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Abstract

Identifying the microbiome composition from primary tissues directly affords an opportunity to study the causative
relationships between the host microbiome and disease. However, this is challenging due the low abundance of
microbial DNA relative to the host. We present a systematic evaluation of microbiome profiling directly from
endoscopic biopsies by whole genome sequencing. We compared our methods with other approaches on datasets
with previously identified microbial composition. We applied this approach to identify the microbiome from 27
stomach biopsies, and validated the presence of Helicobacter pylori by quantitative PCR. Finally, we profiled the
microbial composition in The Cancer Genome Atlas gastric adenocarcinoma cohort.

Background
The human microbiome is a critical constituent of nor-
mal human physiology as well as in the pathogenesis of
disease [1, 2], including malignancy [3–6]. Conservative
estimates are that greater than 15 % of all malignancies
may be attributed to microbiota [7], though the mecha-
nisms by which the human microbiome contribute to
malignancy remain largely unknown. There are several
hypotheses, including microbiota inducing oxidative
stress, altering immunosurveillance, changing local me-
tabolism, affecting stem cell dynamics, or producing
mutagenic metabolites [8]. Gastric cancer is one of the
most commonly diagnosed gastrointestinal malignancies
worldwide. It is responsible for nearly one million new
cases and over 700,000 deaths annually [9]. The fatali-
ty:case ratio is high, demonstrating that the majority of
patients diagnosed with gastric cancer will die of their
disease, despite advances in drug therapy [10]. Gastric
cancer is divided into specific subtypes based on
specific epidemiology and risk factors [11] and, more
recently, molecular profiles [11–13]. Helicobacter pylori

is an endemic bacterial pathogen that infects nearly half
of the world’s population [14], and is a WHO class I
carcinogen for the development of gastric cancer, spe-
cifically the non-cardia, non-diffuse subtype of gastric
cancer with an approximately threefold increased risk
of malignancy in chronically infected individuals. H.
pylori infection is believed to result in changes in gas-
tric mucosal physiology and the epithelial host immune
system [15–18]. Although several studies have exam-
ined causative features of H. pylori-associated gastric
cancer, including bacterial virulence factors (CagA and
VacA) [19–21], and host genetic alterations [22], what
determines the consequence of H. pylori infection (i.e.,
whether mild gastritis, more severe peptic ulcer disease,
or even gastric cancer) remains unknown.
Recently, a comprehensive molecular analysis per-

formed through The Cancer Genome Atlas (TCGA)
identified four distinct gastric cancer subtypes — (1)
Epstein-Barr virus (EBV)-positive, (2) microsatellite in-
stability, (3) genomically stable, and (4) chromosomal in-
stability — based on their characterization using six
molecular platforms: array-based somatic copy number
analysis, whole-exome sequencing, array-based DNA
methylation profiling, messenger RNA sequencing,
microRNA sequencing and reverse-phase protein array
[13]. The notable finding that EBV-associated gastric
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cancer is molecularly distinct from other gastric cancer
subtypes speaks to the importance of external pathogens
in this disease. However, this study did not report on the
microbial composition in these tumor samples and the
annotation of H. pylori was incomplete. Data are emer-
ging on the diversity of the bacterial population (over
hundreds of phylotypes [23, 24]) that reside in the stom-
ach [23] and its dynamic composition associated with
different disease states [25–27]. The microbial commu-
nity in the stomach is typically limited by the low pH of
the gastric lumen, which selects for acid-resistant bacter-
ial populations, and usually limits the colonization
densities to less than 1000 colony-forming units/g [24].
Due to the rise in pH caused by H. pylori urease activity
[28] as well as other factors, H. pylori infection may have
important effects on the composition of the gastric
microbiome. However, the effect of H. pylori on the gas-
tric microbiome is not well studied due to inadequate
numbers of tissue samples and low bacterial content.
Current methodology for profiling the microbiome from
fecal or environmental samples is not directly applicable
for detecting the microbiome from the upper gastro-
intestinal tract (i.e., stomach), in part due to the high
content of human DNA in the sample that confounds
microbial identification. Here we report on a systematic
study utilizing whole genome sequencing (WGS) data to
identify the microbiome composition from small endo-
scopic biopsy samples. We validated this methodology
by quantitative PCR (qPCR) as well as comparison with
other tools using datasets from the Human Microbiome
Project (HMP), HapMap, human blood serum samples,
a cystic fibrosis study, and TCGA studies. We further
analyzed 27 gastric biopsies collected from patients with
active H. pylori infection and with and without a history
of treated H. pylori infection and found significant differ-
ences in their microbial content. We also performed
similar analysis on the TCGA gastric samples and found
that 40 % of the analyzed samples have strong evidence
for H. pylori infection. This report details the method-
ology, computational pipeline, and validation of this
novel approach, which can now be applied over serial
endoscopic biopsies to examine temporal changes in the
microbiome over time.

Results
Identification of microbiome content in mucosal biopsies
Microbial profiling of human mucosal tissues, such as
oral cavities, skin, gastrointestinal tract, and urogenital
tract, are typically performed by sequencing variable re-
gions of the 16S ribosomal RNA gene [29, 30]. A limita-
tion of this approach is that species identification is
dependent on the extent of evolutionary diversification
in those variable 16S regions where other genomic re-
gions may be more informative for such speciation.

