
RESEARCH Open Access

High density methylation QTL analysis in
human blood via next-generation
sequencing of the methylated genomic
DNA fraction
Joseph L. McClay1,2*† , Andrey A. Shabalin2*†, Mikhail G. Dozmorov3, Daniel E. Adkins2, Gaurav Kumar2,
Srilaxmi Nerella2, Shaunna L. Clark2, Sarah E. Bergen4,5,6, Swedish Schizophrenia Consortium, Christina M. Hultman4,
Patrik K. E. Magnusson4, Patrick F. Sullivan4,7, Karolina A. Aberg2 and Edwin J. C. G. van den Oord2

Abstract

Background: Genetic influence on DNA methylation is potentially an important mechanism affecting individual
differences in humans. We use next-generation sequencing to assay blood DNA methylation at approximately 4.5
million loci, each comprising 2.9 CpGs on average, in 697 normal subjects. Methylation measures at each locus are
tested for association with approximately 4.5 million single nucleotide polymorphisms (SNPs) to exhaustively screen
for methylation quantitative trait loci (meQTLs).

Results: Using stringent false discovery rate control, 15 % of methylation sites show genetic influence. Most
meQTLs are local, where the associated SNP and methylation site are in close genomic proximity. Distant meQTLs
and those spanning different chromosomes are less common. Most local meQTLs encompass common SNPs that
alter CpG sites (CpG-SNPs). Local meQTLs encompassing CpG-SNPs are enriched in regions of inactive chromatin in
blood cells. In contrast, local meQTLs lacking CpG-SNPs are enriched in regions of active chromatin and
transcription factor binding sites. Of 393 local meQTLs that overlap disease-associated regions from genome-wide
studies, a high percentage encompass common CpG-SNPs. These meQTLs overlap active enhancers, differentiating
them from CpG-SNP meQTLs in inactive chromatin.

Conclusions: Genetic influence on the human blood methylome is common, involves several heterogeneous
processes and is predominantly dependent on local sequence context at the meQTL site. Most meQTLs involve
CpG-SNPs, while sequence-dependent effects on chromatin binding are also important in regions of active
chromatin. An abundance of local meQTLs resulting from methylation of CpG-SNPs in inactive chromatin suggests
that many meQTLs lack functional consequence. Integrating meQTL and Roadmap Epigenomics data could assist
fine-mapping efforts.
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Background
Methylation of DNA cytosine residues is an important
mechanism in the control of gene expression and the
determination of cell fate in development [1–3]. DNA
methylation is known to vary with sex, age and exposure
to environmental factors [4] and changes to methylation
patterns have been associated with many common dis-
eases [5]. Methylation is also under genetic influence
and locus-specific methylation levels are often correlated
in related individuals [6, 7]. This observation has moti-
vated the mapping of loci where DNA methylation is
under genetic control, also known as methylation quan-
titative trait loci (meQTLs).
Several early reports focusing on candidate loci found

instances of DNA methylation levels correlated with se-
quence variants [8]. However, the advent of genome-
wide association studies (GWAS) and methods for inter-
rogating methylation at multiple loci has enabled the
mapping of meQTLs on a larger scale [7, 9, 10]. Geno-
type array marker densities have increased dramatically
over time and, when coupled with imputation, now en-
able comprehensive surveys of most common SNPs in
the human genome [11]. Our ability to interrogate
genome-wide DNA methylation (the “methylome”) has
developed in parallel with these technologies [12, 13].
Most published genome-wide meQTL studies [14–16]
measured methylation via the Illumina Infinium 27 K
array, capable of interrogating ~27,000 methylated sites,
while the most comprehensive study to date used the
latest Infinium chip to analyze ~450,000 sites in lung tis-
sue [17]. However, there are approximately 27 million
autosomal CpGs in the human genome, of which a sub-
stantial portion is methylated in most tissues surveyed
[18]. It is therefore apparent that only a small fraction of
possible meQTLs has been surveyed to date. In addition,
DNA methylation outside CpG islands, traditionally the
focus of methylation research, plays a role in the regula-
tion of transcription [19]. This suggests that more com-
prehensive meQTL surveys could be invaluable in
understanding genetic regulatory processes.
In this context, next-generation sequencing (NGS)

methods offer a significant advance over array-based
methylation detection [12]. Whole genome shotgun bi-
sulfite sequencing (WGBS) yields single base resolution
methylation data for every cytosine in the genome, but it
is not yet economically feasible in the large sample num-
bers required for genetic epidemiology [13]. This factor
is particularly relevant for meQTL studies, where our
ability to detect effects depends not only on the propor-
tion of the genome covered by methylation and single
nucleotide polymorphism (SNP) data, but also adequate
statistical power derived from large sample numbers. As
an alternative to WGBS, enrichment for the methylated
genomic fraction followed by NGS can yield information

on many millions of methylation sites [20]. In this study,
therefore, we use methyl-CpG binding domain (MBD)
protein-based enrichment coupled to NGS (MBD-seq)
to assay DNA methylation in human blood [21]. MBD-
seq has been demonstrated to be sensitive and capable
of identifying differentially methylated regions [20–25],
to detect previously reported robust associations [26],
and to produce findings that replicate using more sensi-
tive, targeted technologies [27]. Although MBD-seq can-
not pinpoint the specific CpG that caused an association
in regions with multiple CpGs, its resolution is approxi-
mately the size of the sequenced fragment (150–250 bp).
All these properties make MBD-seq a very efficient tool
for high-density methylome-wide studies.
We used MBD-seq to measure methylation at over 4.5

million unique loci in DNA from peripheral blood from
normal subjects. We then tested each locus-specific
DNA methylation measure for association with a high
density SNP genotype panel, augmented with imputed
genotypes from 1000 Genomes [28], to exhaustively
identify common variant meQTLs. To control for un-
measured confounders in the methylation data, such as
could be caused by heterogeneous cell types in the
source tissue (i.e., blood), we included the top principal
components from the methylation data as covariates in
the association testing. Our study provides a compre-
hensive up-to-date overview of genetic influence on the
methylome in human blood DNA, outside of a specific
disease context, and provides insights into the processes
that generate meQTLs.

Results
Data summary
Our study population comprised 697 subjects from
Sweden (see sample description in Table S1 in Additional
file 1) who were controls from a larger genetic study on
the etiology of schizophrenia [27]. Due to the specific na-
ture of sex chromosome methylation patterns, we focus
on the autosomes. SNPs were genotyped as described pre-
viously [29, 30]. Imputation was carried out with Minimac
[28] using 1000 Genomes reference panels v3 using minor
allele frequency (MAF) > 0.05 and r2 > 0.5 as thresholds.
Our MBD-seq data consisted of 31.6 million methylation-
enriched reads per subject (standard deviation (SD) = 13.4
million) after alignment and quality control (QC). We
used these reads to estimate fragment coverage at each of
the ~27 million autosomal CpG sites in the human refer-
ence genome (hg19), where higher coverage indicates
higher levels of methylation [31]. Our methylation data
preprocessing involved exclusion of sites showing poor
mappability, data reduction by combining highly corre-
lated coverage estimates at neighboring CpGs [31–33],
and discarding of unmethylated sites (<97.5 percentile of
background coverage levels). Based on preliminary results,
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we also excluded 5 Mb of pericentromeric or 1 Mb of sub-
telomeric regions because polymorphic tandem repeats in
these regions [34] were likely causing spurious inflation of
significant associations. The final dataset comprised
4,532,060 SNPs and 4,544,738 methylation sites. Each
methylation site, on average, comprised 2.91 CpGs and
spanned 71.1 bp.

