such
that only the most specific term that applies under
any given parent term is assigned; this same tree
structure allows for ontological-style querying and fil-
tering of the results. Multiple OverlapConsequence
objects may be added to a single VariationFeature-
OverlapAllele or TranscriptVariationAllele object to
allow for complex cases, such as a variant that falls
in a splice-relevant region that also affects the coding
sequence of the transcript.
HGVS notations are also derived from TranscriptVar-

iationAlleles, though they undergo significant additional
processing to conform to the nomenclature definition
[90]. For example, insertions or deletions with respect to
the transcript sequence must be reported at the most 3′
position possible when they fall in repetitive sequence.
VariationFeatureOverlapAllele objects are then converted

for writing to output, a process that involves several extra
stages. VariationFeatureOverlapAlleles can be filtered in
various ways which can be configured, for example: report-
ing only one VariationFeatureOverlapAllele per input vari-
ant; removing intergenic VariationFeatureOverlapAlleles
(i.e., those produced from variants that don’t overlap a gen-
omic feature); filtering based on allele frequency of a co-
located known variant. Additional data fields are retrieved
at this stage from relevant objects, for example: external
identifiers for transcripts (UniProt, CCDS); exon and intron
numbers; clinical significance for co-located variants. It is
also at this stage that any configured plugins are executed.
They are passed the VariationFeatureOverlapAllele object,
which has accessor methods for other objects, e.g., the
Transcript, VariationFeature, or genomic Slice. As plugin
modules are executed after the VEP consequence calcula-
tion, they have access to the VEP and Ensembl API objects
before output data are written and return a data structure
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that is incorporated alongside the VEP’s main output data
structure. The output data structure is then written to disk
as one of several formats (tab-delimited, VCF, GVF,
JSON), with the fields for each data format configurable at
runtime. Output files contain headers describing the for-
mat and content of data fields, as well as version informa-
tion for resources used.

Cache and sequence files
The VEP’s caches are built for each of Ensembl’s pri-
mary species (70 species as of Ensembl version 84);
the files are updated in concert with Ensembl’s release
cycle, ensuring access to the latest annotation data.
Cache files for all previous releases remain available
on Ensembl’s FTP archive site [91] to facilitate repro-
ducibility. For 15 of these species there are three
types of cache files: one with the Ensembl transcripts,
a “refseq” one with the RefSeq transcripts, and a
“merged” one that contains both. Caches for both the
latest GRCh38 and previous GRCh37 (hg19) human
genome builds are maintained. The human GRCh38
cache file is around 5 gigabytes in size, including
transcript, regulatory, and variant annotations as well
as pathogenicity algorithm predictions. Performance
using the cache is substantially faster than using the
database; analyzing a small VCF file of 175 variants
takes 5 seconds using the cache versus 40 seconds
using the public Ensembl variation database over a
local network (performance can be expected to be
slower when using a remote database connection).
The VEP can use FASTA format files of genomic

sequence for sequence retrieval. This functionality is
needed to generate HGVS notations and to quality
check input variants against the reference genome. The
VEP uses either an htslib-based indexer [92] or BioPerl’s
FASTA DB interface to provide fast random access to a
whole genome FASTA file. Sequence may alternatively
be retrieved from an Ensembl core database, with corre-
sponding performance penalties.
Cache and FASTA files are automatically downloaded

and set up using the VEP package’s installer script,
which utilizes checksums to ensure the integrity of
downloaded files. The installer script can also download
plugins by consulting a registry. The VEP package also
includes a script, gtf2vep.pl, to build custom cache files.
This requires a local GFF or general transfer format
(GTF) file that describes transcript structures and a
FASTA file of the genomic sequence.
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