More recently, whole genome shotgun sequencing was
used to profile viral families [31, 32], for metagenomic
studies [33, 34], and for the HMP [35]. The use of 16S
and whole genome approaches for profiling the micro-
biome in human gastric biopsy samples is limited, how-
ever, because stomach mucosal biopsies contain mostly
human DNA and a low abundance of microbial DNA, in
contrast to samples collected from mucosal surfaces that
are highly enriched for bacteria.
To overcome these limitations of microbiome identifi-

cation from stomach biopsies and to maximize detection
power, we performed WGS of 27 mucosal biopsy sam-
ples at roughly 10× coverage. On average, each library
produced 400 million reads, of which 97 % were mapped to
the standard human reference genome (Additional file 1).
Initial profiling of the microbiome content from the
remaining unmapped reads using clade-specific markers
[36] resulted in a number of uncultivable bacteria species
in roughly equal proportions in all samples (Fig. S1 in
Additional file 2), such as Candidatus Carsonella ruddii
(160-kbp genome,16.5 % GC content), Candidatus Sulcia
muelleri (240-kbp genome, 22.5 % GC content), Candida-
tus Zinderia sp. (210-kbp genome, 13.5 % GC content)
and Wigglesworthia glossinidia (700-kbp genome, 22.5 %
GC content). These species are symbiotic bacteria that are
restricted to insect hosts [37] with no previous report of
human infection. Upon closer inspection we found that
their genomes are short and have a low GC content, sug-
gesting that their identification was incorrect, likely a re-
sult of short regions homologous with other bacteria or
the human genome. We therefore devised a more strin-
gent filtering approach adapted from the PathSeq pipeline
[4]. Briefly, the pipeline is composed of successive filtering
steps intended to remove the human-derived genomic
reads (Fig. 1; Additional file 1). The reads are first mapped
to the standard hg19 genome. The remaining unmapped
reads are then mapped to a number of additional human
assembled genomes and finally to a database of repeat re-
gions. The remaining unmapped reads are then mapped
to the National Center for Biotechnology Information
(NCBI) full set of microbial reference genomes (see
"Materials and methods").
We used two specific mapping criteria for definitive

identification of bacteria to reduce false detection. In the
first, we evaluated the number of reads that map to the
bacterial genome after the successive filtering steps. In
many instances the number of reads that map to the
bacterial genome drops sharply (often by more than
80 %) following the repeat masker and MegaBlast filter-
ing (Fig. 2a, c). This removes the majority of reads with
sequence similarities to repeat regions or human ge-
nomes. The second criterion is coverage uniformity of
the bacterial genome. To that end we devised two mea-
sures of coverage variance that correct for sequencing
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depths and size of the genome (see "Materials and
methods"). Both coverage measures were highly
correlated.
These two filtering criteria were used to distinguish

between falsely and correctly identified bacteria in the
samples. For example, the number of reads mapping to
Candidatus Zinderia insecticola and Thermoanaerobac-
ter wiegelii, which were initially detected in high abun-
dance in the antrum of patient 10, falls off dramatically
with successive filtering (Fig. 2a, c), and the coverage of
the mapped reads across each bacterial genome is not
uniform (Fig. 2b, d), suggesting that these bacteria are
not likely to be present in these samples. Alternatively,
the data for H. pylori and Lactococcus lactis provide
strong support for positive identification. These bac-
teria are not present in every sample, there is no dra-
matic reduction in number of mapped reads with
successive filtering steps (Fig. 3a, c), and the coverage
across each genome is more uniform (Fig. 3b, d).

Microbial content validation by qPCR in biopsy samples
To validate the results from WGS identification, we
performed qPCR analysis to quantify the total bacteria
content and H. pylori content by target amplification
of a conserved region of 16S rDNA and the H. pylori
specific ureA gene, respectively. We found excellent
correlation between qPCR-amplified ureA gene and
WGS H. pylori quantification (Fig. 4a; Spearman rank
correlation 0.91), as well as high correlation with
quantification of total bacteria using universal 16S
primers and WGS (Fig. 4b; Spearman rank correlation
0.785, p value < 0.006). We note that although H. pyl-
ori accounts for the majority of the detected micro-
biome content in some samples, H. pylori read counts
alone are poorly correlated to 16S qPCR-based total
bacteria content, suggesting the presence of other
(non-H. pylori) bacteria. This is further supported by
the good agreement between the sequencing-based
quantification and universal 16S qPCR when exclud-
ing H. pylori read counts (Fig. 4c; Spearman rank cor-
relation 0.84).

Comparison of microbiome detection methods in human
samples
To further validate our microbial detection approach,
we compared our methodology with MetaPhlAn [36]
and Kraken [38], commonly used programs for micro-
biome detection, using samples from relatively sterile
blood samples to evaluate false detection and bacteria-
rich samples to evaluate concordance between the
methods. We also included a number of tumor samples
from various tissues to demonstrate that our approach
is not restricted to tissue type or biased by bacteria
content.

Fig. 1 Workflow of the human DNA filtering and bacterial
identification procedure. BWA Burrows-Wheeler Aligner
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Comparison using sterile blood samples
We first selected three random samples (DRR000615,
ERR055396, ERR047873) from the human HapMap pro-
ject [39] to serve as negative controls. The HapMap pro-
ject sequenced blood samples from donors across a wide

range of human populations for the purpose of charting
human genomic diversity. Erroneous bacteria identifica-
tion is introduced from incomplete filtering of human
reads or incorrect mapping of reads to bacterial genomes.
As indicated by our initial analysis, some bacteria may be

Fig. 2 False bacteria identifications are readily identified by a drop in the number of mapped reads after filtering human sequences and
inconsistent coverage. a Log-transformed counts per million (CPM) reads mapped to Candidatus Zinderia insecticola after each filtering step for
each sample as outlined in Fig. 1. b Reads coverage map of Candidatus Zinderia insecticola in sample 10-Antrum-B1 after all filtering steps. Points
represent the read counts in a 5-kb window. c Log-transformed CPM mapped to Thermoanaerobacter wiegelii after each filtering step for each
sample. d Similar to (b), reads coverage map of Thermoanaerobacter wiegelii in sample 10-Antrum-B1. After all filtering steps, the coverage map
indicates that reads map to only a single region of the genome. BWA Burrows-Wheeler Aligner