Numbers and genomic distribution of meQTL effects
We used Matrix eQTL [35] to test all SNPs for associ-
ation with methylation levels at every site. Our testing
procedure accounted for covariates such as ancestry
(four multi-dimensional scaling (MDS) dimensions), sex,
sample batch and other laboratory assay variables. To
prevent potential confounding effects from unmeasured
sources of methylation variation, such as arises from cell
type heterogeneity in blood, we also included the top
seven principal components (PCs) from the methylation
data (Fig. S1 in Additional file 1) as covariates in the asso-
ciation testing. To confirm that these PCs were not associ-
ated with genetic variation, we ran GWAS on the PC
scores. Quantile-quantile (QQ) plots (Fig. S2 in Additional
file 1) indicated that methylation variation captured by the
PCs was not under detectable genetic control because no
SNPs were significantly correlated with any PC.
Results from our primary analysis are summarized in

Table 1. Following previous meQTL studies [15], tests
were divided into “local” (SNP ≤ 1 Mb from methylation
site) and “distant” (SNP > 1 Mb from site). Distant effects
were further subdivided into same chromosome and
cross-chromosome findings (Fig. 1). Associations were
considered significant if they passed a stringent false
discovery rate (FDR) threshold of 0.01, with the FDR
calculated separately for each group of tests. Although
the number of distant tests was much greater than the

number of local tests (20,168 billion distant, versus 16
billion local), significant findings among local tests were
189,000-fold more common compared with all distant
tests, or 5.8 million-fold more common compared with
cross-chromosome tests (QQ plots in Fig. 2a). The pre-
ponderance of local effects is further explored in
Fig. 2b–d. Here we show that the proportion of signifi-
cant findings increased as distance between SNPs and
their associated meQTLs diminished, indicating that
genetically driven methylation is typically co-localized
with the variation affecting it.
To illustrate the genomic distribution of effects, plots

of meQTLs by chromosome position are provided in the
Supplementary Material in Additional file 1 (p. 6–27), with
an interactive browser available at http://www.pharmacy.v
cu.edu/biomarker/resources/supplementary. In Fig. 3, we
show the pattern of results around the three most signifi-
cant meQTLs by p value in our analysis. Fig. 3 also shows
SNP–SNP and methylation–methylation correlations in
the same distance windows. SNP–SNP correlations were
much more extensive than those between methylation
sites at similar physical distances. Blocks of SNPs in close
proximity and in linkage disequilibrium (LD) showed asso-
ciation with the same methylation site(s), as expected.
However, SNPs also tend to be associated with several
methylation sites within the same LD block. These trends
are observed throughout the genome, from LD blocks of a
few kilobases to the largest block we observed, spanning
over 20 Mb on chromosome 8 (Supplementary Material in
Additional file 1, p. 13). These observations illustrate that
LD extending for many megabases can spuriously suggest
the presence of long-range effects. Furthermore, the over-
all number of significant tests is influenced by LD, whereby
many highly correlated SNPs in close proximity tag each
meQTL. This, coupled with the broad distribution of

Table 1 Summary statistics for number of findings by analysis category

Local (≤1 Mb) Distant same chromosome (>1 Mb) Cross-chromosome Total

Part I: overall findings

Number of tests (billions) 16.7 1140.2 19,440.1 20,597.0

Fraction of tests significant at FDR = 1 % 4 × 10−3 3.7 × 10−7 7 × 10−10 –

P value threshold for FDR = 1 % 4.05 × 10−5 3.74 × 10−9 7.03 × 10−12 –

Number of tests significant at FDR = 1 % 67,752,610 426,958 13,672 –

Number of unique SNPs with meQTLs 4,426,992 (97.68 %) 36,916 (0.81 %) 11,204 (0.25 %) 4,532,060

Unique methylation sites with meQTLs 683,152 (15.03 %) 3819 (0.08 %) 286 (0.01 %) 4,544,738

Part II: by methylation site features

At MAF≥ 0.05

Sites (with meQTLs) 683,152 3,819 286 4,544,738

With CpG-SNPs 75 % 45 % 35 % 33 %

With other SNPs 12 % 18 % 20 % 30 %

Without SNPs 13 % 37 % 45 % 37 %
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meQTLs throughout the genome and the relatively good
statistical power provided by our study sample, explains
our observation that 97.7 % of all SNPs tested were associ-
ated with methylation at one or more loci within 1 Mb. As
such, the number of unique methylation sites under
genetic control, rather than the number of significant
SNP–methylation site associations, is arguably a better
representation of the extent of genetic influence on the
methylome. In our analysis, methylation levels at 15 %
of sites were associated with one or more local SNPs.
That is, 15 % of methylation sites were local meQTLs.

These were 166-fold more common than all distant
meQTLs and 2389-fold more common than cross-
chromosome meQTLs.

Replication of findings
Our methylation data were obtained from control sub-
jects who formed part of a larger study of the psychiatric
disorder schizophrenia [27]. While methylation differ-
ences exist between cases and controls, we considered
that the case sample would allow us to obtain a lower
bound estimate of the replication rate of our findings.

Fig. 1 Schematic of possible meQTL effects. a Where the SNP and methylation site are within 1 Mb of each other, this is a “local” effect. All other
effects are therefore “distant”, which is further sub-classified into same chromosome (b) and cross-chromosome (c) distant effects. As there are
many millions of methylated sites in the genome, local SNPs with respect to one methylation site would be distant SNPs with respect to the vast
majority of others. d The situation where a CpG-SNP affects methylation at a locus and thus causes a meQTL. Other SNPs in linkage disequilibrium
(LD) with the CpG-SNP will also be associated with the CpG-SNP effect on methylation, and thus will appear to tag the meQTL
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The case sample comprised 711 patients of similar age
and sex distribution to the controls (Table S1 in Add-
itional file 1). We calculated p values in the replication
sample for methylation site–SNP pairs that passed 1 %
FDR control in the primary analysis. We then computed
the π1 statistic (estimate of the proportion of true posi-
tives in a p value distribution) [36] for these p values.
The π1 statistic was 95 %, 98.7 %, and 99.3 % for local,
distant same-chromosome, and cross-chromosome tests,
respectively, indicating very high replication rates. Fig. 4
illustrates replication agreement.

Genetically variable CpGs as a mechanism driving local
meQTLs
SNPs that create or abolish CpGs (CpG-SNPs) have been
suggested as genetic drivers of individual differences in
methylation [37]. We hypothesized that this mechanism pro-
duced local meQTL effects in our study. Such meQTLs
would result from CpG-SNPs at the methylation site of inter-
est, with other local SNPs in LD with the CpG-SNP behaving
as proxies of this phenomenon (Fig. 1d). We identified all
CpG-SNPs in dbSNP 135 (30.1 % of SNPs) and then quanti-
fied how many methylation sites in our analysis encom-
passed a CpG-SNP, including a flanking region covering
±250 bp of the site boundary. This 250-bp window size rep-
resents the approximate maximum length of a sequenced
fragment in our study, and therefore is the maximum dis-
tance from a locus at which a CpG-SNP could directly affect
our methylation measure. In part II of Table 1, we show that

75 % of methylation sites under local genetic influence con-
tain a CpG-SNP with MAF > 0.05, compared with 33 % of
all sites genome-wide. This enrichment is also observed, al-
beit to a lesser extent, at lower CpG-SNP MAF thresholds
(Table S2 in Additional file 1). Thus, most, but not all, local
meQTLs could be explained by CpG-SNPs. By comparison,
cross-chromosome meQTLs showed no enrichment for
CpG-SNPs.

Bioinformatics analysis of meQTL findings
We tested if our meQTLs (i.e., those methylation sites with
significant SNP associations) were enriched in several cat-
egories of genomic annotations. We performed our bioinfor-
matics analyses in two phases. In the first phase, we looked
at aggregate annotation categories (e.g., genes, transcription
factor binding sites), with p values generated via up to four
million permutations. We initially focused on local findings,
first examining enrichment among all local meQTLs and
then split our data to characterize enrichment patterns for
meQTLs with CpG-SNPs and those without. In the second
bioinformatics analysis phase, we looked at specific annota-
tions in more detail, reducing the number of permutations
to one-tenth of those carried out in the first phase and in-
cluding FDR control due to the larger number of tests. Initial
phase 1 analysis found some enrichment of genomic duplica-
tions, copy number variants, and pseudogenes among
meQTL findings. This was modest for local effects but sub-
stantially greater for cross-chromosome compared with local
meQTLs (Table S3 in Additional file 1). We eliminated

Fig. 2 Quantile-quantile (QQ) and distance plots. a QQ plots for three different analysis categories. The red line indicates local meQTL effects (SNP
and methylation site < 1 Mb apart), the light blue line indicates distant meQTL effects where SNP and site are on the same chromosome (SNP and
methylation site >1 Mb apart), while the dark blue line indicates cross-chromosome meQTL effects. The thin gray diagonal line indicates the
expectation under the null hypothesis. b Distance plots for meQTL effects, where the x-axis shows the distance between SNP and methylation
site and the y-axis shows the negative logarithm (base 10) of the p values. Note the y-axis scale of the plots is identical to the QQ plots, allowing
direct comparison. In the left distance plot, the distribution of all meQTL effects around methylation sites indicates that most effects occurred
within a distance of 500 kb. The central distance plot shows just the most significant SNP per methylation site, indicating that this is typically close.
The right distance plot displays only the closest SNP with FDR < 0.01 to each site. The narrow spike indicates that the phenomenon is highly localized.
The difference between the left and right distance plots is primarily due to linkage disequilibrium between SNPs
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Fig. 3 Methylation and genotype correlations by distance. We took the top three meQTL effects by p value in the study overall and plotted the
distribution of methylation–methylation (Meth–Meth) correlation, meQTL effects (SNP–Meth) and SNP–SNP correlation around these findings. The
top panels show several megabases around the top methylation site overall, chr22:39,040,217–39,040,773 (p = 8.08 × 10−177); the middle panels show
the region around site chr14:32,953,580–32,954,000 (p = 1.10 × 10−167), while the bottom panels show the region around site chr3:192,884,173–
192,884,636 (p = 5.71 × 10−165). Correlated blocks of SNPs in close proximity show association with the same methylation site(s). This leads to the
horizontal “stripes” of significant meQTL associations. However, SNPs also tend to be associated with methylation levels at several sites on the same
haplotype, leading to the two-dimensional patchwork of “striped squares” along the diagonal (see detail in SNP-Meth panels). This trend was observed
universally in the genome, from small LD blocks measuring a few kilobases to very large regions, such as exists around the MHC on chromosome 6
(Supplementary Material in Additional file 1, p. 11). This serves to illustrate that while SNPs and their associated methylation sites tend to be
co-localized, significant LD extending for many megabases can generate apparently long-range effects
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methylation sites overlapping these features and re-analyzed
the remainder.

Initial genomic annotation analysis of all local meQTLs
The results for the phase 1 analysis of all local meQTLs
are summarized in Fig. 5 (details are provided in Table S3
in Additional file 1). To estimate enrichments that could
be observed by chance, we used the annotations for all 4.5
million methylation sites that we assayed as our back-
ground set in the permutation analysis. We found that
local meQTLs were significantly less likely to overlap with
almost all functional features tested, including CpG
islands, genes, promoter regions, DNaseI hypersensitive
regions, etc., compared with sites that were not meQTLs.
However, local meQTLs were significantly more likely to
overlap with GWAS hits from the National Human Gen-
ome Research Institute (NHGRI) GWAS catalog (odds ra-
tio = 3.09, p = 2.6 × 10−75). It should be noted that in this
instance we consider a very specific overlap, i.e., the
GWAS catalog SNP is within the boundary of the methy-
lation site. This finding was also observed in our replica-
tion sample (odds ratio (OR) = 3.4, p = 4.8 × 10−79). Of the
393 methylation sites under local genetic control overlap-
ping the GWAS catalog in our main analysis (Table S4 in
Additional file 1), 366 encompassed a CpG-SNP with
MAF > 0.05 while 387 encompassed a CpG-SNP with
MAF > 0.01. In our phase 2 analysis, we examined the spe-
cific phenotypes contributing to the NHGRI GWAS

catalog overlap with all local meQTLs. We show results
for the 21 phenotypes passing FDR < 0.01 in Table 2. A
common theme was not apparent, with genetic effects on
methylation appearing to influence traits such as body
morphology and cardiovascular, autoimmune and psychi-
atric disorders, amongst others.

Genomic annotation analysis of local meQTLs with and
without CpG-SNPs
Common (MAF > 0.05) CpG-SNPs were present at most
(75 %), but not all, local meQTLs. This implies that dif-
ferent mechanisms are operating to influence methyla-
tion at meQTLs without CpG-SNPs. To compare
patterns of genomic features for local meQTLs with
CpG-SNPs and those without, we reran our phase 1
analysis stratifying by common CpG-SNP (MAF > 0.05)
presence or absence. Thus, in this analysis, local meQTLs
with CpG-SNPs were compared with a background set of
all methylation sites with CpG-SNPs (out of the 4.5 mil-
lion assayed in our study). Similarly, local meQTLs with-
out CpG-SNPs were compared with all methylation sites
lacking CpG-SNPs.
We found that local meQTLs with common CpG-SNPs