a

b

c

d

Fig. 3 H. pylori (a, b) and Lactococcus lactis (c, d) retain consistent number of reads after each filtering step and the genomic coverage is uniform,
indicating positive identifications. Similarly to Fig. 2, panels (a) and (c) indicate log-transformed counts per million (CPM) reads mapped to the
respective bacteria and panels (b) and (d) contain read pileup along the genome in 5-kb segments. Dashed lines indicate minimum CPM values
used in this study for positive identification of bacteria. BWA Burrows-Wheeler Aligner
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incorrectly detected because of similarities to human gen-
omic loci. The HapMap samples serve as reasonable con-
trols to assess false discovery since there should be little if
any bacteria in blood samples.
Similar to the results from our gastric biopsy samples,

we find that both Kraken and MetaPhlAn identified a
number of bacteria species, such as Candidatus Carso-
nella ruddii, Candidatus Sulcia muelleri, Candidatus
Zinderia sp. and Wigglesworthia glossinidia, that are
likely misidentified due to contaminating human reads
(Fig. S2 in Additional file 2). For example, in sample
ERR055396, Thermoanaerobacter wiegelii and Mycoplasma

hyopneumoniae had a large number of mapped reads while
their genomic coverage was restricted to a few short regions
(Fig. S3a, b in Additional file 2). In contrast, no detectible
microbial species passed both the minimal number of reads
and coverage uniformity criteria when using our own
identification pipeline. Propionibacterium acnes was
found in sample DRR000615; although 219 reads sup-
ported this identification, the genomic coverage is
slightly below our cutoff for positive identification
(Fig. S3c in Additional file 2). It is, however, consist-
ent with previous reports that P. acnes is a common
contaminant of blood cultures [40].

Fig. 4 Correlation between qPCR-based bacterial quantification and WGS read counts. a Correlation plot between H. pylori-specific ureA
gene-based qPCR results and WGS read counts (normalized by counts per million (CPM) reads) mapped to H. pylori. b Correlation plot
between 16S rRNA gene-based qPCR results and total WGS read counts mapped to all bacterial genomes. c Correlation plot between 16S
rRNA gene-based qPCR results and WGS read counts mapped to non-H. pylori genomes. In three cases qPCR measurements were derived
from a sample that was adjacent to the WGS sample whereas in all other cases qPCR and WGS were performed on the same biopsy. Blue
dashed lines are the linear regression models
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Comparison using bacteria-rich samples
To evaluate the performance of our method on bacteria-
rich metagenomics samples, we profiled samples from
the HMP [29] to serve as positive controls. The HMP is
focused on mapping microbiome diversity across the
human population at different body regions that are
enriched for microbial species. We selected three
posterior fornix samples from the HMP (SRS052620,
SRS065347, SRS024428) with WGS data that were
previously analyzed for microbiome content, and ana-
lyzed their reads using our computational detection
procedure.
Overall, the microbiome profile of the HMP samples

generated by our analysis closely resembled the previ-
ously published microbial composition in both diversity
and quantification (average cosine similarity 0.983, no
statistical difference by t-test or Wilcoxon rank sum test;
Fig. 5a; Fig. S4a, b in Additional file 2). The differences
in species identification between the three methods
are largely restricted to low abundance species. The
sequence markers used by MetaPhlAn were derived
from short unique bacteria regions that can miss low
abundance species due to limited coverage. Kraken
identifies bacteria species by matching k-mers to a

database of bacteria k-mers (see "Comparison of
microbiome detection methods" in Additional file 2).
We identified several low abundance species that have
not been reported by previous studies, and are likely
true identifications as indicated by the uniform cover-
age of their genomes (Fig. S5 and "Comparison of
microbiome detection methods" section in Additional
file 2). Other previously identified species were not
detected by our pipeline due to low read counts (<10)
or insufficient genome coverage.
In addition to the HMP samples, we also analyzed two

sputa samples from a published cystic fibrosis study
[41]. Both of these samples contain a high percentage of
bacterial content relative to biopsy samples, and serve as
another positive control. The three methods reported
very similar microbiome profiles (cosine similarity >0.92;
Fig. 5b), where, similarly to the HMP samples, the
discrepancies between the methods are attributed to
differences in identification of low abundance species
(see "Comparison of Microbiome Detection Methods"
in Additional file 2). These results indicate that our
pipeline has a similar capacity to detect microbiomes
from the regular metagenomics samples as MetaPhlAn
and Kraken.

Fig. 5 a Comparison of bacteria identified from three samples profiled by the HMP. b Comparison of bacteria identified from two lung sputa
samples of cystic fibrosis patients. Both MetaPhlAn and Kraken and the procedure outlined in this study identify a consistent set of microbial
species in the five samples (cosine similarity >0.95). Values represent percentage of bacteria reads found in each sample
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Evaluation of human samples with low bacteria content to
demonstrate clinical applicability
To test the applicability of our methodology for micro-
biome detection in clinical samples we performed add-
itional evaluation on samples from a variety of different
tissues collected in different clinical studies. We first an-
alyzed WGS data from a serum sample collected in a
non-malaria febrile illness study (SRR1106126) where
Haemophilus influenzae was detected in one patient
[42]. Consistent with the study report, both our pipeline
and Kraken identified high levels of H. influenzae
(82.9 % and 75.4 %, respectively) as well as P. acnes
(17.1 % and 24.6 %, respectively), whereas no bacteria
were identified by MetaPhlAn.
Next we analyzed WGS data collected from three

TCGA studies (one from lung adenocarcinoma, two
from rectum adenocarcinoma, and two from colon
adenocarcinoma). Overall, all three methods identified
the same dominant species from each sample, such as P.
acnes in lung adenocarcinoma, Bacteroides fragilis in

rectum adenocarcinoma, and Fusobacterium nucleatum
in colon adenocarcinoma (Fig. 6; Fig. S6 in Additional
file 2). Both MetaPhlAn and Kraken falsely identified
bacteria that were also incorrectly reported in a previous
evaluation, such as Candidatus Carsonella ruddii,
Candidatus Sulcia muelleri, Candidatus Zinderia sp.,
Thermoanaerobacter wiegelii and Achromobacter xylo-
soxidans. Conversely, both methods did not identify
species with significant genome coverage that were
marked as a positive identification by our approach
(Fig. S7 in Additional file 2).
To specifically address the impact of additional filter-

ing of human DNA on all detection methods, we also
performed comparison among the three methods on
four gastric biopsy samples with full filtering of human
reads. Even after extensive human DNA filtering steps,
results from MetaPhlAn and Kraken included question-
able identifications as measured by bacterial genome
coverage. We conclude, therefore, that genome coverage
evaluation is a key step to achieve accurate identification