showed similar patterns to our observations for all local
meQTLs, except that they were much less enriched for G-
quadruplexes (Table S3 in Additional file 1). For meQTLs
lacking common CpG-SNPs, these were significantly
enriched for transcription factor (TF) binding sites (OR=
1.11, p= 7.24 × 10−18) and DNase clusters (OR = 1.12,
p = 1.11 × 10−37). Notably, these findings became more
pronounced when we excluded sites with any CpG-SNP,
regardless of MAF (TF binding sites OR = 1.25, p = 3.56 ×
10−39; DNase clusters OR = 1.24, p = 1.59 × 10−59). These
findings were also observed in the replication sample,
with similar ORs and significance levels (Table S3 in
Additional file 1). To identify the specific TFs account-
ing for the observed aggregate enrichment at local
meQTLs, we obtained the individual genome-wide
binding profiles for more than 200 TFs from ENCODE
[38]. We then analyzed each TF binding profile separ-
ately, rather than in aggregate as above, and results are
shown in Table S5 in Additional file 1. The individual
TFs that displayed the greatest enrichment and passed
FDR < 0.01 were ZBTB33 (OR = 3.85, p = 9.67 × 10−18),
p300 (OR = 3.06, p = 9.67 × 10−18) and TR4 (OR = 2.84,
p = 9.67 × 10−18). As shown in Table S5 in Additional file
1, binding sites for 66 unique TFs showed enrichment
for local meQTLs. This large number may be partly ex-
plained by the tendency of TF binding profiles to over-
lap in regions critical for transcriptional regulation [38].
Nevertheless, our finding suggests that genetic influence
on TF binding can have substantial influence on local
methylation levels and that this mechanism is poten-
tially applicable to a large number TFs.

Fig. 4 Replication plot showing agreement in test statistics for our
primary sample of normal individuals (controls) versus a comparable
sample, in terms of age, sex and number of subjects (N = 711; Table
S1 in Additional file 1), of patients with a diagnosis of the mental
disorder schizophrenia (cases). The distribution of effects along the
diagonal indicates broad agreement for all three classes of effect
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Enrichment analysis of local meQTLs in Roadmap
Epigenomics chromatin states
In our phase 1 analysis, the presence or absence of CpG-
SNPs differentiated local meQTLs with respect to enrich-
ment in TF binding sites and DNase clusters. This suggested
that meQTLs without CpG-SNPs were more likely to occur
in regions of active chromatin. To study this in more detail,

we looked for local meQTL enrichment in genomic regions
classified into specific chromatin states. Local meQTLs were
divided according to presence or absence of CpG-SNPs (any
MAF). Chromatin state classification was according to an 18
state model from the Roadmap Epigenomics Consortium
[18] for peripheral blood cells, of which there was informa-
tion on 14 distinct cell types. Results are summarized in Fig. 6

Fig. 5 Enrichment of all local meQTLs in broad genomic annotation categories. The x-axis is the odds ratio for enrichment and 99 % confidence
intervals (CI) are provided for all data points. We show enrichment in both our primary sample (main analysis) and in the replication sample. In all
instances, significance was calculated based on more than four million permutations. Annotation categories are as follows: (1) GWAS catalog
represents hits from the National Human Genome Research Institute (NHGRI) GWAS catalog; (2) CpG islands; (3) exons; (4) CpG shores, defined as
2 kb flanking a CpG island; (5) G-quadruplexes; (6) narrow promoter region 2 kb upstream from transcription start; (7) conserved across 29 eutherian
mammals; (8) broad promoter region 8 kb upstream from transcription start; (9) conserved transcription factor (TF) recognition sequences; (10) RefSeq
genes; (11) ENCODE transcription factor binding data from chromatin immunoprecipitation sequencing (ChIP-seq) experiments; (12) DNaseI
hypersensitive regions; (13) introns; (14) repetitive elements; (15) long non-coding RNAs; (16) known imprinted genes; (17) VISTA enhancers;
and (18) microRNA genes

McClay et al. Genome Biology  (2015) 16:291 Page 8 of 16



and full details are provided in Table S6 in Additional file
1). A very distinct pattern of results was obtained for local
meQTLs with CpG-SNPs, which were strongly enriched
in heterochromatin and quiescent regions, in addition to
regions harboring zinc finger protein genes and repeats,
while being significantly depleted in other chromatin
states. In contrast, meQTLs without CpG-SNPs were
enriched around transcription start sites and enhancers.
These were also enriched in some inactive chromatin re-
gions, notably in repressed polycomb regions. There was
strong agreement in the pattern of enrichment across cell
types, indicating a broad consistency in chromatin activity
patterns among the major classes of peripheral blood cells
studied.

Secondary analysis of local meQTLs overlapping the NHGRI
GWAS catalog
Of the 393 local meQTLs that overlapped the NHGRI
GWAS catalog, the vast majority (>93 %) encompassed a
common CpG-SNP (MAF > 0.05), while practically all

(>98 %) encompassed a CpG-SNP with MAF > 0.01. How-
ever, our chromatin state analysis showed that meQTLs
with CpG-SNPs were much more likely to occur in quies-
cent or heterochromatin regions. Given that most local
meQTLs with CpG-SNPs are in regions unlikely to affect
phenotype, we speculated that those overlapping the
NHGRI GWAS catalog were in some way distinct. We
therefore compared the local meQTLs with CpG-SNPs
overlapping the NHGRI GWAS catalog with all local
meQTLs with CpG-SNPs. Due to the smaller numbers of
meQTLs being tested, this analysis had lower power relative
to those above and none of the findings passed our stringent
threshold of FDR < 0.01. However, five tests did pass a more
typical FDR< 0.05 threshold (Table S7 in Additional file 1).
Specifically, those local meQTLs with CpG-SNPs overlap-
ping the GWAS catalog were less likely to occur in quiescent
and heterochromain regions and more likely to occur in re-
gions of active chromatin, specifically active enhancers (max-
imum OR= 2.2, p= 1.9 × 10−4) than all local meQTLs with
CpG-SNPs. These results suggest that meQTLs with CpG-

Table 2 Traits and diseases from the NHGRI GWAS catalog with associated loci enriched for local meQTLs

Phenotype N annot Overlap Fisher PV OR Perm Z Perm PV Perm QV

Bone mineral density 25 15 1.58E-07 9.03 6.530 4.40E-10 1.07E-07

Breast cancer 34 17 8.28E-07 6.02 5.878 2.51E-08 3.05E-06

Blood pressure 9 7 3.28E-05 21.06 5.551 1.63E-07 1.31E-05

Height 90 31 1.25E-06 3.16 5.499 2.16E-07 1.31E-05

Major depressive disorder 14 9 2.44E-05 10.84 5.452 2.80E-07 1.36E-05

Non-alcoholic fatty liver disease 7 6 5.13E-05 36.10 5.413 3.47E-07 1.41E-05

Alzheimer’s disease 17 10 2.54E-05 8.60 5.203 1.06E-06 3.67E-05

Rheumatoid arthritis 37 16 1.84E-05 4.59 5.167 1.27E-06 3.86E-05

Hypertension 10 7 9.59E-05 14.05 5.010 2.82E-06 7.62E-05

QRS duration 8 6 1.80E-04 18.06 4.911 4.62E-06 1.08E-04

Crohn’s disease 42 17 2.89E-05 4.09 4.900 4.89E-06 1.08E-04

Pulmonary function decline 6 5 3.10E-04 30.10 4.803 7.79E-06 1.58E-04

IgG glycosylation 70 23 8.67E-05 2.95 4.409 4.80E-05 8.98E-04

Systemic lupus erythematosus 15 8 4.25E-04 6.88 4.199 1.18E-04 1.93E-03

Bone mineral density — spine 5 4 1.82E-03 24.08 4.198 1.19E-04 1.93E-03

Hip geometry 5 4 1.82E-03 24.08 4.173 1.32E-04 2.01E-03

Autism spectrum, attention deficit-hyperactivity,
bipolar and major depressive disorders and
schizophrenia combined