Fig. 6 Comparison of identification by three methods from five TCGA tumor samples. Values represent percentage of bacteria reads found in
each sample. COAD colon adenocarcinoma, LUAD lung adenocarcinoma, READ rectum adenocarcinoma
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from these samples (Fig. S8 and " Comparison of Micro-
biome Detection Methods" section in Additional file 2).
Collectively, these results demonstrate that our meth-

odology is able to identify microbial species in a wide
variety of tissue types and that the main advantage of
this approach over MetaPhlAn and Kraken is in samples
with low levels of bacteria where the abundance of hu-
man DNA confounds bacteria detection.

Clinical microbiome findings from gastric biopsy samples
Patients undergoing upper endoscopy who had no
prior evidence of chronic inflammatory disease and no
chronic use of nonsteroidal anti-inflammatory drugs
were approached for enrollment and for research biop-
sies for microbiome analysis (Table 1). Twenty-two pa-
tients were enrolled, of which eight had active H. pylori
infection as assessed by positive CloTest and confirmed
on pathologic evaluation of the endoscopic tissue bi-
opsy, and four of the eight actively infected patients also
had prior history of H. pylori infection. The remaining
14 patients had no active H. pylori infection, although
seven of them had prior history of infection. Our micro-
biome identification pipeline identified 18 patients with

H. pylori, including all eight patients with active
infection.
Hierarchical clustering of the 27 microbial profiles

(from 22 patients) indicated three major groups (Fig. 7)
that were largely consistent with the clinical annotation
of the samples (Fig. 7).
The first group of samples (orange bar in Fig. 7) is

characterized by a predominant signature of abundant
levels of H. pylori (98.11 ± 0.96 %) that includes the nine
samples from eight patients (IDs 08, 09, 10, 15, 23, 24,
25, and 29) with clinical validation of infection and two
additional samples that had no prior clinical symptoms
but contained similarly high levels of H. pylori (IDs 17
and 18).
The second group of samples (blue bar in Fig. 7) is

characterized by a high proportion of P. acnes, as well as
other less frequent species, including Haemophilus para-
influenzae, H. influenzae, and Staphylococcus epidermi-
dis. P. acnes is the most dominant species in all nine
samples and accounted for 51.2–96.0 % of relative con-
tent. Included in this group are five samples from five
patients (IDs 05-Antrum-B2, 07-Antrum-B2, 19, 26,
and 27) with intermediate levels of H. pylori that
accounted for 4.2 %, 8.3 %, 18.2 %, 19.0 % and 4.0 %

Table 1 Patient characteristics

Patient ID# Gender Age H. pylori status Prior H. pylori H. pylori Pathology

05 F 49 Negative Y (2009) negative

07 F 50 Negative Y (2010) negative

08 M 50 Active Infection Y positive

09 M 36 Active Infection Y (2003) positive

10 F 69 Active Infection Y (2009) positive

11a F 85 Negative N N/A (pathology did not test for h. pylori)

12 F 78 Negative N negative

13 M 57 Negative N negative

14a M 36 Negative Y (2013) N/A (pathology did not test for h. pylori)

15 F 37 Active Infection Y (2012) positive

16a M 63 Negative N N/A (pathology did not test for h. pylori)

17a F 67 Negative N N/A (pathology did not test for h. pylori)

18a M 71 Negative N N/A (pathology did not test for h. pylori)

19 F 46 Negative Y (2009) negative

20 M 56 Negative Y (2004) negative

21 F 43 Negative Y negative

23 F 51 Active Infection N positive

24 F 43 Active Infection N Unknown

25 F 26 Active Infection N positive

26 F 78 Negative Y (2010) negative

27 F 63 Negative Y (2014) negative

29 F 48 Active Infection N positive
a Patient also with gastric cancer
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of their total bacteria content, respectively. These pa-
tients had previous history of H. pylori infection that
was previously treated. None of these patients exhib-
ited signs or symptoms of recurrent infection at the
time of sampling. We also checked additional samples
from two (IDs 05 and 07) of the above five patients
with H. pylori read counts, but we did not detect H.
pylori in additional adjacent biopsies (05-Antrum-B3,
07-Antrum-B1). Both of these adjacent biopsies had a
low number of unmapped reads following the filtering
of the human reads, although the starting number of
sequenced reads was comparable to other samples,
suggesting that these two biopsies had relatively low
amounts of bacteria (Additional file 1). Although H.
pylori was identified in only one biopsy collected from

patient 07, another top bacterial species (P. acnes) was
identified in both biopsies.
The third group of samples (grey bar in Fig. 7) is char-

acterized by a broader bacterial diversity, in which there
is no single bacteria that consistently dominates all sam-
ples, although three samples had a significant proportion
of Lactobacillus gasseri and four had detectable H. influ-
enzae. Two samples with previous infection history are
included in this group (07-Antrum-B1, 05-Antrum-B3).
The remaining four patients had neither history of infec-
tion nor clinical evidence for active infection, although
three of them (ID 11-Antrum-B1, 13, and 16) had de-
tectable levels of H. pylori bacteria in the gastric mucosa
with 52.8 %, 2.0 % and 1.0 %H. pylori bacterial DNA, re-
spectively. The presence of H. pylori in the above three

Fig. 7 Bacterial relative abundance heatmap of profiled gastric biopsy samples. Hierarchical clustering of the 27 microbial profiles identified three
primary clusters indicated by the "Microbial profiles" bar, with sample assignment to cluster p value <0.05 determined by 10 K bootstrap sampling.
This grouping largely coincides with the clinical status of the samples: red-labeled samples were collected from patients with active H. pylori
infection, black-labeled samples are from patients with prior history of treated H. pylori, and green-labeled samples are from patients with no history
or present H. pylori infection
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cases may not represent active infection as their bacter-
ial profile is distinctly different from the first group
(Table 1).
Notably, we also had two gastric tumor biopsies (ID

11-Tumor-B1 and 14-Tumor-B1), neither of which con-
tained H. pylori sequences. Patient ID 11 is of particular
interest because the mucosal sample adjacent to the
tumor had high levels of H. pylori that accounted for
52.8 % of mapped bacterial reads. The other top bacter-
ial species in ID 11 (Lactobacillus gasseri and P. acnes)
were identified in both tumor and mucosa, but H. pylori
appears to have been excluded from the tumor.
Finally, P. acnes was identified in almost all biopsies at

various levels. As a skin-enriched bacterium rather than
a skin-specific bacterium, P. acnes could infect bones,
joints, mouth, eye, brain, heart valves, and shunt [43].
P. acnes was also found in prostate samples and some
studies suggest that inflammation caused by it con-
tributes to prostate cancer [44, 45]. Other gastric
microbiome studies also identified P. acnes in human
stomach [46, 47]. In our evaluation of the detection
pipeline we also identified P. acnes in samples from
other studies, such as in blood serum [48] and lung
adenocarcinoma [49]. Our biopsies were collected by
a number of clinicians at different locations and
dates, and sequenced at different dates. Therefore,
contamination from a single source is not likely, al-
though we cannot fully exclude this possibility. Be-
cause of the low number of reads mapped to P. acnes
and the high similarity between P. acnes strains, we
were not able to determine whether there is a single
P. acnes strain common to all samples. Given the
consistent low read counts of P. acnes across all sam-
ples, it might have been introduced to stomach mu-
cosa through oral ingestion or oral contamination of
the endoscope, rather than laboratory contamination.

H. pylori and EBV infection status discovery in
TCGA WGS data
We next analyzed the microbiome content in previously
collected and sequenced TCGA gastric tumor samples,
of which 37 of the 295 samples were profiled by low-
pass WGS [13]. We began by examining our pipeline to
identify EBV-associated gastric cancer as a validation of
our pipeline. We found strong evidence for EBV infec-
tion in both samples that were previously classified as
EBV-positive by TCGA genetic and expression profiling,
providing further validation for our approach for micro-
biome detection (Table 2).
Next, the tumor and adjacent tissue samples were ex-

amined for H. pylori. Since the H. pylori history of these
samples was not available, we considered having at least
0.3 counts per million (CPM) reads mapped to H. pylori
as evidence of H. pylori bacteria in the sample (with the

same uniformity of coverage criteria as for our in-house
samples; see "Materials and methods"). Strikingly, we
found that 18 patients out of 37 (49 %) had significant
evidence of H. pylori in either normal tissue or tumor.
The overwhelming majority of H. pylori-positive samples
were from the normal adjacent tissue. Only two patients
had definitive H. pylori levels in both tumor and adja-
cent normal samples. Additionally, two other tumor
samples (ID TCGA-BR-4187 and TCGA-BR-4357) had
marginal support for H. pylori presence with 276 and
197 reads mapping to the H. pylori genome, respectively,
whereas the adjacent normal tissue had an abundance
of H. pylori (Table 2). We did identify one patient
with H. pylori present in the tumor sample but not in
the adjacent mucosa (ID TCGA-CG-5734). These mi-
crobial findings were further validated by analysis of
the corresponding RNA-seq data (where available) for
the presence of H. pylori and EBV transcripts with
good agreement with WGS detection (Fisher’s exact
test p value ≤ 2.9e-4; Table 2). The presence of H. pylori
did not correlate with any clinical attributes of gender,
tumor location, Lauren classification, or age, although the
sample size is likely underpowered for detecting signifi-
cant correlations (Fig. S9 in Additional file 2).

Discussion
In this paper we present a systematic study of the un-
biased and comprehensive identification of microbial
species from small endoscopic biopsies by WGS. Accur-
ate microbiome detection in these samples requires
extensive processing to remove all possible reads that
originate from human DNA. Careful comparison of
microbiome detection with MetaPhlAn and Kraken using
our own samples as well as samples from the HapMap
project, the HMP, TCGA and other studies illustrates that
all methods are confounded by high abundance of host
DNA (Figs. S1–S9 and " Comparison of microbiome de-
tection methods" in Additional file 2). Furthermore, be-
cause of the low coverage of bacterial genomes and
sequence similarities between organisms, bacteria are
often identified based on coverage along a narrow region
of their genomes. To address this we included measures
of uniform genomic coverage as additional evidence for
bacteria identification.
In terms of microbiome profiling of biopsy samples,

our results are highly consistent with qPCR quantifica-
tion of H. pylori and universal 16S bacterial quantifica-
tion. Using the same methodology, we were able to
identify EBV-associated gastric cancer as was previously
identified in the TCGA project. Finally, we also identi-
fied H. pylori in a significant portion of the mucosal
samples collected as part of the TCGA project, and fur-
ther identified the microbial species in the correspond-
ing RNA-seq sample with highly significant correlation.
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Together, these data support our approach and demon-
strate the feasibility of identifying the microbiome from
small endoscopic tissue samples.