19 9 5.72E-04 5.42 4.103 1.77E-04 2.52E-03

Mean corpuscular hemoglobin 5 4 1.82E-03 24.08 4.084 1.90E-04 2.57E-03

Tuberculosis 8 5 2.25E-03 10.03 4.031 2.36E-04 3.02E-03

Bipolar disorder and schizophrenia 24 10 9.86E-04 4.30 3.799 5.85E-04 7.11E-03

Obesity-related traits 165 40 7.21E-04 1.93 3.709 8.22E-04 9.52E-03

We examined 494,420 meQTLs out of 3,470,923 methylation sites, after removal of sites in regions flagged as copy number variants, genomic duplications or
pseudogenes. We consider local meQTLs and do not stratify by presence or absence of CpG-SNPs at the meQTL site. “N annot” is the number of loci in the NHGRI
GWAS catalog for that trait or disease, “Overlap” is the number of GWAS loci that overlap with a local meQTL, “Fisher PV” is the p value from the Fisher exact test
of enrichment, “OR” is the odds ratio, “Perm Z” is the Z-statistic of the permutation test, “Perm PV” is the p value from >300,000 permutations, “Perm QV” is the q
value of the permutation test. Only findings passing FDR control with q value < 0.01 are shown
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SNPs in regions of active chromatin associated with disease
could be high priority targets for further characterization in
disease studies.

Genomic annotation analysis of SNPs and
cross-chromosome meQTLs
For distant meQTLs, to prevent possible contamin-
ation from local effects in regions where LD exceeds
1 Mb, we focused on cross-chromosome findings.
Cross-chromosome meQTLs (i.e., methylation sites as-
sociated with SNPs on other chromosomes) were sig-
nificantly more likely to overlap with exons (OR = 5.24,
p = 3.39 × 10−18). This association was also apparent in
the replication sample (OR = 4.91, p = 7.78 × 10−19),
suggesting that some cross-chromosome findings may

have functional relevance (Table S3 in Additional file 1). Un-
like local meQTLs, however, there was no enrichment for
cross-chromosome meQTLs in the NHGRI GWAS catalog,
suggesting any functional effects they may have are benign.
Phase 1 annotation analysis for local and distant SNP ef-

fects are also included in Table S3 in Additional file 1 for
completeness. In these SNP analyses, only common SNPs
(MAF > 0.05) were included as the background set because
only common SNPs were included in our study. The local
SNP findings showed no enrichment for most features
tested. However, the vast majority of SNPs were associated
with one or more local meQTLs so the discrimin-
atory power of this local analysis is limited. Finally,
cross-chromosome SNP findings were not signifi-
cantly enriched for any phase 1 annotation category.

E02
9 

M
on

oc
yte

s

   
 E

03
2 

B C
ell

s

   
   

   
E03

4 
T C

ell
s

   
   

   
   

 E
03

7 
T H

elp
er

 M
em

or
y C

ell
s

   
   

   
   

   
   

E03
8 

T H
elp

er
 N

aiv
e 

Cell
s

   
   

   
   

   
   

   
 E

03
9 

T H
elp

er
 N

aiv
e 

Cell
s

   
   

   
   

   
   

   
   

   
E04

0 
T H

elp
er

 M
em

or
y C

ell
s

   
   

   
   

   
   

   
   

   
   

 E
04

3 
T H

elp
er

 C
ell

s

   
   

   
   

   
   

   
   

   
   

   
   

E04
4 

T R
eg

ula
to

ry
 C

ell
s

   
   

   
   

   
   

   
   

   
   

   
   

   
 E

04
5 

T C
ell

s e
/m

 e
nr

ich
ed

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  E
04

6 
Nat

ur
al 

Kille
r C

ell
s

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 E
04

7 
T C

D8+
 N

aiv
e 

Cell
s

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

E04
8 

T C
D8+

 M
em

or
y C

ell
s

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 E

06
2 

M
on

on
uc

lea
r C

ell
s

Active:
TssA
TssFlnk
TssFlnkU
TssFlnkD
Tx
TxWk
EnhG1
EnhG2
EnhA1
EnhA2
EnhWk
ZNF_Rpts
Inactive:
Het
TssBiv
EnhBiv
ReprPC
ReprPCWk
Quies

= Enriched (OR > 1)  = Depleted (OR < 1) = Not significant (FDR>0.01)

E02
9 

M
on

oc
yte

s

   
 E

03
2 

B C
ell

s

   
   

   
E03

4 
T C

ell
s

   
   

   
   

 E
03

7 
T H

elp
er

 M
em

or
y C

ell
s

   
   

   
   

   
   

E03
8 

T H
elp

er
 N

aiv
e 

Cell
s

   
   

   
   

   
   

   
 E

03
9 

T H
elp

er
 N

aiv
e 

Cell
s

   
   

   
   

   
   

   
   

   
E04

0 
T H

elp
er

 M
em

or
y C

ell
s

   
   

   
   

   
   

   
   

   
   

 E
04

3 
T H

elp
er

 C
ell

s

   
   

   
   

   
   

   
   

   
   

   
   

E04
4 

T R
eg

ula
to

ry
 C

ell
s

   
   

   
   

   
   

   
   

   
   

   
   

   
 E

04
5 

T C
ell

s e
/m

 e
nr

ich
ed

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  E
04

6 
Nat

ur
al 

Kille
r C

ell
s

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 E
04

7 
T C

D8+
 N

aiv
e 

Cell
s

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

E04
8 

T C
D8+

 M
em

or
y C

ell
s

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 E

06
2 

M
on

on
uc

lea
r C

ell
sa b

Local meQTLs with CpG-SNPs Local meQTLs without CpG-SNPs

Fig. 6 Enrichment/depletion of local meQTLs in different chromatin states. Chromatin state classification used an 18 state model from the
Roadmap Epigenomics Consortium [18] (http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#exp_18state) for peripheral blood
cells. Testing was conducted via permutation and details (p values, test statistics, etc.) are provided in Table S6 in Additional file 1. a, b
Enrichment for local meQTLs with and without CpG-SNPs, respectively. Effect direction is color-coded, with significant (q value < 0.01) enrichment
(OR > 1) shown in red and depletion (OR < 1) shown in blue. Roadmap chromatin states are broadly categorized as active and inactive [18]. Active
chromatin states are as follows: active transcription start site (TssA), flanking transcription start site (TssFlnk), upstream flanking transcription start
site (TssFlnkU), downstream flanking transcription start site (TssFlnkD), strong transcription (Tx), weak transcription (TxWk), genic enhancer (EnhG1 and
EnhG2), active enhancer (EnhA1 and EnhA2), weak enhancer (EnhWk), zinc finger genes and repeats (ZNF_Rpts). Inactive chromatin classes are as follows:
heterochromatin (Het), bivalent/poised transcription start site (TssBiv), bivalent enhancer (EnhBiv), repressed polycomb (RepPC), weak repressed
polycomb (RepPCWk), and quiescent (Quies)

McClay et al. Genome Biology  (2015) 16:291 Page 10 of 16

http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#exp_18state


Discussion
All previous studies of meQTLs found abundant local effects
in all tissues analyzed [9, 15, 17]. Our findings suggest that
(1) any site under local genetic influence was typically associ-
ated with a SNP in very close proximity, (2) local effects
tracked LD, and (3) the majority of sites under local genetic
control included a CpG-SNP within their boundary. Distant
effects showed no such enrichment. Taken together, these
observations suggest that most meQTLs involve processes
that are entirely dependent on local sequence context, or are
LD proxies of such processes, consistent with previous stud-
ies of allele-specific methylation [39, 40]. Previous studies
have noted the importance of CpG-SNPs as mediating gen-
ome–epigenome interaction [37, 40] and our study provides
extensive quantitative evidence to support this.
Several different processes appear to be working to cause

meQTLs. For those meQTLs overlapping CpG-SNPs, ab-
sence of the CpG sequence in some individuals will clearly
prevent methylation. However, in others the presence of a
CpG means only that it can be methylated, not necessarily
that it will be. Methylation of the CpG in the cell type of
interest is necessary for the meQTL effect to be observed. In
our data, we observed enrichment of meQTLs with CpG-
SNPs in quiescent and facultative heterochromatin regions,
both of which are heavily methylated (>75 %) [18]. This sug-
gests that, for this class of meQTLs, we are simply picking
up the sequence differences at polymorphic CpGs between
individuals in heavily methylated regions. Quiescent and het-
erochromatin regions are also transcriptionally inactive. A
small number of previous studies have examined meQTLs
and expression QTLs (eQTLs) in the same tissue and ob-
served very low concordance. For example, Gibbs et al. [15]
found that only 4.8 % of significant meQTLs were also an
eQTL. The fact that most of our meQTLs included CpG-
SNPs and these were in transcriptionally inactive chromatin
regions could be one factor in explaining the low concord-
ance between meQTLs and eQTLs.
One expectation based on these observations could be that

meQTLs with CpG-SNPs typically have no effect on pheno-
type. However, this is somewhat incongruent with our find-
ing that local meQTLs were enriched in loci from the
NHGRI GWAS catalog and almost all sites overlapping the
catalog encompassed CpG-SNPs. For example, the most
significant site among the overlap spanned 157 bp at the
TCF7L2 locus on chromosome 10 (114,753,967–
114,754,123) and the associated SNP was rs34872471
(p = 1.4 × 10−126). The CpG-SNP within the boundary of
this site, rs7901695 (chr10:114,754,088), was associated at
a similar level of significance (p = 2.1 × 10−114). It is con-
sidered to be a confirmed susceptibility variant in diabetes
[41, 42], with over 30 publications at time of writing link-
ing it to the disease. Mutation of CpGs at certain critical
loci is considered to be an important etiological mechan-
ism for complex diseases [37]. We observed almost 400

findings that overlapped with the GWAS catalog, including
associations with many different disease genes and disor-
ders, suggesting that meQTLs with CpG-SNPs overlapping
the GWAS catalog were distinct in some way. Our analysis
showed that these meQTLs were more likely to be in ac-
tive chromatin, with our most significant enrichment in
active enhancers. This echoes previous studies showing
enrichment of disease- or trait-associated variants in spe-
cific chromatin states [43] or accessible regions [44]. Re-
cent findings from the Roadmap Epigenomics Consortium
also indicated enrichment of disease-associated variants in
active enhancers, most notably those associated with
H3K4me1 and H3K27ac histone marks [18]. Based on
these findings, we suggest that local meQTLs with CpG-
SNPs in active chromatin regions in the relevant tissue
should be priority targets for functional follow-up in dis-
ease mapping studies. Our meQTLs from NGS are typic-
ally small, spanning only 2.9 CpGs and approximately
70 bp on average. Thus, they could enable fine-scale
prioritization of specific variants from the large regions
implicated in GWAS.
Where local meQTLs lack CpG-SNPs, alternative mechan-

istic explanations must be considered. It is known that non-
CpG variants influence the binding of cis-acting factors that,
in turn, affect methylation levels. For example, binding of
Sp1 serves to prevent methylation at some CpGs in pro-
moter regions [45]. We observed that local meQTLs lacking
CpG-SNPs were more likely to overlap TF binding sites, in
agreement with this mechanistic explanation. However, the
extent of this phenomenon is greater than perhaps previ-
ously understood, with a broad range of TF binding profiles
showing significant enrichment for meQTLs without CpG-
SNPs. We observed that meQTLs without CpG-SNPs were
enriched in active regions of chromatin, particularly at the
transcription start site and flanking regions. This is congru-
ent with binding of TFs being the underlying mechanism.
However, we also observed meQTLs without CpG-SNPs to
be enriched in some inactive regions, particularly repressed
polycomb (RepPC) regions. Therefore, our results suggest
that genetic differences that affect binding of several different
classes of chromatin binding factors are an important influ-
ence on the methylome.

Conclusions
Our use of high-density genome-wide SNP genotyping and
imputation based on 1000 Genomes data enabled us to cap-
ture much of the common SNP variants in this sample. Our
use of NGS to assay DNA methylation enabled us to assess
most methylated CpGs in the non-repetitive portion of the
genome. We confirmed that genetic influence on methyla-
tion is a pervasive phenomenon throughout the genome
and, for the most part, highly localized in its effect. Our find-
ings suggest that several mechanisms can generate meQTLs.
These include CpG-SNPs and variants that interfere with
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chromatin binding for several classes of proteins. The very
large number of local meQTL effects attributable to CpG-
SNPs, coupled with the fact that they typically occur in non-
functional regions of the genome, suggests that most have
little phenotypic consequence. However, the observed en-
richment of meQTLs in disease or trait-associated regions
from the NHGRI GWAS catalog indicated that a small por-
tion of CpG-SNPs have arisen in regions of the genome
where they may exert significant influence on pheno-
type. Integration of meQTLs with other data, such as
RoadMap Epigenomics, could aid in functional inter-
pretation of SNPs identified in disease GWAS. We
therefore provide all our meQTL findings, including pos-
itional information and association statistics, in Table S8
in Additional file 1.

Materials and methods
Ethics
All procedures were approved by the institutional review
board at the Karolinska Institutet, Stockholm, Sweden (IRB/
KI 04/-499/4) and further locally approved by the Virginia
Commonwealth University institutional review board (IRB#.
HM12499). Subjects provided written informed consent (or
legal guardian consent and subject assent). All experimental
methods comply with the Helsinki Declaration.