Notably, we identified H. pylori bacteria in the mucosa
of patients who had been previously treated and were
presumed cleared of this infection. It is conceivable that

Table 2 Number of reads (in counts per million) mapped to H. pylori or EBV genomes in TCGA samples identified from WGS and
RNA-seq data

Tumor sample-WGS Tumor sample-RNASeq Tissue sample-WGS Tissue sample-RNASeq

Sample H. pylori EBV H. pylori EBV H. pylori EBV H. pylori EBV

TCGA-BR-4183 0.01 0.00 NA 0.01 0.00 NA

TCGA-BR-4184 0.00 0.00 NA 0.01 0.00 NA

TCGA-BR-4187 0.76 0.00 NA 43.97 0.00 NA

TCGA-BR-4188 0.00 0.00 NA 0.00 0.00 NA

TCGA-BR-4191 0.04 0.00 NA 1.65 0.01 NA

TCGA-BR-4201 0.09 0.00 NA 27.68 0.03 NA

TCGA-BR-4253 0.21 6.36 NA 0.44 0.00 NA

TCGA-BR-4255 0.00 0.00 NA 0.04 0.00 NA

TCGA-BR-4256 0.00 0.01 NA 0.00 0.00 NA

TCGA-BR-4257 0.02 0.00 NA 11.68 0.00 NA

TCGA-BR-4267 0.01 0.00 NA 0.40 0.00 NA

TCGA-BR-4279 6.99 0.00 NA 41.48 0.00 NA

TCGA-BR-4280 0.01 0.00 NA 0.01 0.00 NA

TCGA-BR-4292 0.04 0.00 NA 0.00 0.00 NA

TCGA-BR-4294 0.19 0.00 NA 244.69 0.00 NA

TCGA-BR-4357 0.34 0.00 0.03 0.00 64.43 0.00 NA

TCGA-BR-4363 0.00 0.00 0.37 0.00 0.00 0.00 NA

TCGA-BR-4366 0.01 0.00 0.01 0.00 0.07 0.00 NA

TCGA-BR-4367 0.01 0.00 0.03 0.00 0.01 0.00 NA

TCGA-BR-4368 0.01 0.00 0.01 0.02 16.97 0.00 NA

TCGA-BR-4369 0.00 0.00 0.00 0.17 0.03 0.00 NA

TCGA-BR-4370 0.00 0.00 0.00 0.00 0.01 0.00 NA

TCGA-BR-6453 0.30 0.00 0.01 0.00 0.19 0.00 0.03 0.00

TCGA-BR-6454 0.01 0.00 0.00 0.00 17.95 0.00 2.72 0.00

TCGA-CG-5720 3.42 0.00 1.48 0.00 12.51 0.00 2.28 0.00

TCGA-CG-5721 0.00 0.01 0.00 0.43 0.01 0.00 0.00 0.00

TCGA-CG-5722 0.13 2.55 0.04 34.13 1.83 0.00 0.00 0.22

TCGA-CG-5723 0.02 0.00 0.00 0.00 0.01 0.00 NA

TCGA-CG-5724 0.03 0.00 0.00 0.00 92.65 0.00 NA

TCGA-CG-5725 0.00 0.01 0.00 0.61 0.01 0.00 NA

TCGA-CG-5726 0.01 0.00 0.00 0.00 0.00 0.00 NA

TCGA-CG-5727 0.00 0.01 NA 0.01 0.00 NA

TCGA-CG-5728 0.00 0.00 NA 2.79 0.00 0.34 0.00

TCGA-CG-5730 0.01 0.00 NA 0.00 0.00 0.00 0.00

TCGA-CG-5732 0.01 0.00 0.00 0.25 0.00 0.00 NA

TCGA-CG-5733 0.01 0.00 NA 2.01 0.00 0.63 0.01

TCGA-CG-5734 1.25 0.01 0.03 0.17 0.00 0.00 0.00 0.00

Entries in bold are samples that are considered H. pylori-positive and entries in italics EBV-positive by a counts per million (CPM) reads threshold of 0.3. NA
not applicable
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these are new infections; however, it is also possible that
this identification represents persistent low-grade bacter-
ial content of H. pylori in the gastric mucosa of previ-
ously infected and treated patients. The clearance rate of
H. pylori by current standard practice of acid suppres-
sion and antibiotic therapy is 80–85 % [50, 51], although
the rate of clearance may be declining due to the devel-
opment of clarithromycin resistance [52, 53]. The pres-
ence of H. pylori in mucosa samples from patients with
prior history of treated infections as well as in TCGA
cohort raises the possibility that the tumorigenesis risk
of H. pylori infection may be associated with the fact
that the infection was not fully eradicated by conven-
tional treatment, and that long-term chronic and asymp-
tomatic infection may be the reason that current H.
pylori treatment strategies to reduce gastric cancer risk
have not proven successful [54]. The induced and
long-term immune response facilitated by persistence
of H. pylori may be a direct contributor to neoplastic
transformation. Equally intriguing is the strong bias
for H. pylori colonization in healthy mucosa tissues
over tumor tissues seen in our sample and more
strikingly in TCGA samples. Both observations are
not statistically powered to draw broad conclusions
but warrant follow-up studies.
In our survey, the gastric microbiome of patients with

active H. pylori infection appears to be distinct from that
in other samples. Specifically, the bacterial content of
the gastric mucosa in actively infected individuals
was significantly higher than the bacterial content of
other individuals, and was dominated by H. pylori
(98.11 ± 0.96 % of the bacterial reads). We did iden-
tify occult H. pylori in several additional samples,
and note that it is not clear if these individuals will
go on to develop a more profound active infection,
or remain colonized. Besides being a disease-causing
agent and a disease-protecting agent, H. pylori also
has been considered as an indicator of changing
human microbe ecology [55]. The high correlation
between abundance of H. pylori and overall bacteria
content (Fig. S10a in Additional file 2; Spearman
rank correlation 0.861) may indicate that H. pylori
infection may render the stomach mucosa a more fa-
vorable environment for bacterial colonization. It
could be explained by H. pylori urease activity [28],
and the consequent rise in gastric pH resulting in a
more favorable environment for several bacteria,
such as S. epidermidis (Fig. S10b in Additional file 2).
Conversely, some bacteria were less abundant with in-
creasing H. pylori content, such as H. parainfluenzae
(Fig. S10c in Additional file 2) and H. influenzae (Fig. S10d
in Additional file 2). Our validation studies suggest that
WGS and the computational pipeline may detect bacteria
below the limits of detection by qPCR, which may have

implications in the future for defining H. pylori eradiation.
Also of note is that we identified fewer phylotypes in our
sample set (19 total phylotypes) than previously reported
[23], but consistent with another report [56], and also
consistent with the understanding of the relative
germ-free environment of the stomach [57]. These
differences are not likely related to the small patient
sample set but rather differences in technique, includ-
ing a lack of an amplification step in WGS. It may be
possible to identify additional bacteria by WGS with
higher sequencing coverage, but this is limited by lack
of ability to validate, as we have approached our de-
tection limit by qPCR with our current DNA sequen-
cing coverage.
Previous studies have demonstrated extensive inter-

action between the gastric epithelium and the immune
response to bacterial infection. For example, H. pylori
infection activates proinflammatory cycloxgenase (COX)
enzymes which regulate immune response and develop-
ment [58]. Recent genomic studies have identified
Fusobacterium in colorectal carcinoma [3], fusion of
Acinetobacter DNA to human mitochondrial DNA in
acute myeloid leukemia samples [5], and that EBV-
associated gastric tumors are a genetically distinct class
of gastric cancer [13]. Collectively, these studies suggest
that bacteria and viruses may contribute significantly
more than previously appreciated to the progression of
various tumors.

Conclusions
The microbiome, even when present in low abundance
relative to human tissue, may have significant impact on
human physiology. However, it has been difficult to
quantify and characterize the microbiome in clinical tis-
sue samples where the bacterial content is low. Here we
present a new methodology to identify low abundant
microbiome in small clinical tissue samples. The ability
to directly characterize the microbiome from clinical bi-
opsies opens a new possibility to investigate the inter-
action between microbial species and human tissues in a
more direct way in a host of different tumor and tissue
types, and longitudinally across the management of a
particular condition.

Materials and methods
Gastric cancer and H. pylori research database
The Weill Cornell Medical College Gastric Cancer and
H. pylori Research Database is a registry and tissue re-
pository to examine the natural history of H. pylori in-
fection in patients with and without gastric cancer. The
primary aim of this research biobank is to provide an ad-
equate tissue resource for the purpose of using modern
molecular analytic tools to distinguish patients with
chronic H. pylori infection who are at risk for
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subsequently developing gastric cancer from the vast
majority of patients with H. pylori infection who do not
develop malignancy. Subjects undergoing an upper en-
doscopy for clinical indications were approached for par-
ticipation. All subjects provided written informed
consent for participation in the Gastric cancer and H.
pylori Research Database according to the Declaration of
Helsinki prior to study enrollment. Samples were col-
lected in accordance with the institutional ethical and
clinical guidelines under institutional review board
protocol 1203012274.

Tissue collection and processing
Gastric mucosal biopsies from the antrum, proximal
body and fundus were acquired for each enrolled patient
and those with gastric carcinoma had additional biopsies
taken at the tumor site as well as adjacent normal tissue.
Biopsies were obtained using the Bard Precisor EXL
coated disposable biopsy forceps (Bard International,
Murray Hill, NJ, USA) and were immediately placed into
individual sterile cryovials on dry ice and flash frozen
while still in the endoscopic suite. The samples were
then transferred to liquid nitrogen for prolonged storage.
Genomic DNA was extracted from each gastric biopsy
using an AllPrep micro kit (Qiagen, Hilden, Germany)
according to the manufacturer's protocol. Samples were
homogenized using a rotor stator homogenizer for
less than 30 seconds. DNA concentration was mea-
sured for each sample using a Qubit® 2.0 Fluorometer
(Life Technologies, Grand Island, NY, USA) and DNA
quality was checked on a 1 % agarose gel stained with
ethidium bromide. Samples were run alongside a 1-kb
DNA Extension Ladder (Life Technologies, Grand Island,
NY, USA).

Whole genome sequencing
Extracted genomic DNA (1 μg) from each sample was
given to the Weill Cornell Medical College Epigenomics
Core for library preparation and subsequent WGS using
an Illumina TruSeq DNA-seq DNA sample preparation
kit and the Illumina HiSeq 2500 platform. Each sample
was sequenced on a single flow cell lane as 50-bp
paired-end reads. Homopolymers, adapters and distribu-
tion of base quality of raw sequences from each sample
were investigated using FastQC (version 0.10.1). The
filtered, non-human sequenced reads are available for
download at BioProject ID PRJNA297869 [59].

Quantitative PCR
Commercially available H. pylori-specific and universal
bacteria16S qPCR assays were performed on patient
samples according to the manufacturer's protocol and
suggested cycling conditions (Primerdesign Ltd, UK).
qPCR reactions were conducted in MicroAmp® 48-well

optical plates (Life Technologies, Grand Island, NY,
USA) in 25 μl volumes using 25 ng template genomic
DNA, Perfecta® qPCR FastMix® II 10X master mix
(Quanta Biosciences, Inc., Gaithersburg, MD, USA) and
primers and probe supplied by Primerdesign Ltd with
each assay, specific either for the ureA gene of H. pylori
or the conserved region of the bacterial 16S gene. Sam-
ples were tested in triplicate along with negative and
positive controls on the StepOne™ Real-Time PCR Sys-
tem (Life Technologies, Grand Island, NY, USA). Copy
number was determined through extrapolation using the
standard curve supplied with each kit.

External datasets
HapMap samples (DRR000615, ERR055396, ERR047873),
HMP WGS data (SRS052620, SRS065347, SRS024428),
and a serum sample from a non-malaria febrile illness
patient (SRR1106126) were collected from the NCBI
Sequence Read Archive (http://www.ncbi.nlm.nih.gov/
sra) and the HMP (http://www.hmpdacc.org/catalog/
grid.php?dataset=metagenomic&hmp_isolation_body_
site=urogenital_tract), respectively. WGS from a gastric
adenocarcinoma study, a lung adenocarcinoma study, a
rectum adenocarcinoma study, and a colon adenocarcin-
oma study and RNA-seq data from a gastric adenocarcin-
oma study were downloaded from the Cancer Genomics
Hub (https://cghub.ucsc.edu/).