Subjects and biological sampling
Subjects were controls collected as part of a larger project
entitled “A Large-Scale Schizophrenia Association Study in
Sweden”. This overarching project [30, 46, 47] aims at under-
standing the etiology of schizophrenia and bipolar disorder
plus their clinical and epidemiological correlates. Peripheral
blood was donated at the local medical facilities of the partic-
ipants. DNA was extracted from EDTA blood using the
Gentra Puregene kit for automated extraction with the
Autopure LS robot (Qiagen).

Genome-wide SNP genotyping, quality control, and
imputation
Genotyping was carried out as described previously
[29, 30]. Briefly, subjects were genotyped with Affymetrix
genome-wide SNP Arrays 5.0 or 6.0, or Illumina OmniEx-
press. All genotyping was conducted at the Broad Institute
of Harvard and the Massachusetts Institute of Technology.
Genotypes were called using the Birdsuite (Affymetrix) or
BeadStudio (IIllumina). QC exclusionary measures for sub-
jects were: genotype call rates <95 %; ancestry outliers via
multidimensional scaling; a randomly selected member of
any pair of subjects with high relatedness (π > 0.20); and
suspected sample error or contamination indicated by high
heterozygosity or indeterminate genetic sex. SNPs were ex-
cluded for marked departure from Hardy–Weinberg equi-
librium (p < 1 × 10−6), low minor allele frequencies (<1 %),
and non-random genotyping failure, inferred from the

flanking haplotype background using the PLINK ‘mishap’
test (p < 1 × 10−10). Plate-based associations of p < 1 × 10−6

were taken as evidence of non-random genotyping failure,
based on a comparison of allele frequency of each plate
to all others and were removed on a plate-by-plate basis.
To enhance coverage, we imputed SNPs from 1000
Genomes data (phase I version 3) using Minimac, after
phasing genotypes with MACH 1.0 [28]. After selecting
on MAF > 0.05 and imputation quality measure r2 > 0.5,
a total of 4,761,800 imputed and genotyped SNPs were
available for meQTL association testing.

MBD-seq
Our methods and analysis pipeline make use of MBD
protein-based enrichment and sequencing (MBD-seq) as de-
scribed previously [26, 27, 31]. Briefly, genomic DNA was
sheared to median fragment size = 125 bp (Covaris E210)
and the methylated portion captured using MethylMiner
(Invitrogen), followed by elution in 500 mM NaCl. Methyl-
ated DNA fragments were sequenced (SOLiD, Life Tech-
nologies) using standard multiplexed single end (50 bp)
methods. The SOLiD system aligns in color space and uses
two-base encoding [48], producing two ‘color calls’ for each
base. After deleting poor quality reads (>2 missing color
calls), we obtained an average of 67.3 million (SD= 26.9 mil-
lion) total reads per sample. This exceeds the recommended
30–60 million reads required for genome-wide methylation
analysis via enrichment-based methods [49, 50]. The mean
quality value (QV= −10log10(p) with p being the probability
of an error) per color call was 21.4 (SD= 1.1). Reads were
aligned to the human reference genome (hg19/GRCh37)
using BioScope 1.2 (Life Technologies). The percentage of
mapped reads was 69.2 % (SD= 6.2). We deleted reads with
multiple poor quality alignments and high copy number du-
plicate reads were collapsed to single reads. This led to the
elimination of 32.1 % of the mapped reads. After all QC, we
obtained, on average, 31.6 million reads per subject (SD=
13.4 million).

MBD-seq methylation measures
Locus-specific methylation measures were obtained by sum-
ming the number of fragments expected to cover each CpG.
Note that methylation of any CpG in a DNA fragment, not
just the sequenced 50 bp, could lead to its capture by MBD
protein. Hence we define locus-specific methylation mea-
sures as the expected number of DNA fragments covering
each CpG [33]. Specifically, fragments whose sequenced part
is covering a CpG contribute a unit to its methylation meas-
ure. For some fragments, it is not known whether they cover
a given CpG, so their contribution to the methylation meas-
ure is set to the estimated probability that the fragment
covers the CpG. This probability is a function of fragment
size distribution. We estimated the fragment size distribution
empirically from the distribution of reads around isolated
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CpGs [33]. The calculation of methylation measures can be
schematically expressed as:

Methylation MeasureCpG ¼
X

fragments near CpG

P
^
Fragment covers the CpGð Þ:

The average number of fragments covering a particular
CpG depends not only on the methylation status of that
site but also on the number of methylated CpGs in the
region [20]. To make coverage estimates more compar-
able across sites and improve the correlation with actual
methylation levels, coverage estimates can be further
normalized using the local CpG density as a proxy for
the number of methylated CpGs in the region [50, 51].
However, our meQTL analyses essentially involve the
calculation of correlations between SNPs and quantile
normalized methylation levels. As these correlations are
not affected by monotone transformations of methyla-
tion levels, for sake of simplicity we did not use such a
normalization step.
Thirty-six percent (10.5 million) of all ~27 million auto-

somal CpGs in the reference genome (hg19/GRCh37) were
eliminated because of predicted alignment problems, as
observed in an in silico analysis [31]. The majority (71.8 %)
of these were in regions flagged as repetitive elements by
RepeatMasker. To reduce the size of the data set, the
remaining ~16 million CpGs were adaptively combined by
collapsing highly inter-correlated coverage estimates at ad-
jacent CpG sites into a single mean coverage estimate [31,
52]. Prior to association testing, we dropped sites with very
low levels of coverage as these were likely unmethylated
(<97.5 % of background coverage at non-CpG sites, where
the latter are defined as loci with no CpGs within 400 bp).
We previously reported in-depth quality metrics for

this methylation dataset [31]. Briefly, the ratio between
the median coverage at a CpG, i.e., the methylation sig-
nal, versus coverage at a non-CpG, i.e., the background
noise, is >40. This indicates the signal to noise ratio is
high. Second, in an analysis of 73 technical replicates,
we observed a median correlation of 0.92 for genome-
wide methylation measures between replicates. This in-
dicates that our MDB-seq measures are robust and re-
producible. Several studies have compared MBD-seq
quality and genome-wide coverage with other methods
[20, 22, 25]. Enrichment-based sequencing methods,
such as MBD-seq and MeDIP, are cheaper than WGBS
and provide better genome-wide coverage than microar-
rays [13]. By measuring the relative enrichment of methyl-
ated DNA rather than absolute levels, enrichment-based
methods are somewhat less accurate than Infinium arrays
or bisulfite sequencing for quantifying DNA methylation
levels in partially methylated regions. Enrichment-based
methods can, however, distinguish between methylated
and unmethylated regions almost as precisely as bisulfite
sequencing [49]. Compared with MeDIP, MBD-seq is less

noisy (picks up fewer sporadically methylated sequences)
but only assays methylation at CpGs [21]. Furthermore,
standard MBD-seq preferentially assays CpG-dense re-
gions [25]. To improve methylome-wide coverage, we
used an existing protocol variant that increases the relative
number of fragments from CpG-poor regions by eluting
the captured methylated fraction with 0.5 M NaCl [31].