Computational pipeline for microbial detection
from WGS data
Filtering human DNA
This pipeline is based on the PathSeq [4] protocol for
filtering human reads from WGS with a few modifica-
tions (Fig. 1). In the first step, the Burrows-Wheeler
Aligner (BWA; version 0.6.2, with aln/sampe com-
mand) [26] was used to align the whole WGS data
against the human reference genome (version hg19;
http://genome.ucsc.edu/) using default parameters. In
the second step, unmapped reads from the first step
were aligned to three additional assembled human genomes
available from the NCBI (hs_alt_CRA_TCAGchr7v2, hs_
alt_HuRef, hs_ref_GRCh37.p5, build 37.3; ftp://ftp.ncbi.
nlm.nih.gov/genomes/H_sapiens//Assembled_chromo-
somes/seq/, downloaded Feb. 06,2014 ) and to the
Ensembl human genome reference (ftp://ftp.ensembl.
org/pub/current_fasta/homo_sapiens/dna/) using BWA.
RepeatMasker (version open-4.0, http://www.repeatmas-
ker.org/ with –qq option) was used in the third step to
identify repeat regions and low complexity sequences, and
then any reads with three or more masked nucleotides
were discarded for the next step. A combined human se-
quence database was generated for the last two steps and
includes the following three datasets: i) the Ensembl
Homo sapiens cDNA database (ftp://ftp.ensembl.org/pub/
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current_fasta/homo_sapiens/cdna/), ii) the NCBI Homo
sapiens RNA database (ftp://ftp.ncbi.nih.gov/genomes/
H_sapiens/RNA/) and, iii) the NCBI BLAST human gen-
ome database (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/).
In the fourth step, we performed alignments on the above
database using MegaBlast (version 2.2.27) [60] with e-value
cutoff 10−7 and word size 16. BLASTN (version 2.2.27) [60]
was used as the last filtering step with the following param-
eters: cutoff expected value 10−7, word size 7, nucleotide
match reward 1, nucleotide mismatch reward −3, gap open
cost 5, gap extension cost 2. The remaining reads after all
five filtering steps were used as the input for bacteria identi-
fication. All data used in this pipeline were downloaded on
6th February 2014.

Mapping to bacterial genomes
We collected 2736 bacterial whole genomes from NCBI
(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/). Due to
the extremely unbalanced number of available strains
of different bacteria, we retained the longest strain as
the representative for each bacterium, resulting in a
1421-genome database that was indexed and used for
bacteria identification. Bowtie2 [61] was used as the
aligner to map the read to each bacterial genome
(parameters –local -D 20 -R 3 -N 1 -L 32 -i S,1,0.50).
According to the mapping results, each read will be
labeled as an unmapped read, a unique mapping read
or a multiple mapping read. Unmapped reads are reads
that cannot be aligned to any bacterial genomes, and
multiple mapping reads are reads which align to two or
more bacterial genomes. We marked uniquely mapped
reads as those mapping to only one bacterium genome
regardless of whether they mapped to multiple loca-
tions of the same genome. The count of total bac-
teria reads is the sum of the uniquely mapped reads
(Additional file 1).

Genomic coverage
For any bacteria with more than ten unique mapped
reads, we calculated the read counts for each 5-kbp win-
dow and then computed two coverage measures to
normalize for differences in library sizes and for differ-
ences in genome size:

Var1 ¼ 1
n
Σn
i¼1

Ci

Σn
j¼1Cj

−
1
n

 !2

ð1Þ

where Ci is the read count in window i, and n is the
total number of 5-kb windows. In Eq. 1, the raw counts
of each 5-kbp window are normalized by the total num-
ber of read counts mapping to corresponding bacteria to
account for differences in number of reads mapped to
each bacteria.

Var2 ¼ 1
n
Σn
i¼1

nCi

Σn
j¼1Cj

−1

 !2

ð2Þ

The second variation measure corrects for differences
in genome size that can range from 139 kbp (Tremblaya
princeps) to 13 Mbp (Sorangium cellulosum).
In this study positive bacteria identification was deter-

mined by ≥0.025 CPM reads, var1 ≤ 2 and var2 ≤ 1e-05.

Calculating Bacteria Abundance
In order to improve the sensitivity of relative abundance
estimation, we used all reads mapped to bacterial genomes
with PathoScope (version 2.0) [62], which is based on a
Bayesian statistical framework to assign multiply mapped
reads to the most probable bacterial source genome. To
calculate relative bacteria abundance within each sample,
read counts were normalized to the size of the corre-
sponding bacterial genome to account for variation in
bacterial genome size. The relative abundance of each
bacterium is then calculated based on these normalized
values.

Source code
Source code files are available online (https://github.com/
zhangch/WGSpipeline).

H. pylori and EBV detection from RNA-seq gastric TCGA
samples
BWA (version 0.6.2) was used to align the WGS data
against the human reference genome (version hg19)
with default parameters, and STAR aligner was used
to align the RNA-Seq data against the human whole
transcriptome. Unmapped reads were extracted and
used for H. pylori and EBV identification. The EBV
genome was added to the 1421-genome database that
was generated for the analysis of biopsy WGS samples
and Bowtie2 was used as the aligner with the same param-
eters as used in microbial detection from WGS data. H.
pylori and EBV counts from each were normalized as
CPM.

Additional files

Additional file 1: Table listing the read counts of the gastric biopsy
samples after each filtering step. (XLSX 12 kb)

Additional file 2: Supplementary figures and details of the
comparison of identification results from three different methods.
(PDF 663 kb)
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