Association analyses and FDR control
To test for association between genotype and methylation
measurements (each SNP versus each methylation site) we
used Matrix eQTL [35], a computationally efficient analysis
tool implemented in R (http://www.r-project.org/).
Methylation values were first corrected using the inverse
quantile normal transformation of the ranked values. This
robust approach greatly reduces the effect of outliers,
while retaining more power than rank-based procedures
[53]. To eliminate possible technical artifacts, lab variables
and sample batch were included as covariates in the linear
regression model. We also performed a principal compo-
nents analysis of the methylation data to eliminate un-
measured confounders [32]. As is true for most tissues,
blood consists of a variety of cell types. By using whole
blood we study an “average” methylation pattern. This can
produce false positives if two conditions hold simultan-
eously: (1) the relative abundance of common cell types is
correlated with the outcome variable of interest, and (2)
methylation patterns of these cell types differ. Ideally, we
would have methylation data obtained from separated
blood cells [54] to identify sites that are at risk for being
false positives. However, principal components analysis
provides an alternative solution [54–56]. Subjects with
similar cell type compositions will have more similar
multi-locus methylation patterns and these patterns will
be captured and regressed out through the PCs. Based on
a scree plot (Fig. S1 in Additional file 1), the first seven
PCs were selected for inclusion as covariates in our
meQTL analysis.
For the SNP data, we used four MDS dimensions to

control for ancestry, as used in the original report of
GWAS in this sample [29]. Due to the large size of the
data sets, methylation data and SNP genotypes were split
by chromosome and Matrix eQTL was applied separately
for each pair of chromosomes. We controlled the FDR
[57] at 1 %. Separate FDR calculations for local, distant
same chromosome and cross-chromosome tests were per-
formed to account for variations in the proportion of null
tests across these scenarios and ensure the FDR was effi-
ciently controlled at the desired 1 % level in all cases.
Namely, different p value thresholds were used for these
three groups of test to ensure at most 1 % of discoveries
were false in each group. Within each group FDR was cal-
culated using the standard Benjamini–Hochberg proced-
ure, which is known to be more conservative than other

McClay et al. Genome Biology  (2015) 16:291 Page 13 of 16

http://www.r-project.org/


common FDR procedures (as it assumes that the fraction
of non-null tests is small or zero).
The Benjamini–Hochberg FDR control procedure

works as follows. First, the p values in each group were
ordered in increasing order: P(1), P(2), …, P(m). Next, the
maximum k is selected such that P kð Þ≤ k

m α . The tests
with smallest k p values are then declared to have FDR
below α. In our case α = 0.01 (i.e., 1 %).

Bioinformatics analyses
Annotation tracks for the first analysis phase were obtained
via UCSC genome browser download for human genome
build hg19 and dbSNP version 135. We selected the fol-
lowing tracks for testing: (1) RefSeq genes and used gene
positional information to calculate (2) exon, (3) intron, (4)
promoter region 2 kb upstream and (5) promoter region
8 kb from transcription start site annotations. We also se-
lected (6) conservation based on similarity between 29 eu-
therian mammals, (7) CpG islands (defined as GC content
of ≥50 % or greater, length 200 bp, CpG ratio 0.6), (8) CpG
shores (2 kb regions flanking a CpG island [19]), (9) repeti-
tive elements from RepeatMasker (http://www.repeatmas-
ker.org/), (10) conserved TF binding sequences between
humans and rodents as provided in TransFac version 7.0,
(11) clustered ENCODE TF binding sites mapped via chro-
matin immunoprecipitation sequencing (ChIP-seq) [58,
59], (12) DNase clusters from the University of Washing-
ton DNaseI hypersensitivity submission to ENCODE, (13)
long non-coding RNAs from Gencode version 18, (14)
VISTA enhancers [60], (15) microRNA genes, (16) G-
quadruplexes [61], (17) known imprinted genes (http://
www.geneimprint.com), and (18) NHGRI GWAS catalog
hits (http://www.genome.gov/gwastudies) [62].
For each methylation site or SNP, we determined over-

lap with each annotation category and then compared
these with the set of sites/SNPs with detected meQTLs.
The significance of the enrichment of sites/SNPs in each
category with sites/SNPs with meQTLs was initially
assessed using Fisher’s exact test (R function “fisher.test”).
However, this test requires independence of observations
and the neighboring sites/SNPs are likely to be correlated
and thus violate this assumption. For proper assessment
of statistical significance we performed permutation ana-
lysis based on circular shifts as they preserve local depend-
ence of sites/SNPs. A circular shift permutation analysis
was conducted in the following way. First, the methylation
sites are ordered by genomic location. Then, the annota-
tion tracks for the sites are shifted by B positions forward,
with annotations for the last B sites assigned to the first B
sites. Then, overlap of meQTLs with annotation tracks for
the shifted annotation is calculated for all values of the off-
set B, except those shifting the original annotation by less
than 1 % of the total number of sites in either direction.
The overlap of meQTLs with annotation tracks under no

permutation is then compared with those under circular
shift permutations.
We observed that the permutation distribution of the

overlap counts was very close to Gaussian in each of our
tests (data not shown). For each test we fitted the normal
distribution to the set of overlap counts and calculated the
z-score for the overlap count observed for the original
non-permuted data. The permutation p values were then
calculated from the corresponding z-scores.
In the phase 2 bioinformatics analyses, we used a

database of genomic annotations assembled in the
GenomeRunner project [63] to examine enrichment of
meQTLs in selected annotation classes. These included
(1) individual disease-associated SNP sets from the
manually curated NHGRI Catalog of Published Genome-
Wide Association Studies [62] (accessed on 16 March
2015), (2) cell type-specific binding sites of individual TFs
from the ENCODE [64] (accessed on 1 December 2014)
and (3) cell type-specific chromatin states according to the
18-state model from the Roadmap Epigenomics Consor-
tium [18] (accessed on 18 March 2015). We further tested
the enrichment of 393 meQTLs overlapping disease/trait-
associated SNPs cataloged by NHGRI in these cell type-
specific 18 chromatin states. We used only data for pri-
mary cell lines from peripheral blood (E029 monocytes;
E032 B cells; E034 T cells; E037 T helper memory cells;
E038 T helper naive cells; E039 T helper naive cells; E040
T helper memory cells; E043 T helper cells; E044 T regu-
latory cells; E045 Primary T cells effector/memory
enriched; E046 natural killer cells; E047 T CD8+ naive
cells; E048 T CD8+ memory cells; E062 mononuclear
cells). Permutation testing was carried out as before, ex-
cept that only one-tenth of the total number of possible
permutations was used. FDR control was carried out as
described above.

Data access
As a resource for other researchers, all of our meQTL
findings, including positional information, best associ-
ation statistics and basic annotation data, are provided
in Table S8 in Additional file 1. Methylome data have
been deposited in dbGAP (http://www.ncbi.nlm.nih.gov/
gap/) with the accession number phs000608.

Additional file

Additional file 1: Supplementary Materials. (ZIP 58629 kb)
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