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Abstract

Background: Long intergenic non-coding RNAs (lncRNAs) represent an emerging and under-studied class of
transcripts that play a significant role in human cancers. Due to the tissue- and cancer-specific expression patterns
observed for many lncRNAs it is believed that they could serve as ideal diagnostic biomarkers. However, until each
tumor type is examined more closely, many of these lncRNAs will remain elusive.

Results: Here we characterize the lncRNA landscape in lung cancer using publicly available transcriptome sequencing
data from a cohort of 567 adenocarcinoma and squamous cell carcinoma tumors. Through this compendium we identify
over 3,000 unannotated intergenic transcripts representing novel lncRNAs. Through comparison of both adenocarcinoma
and squamous cell carcinomas with matched controls we discover 111 differentially expressed lncRNAs, which we term
lung cancer-associated lncRNAs (LCALs). A pan-cancer analysis of 324 additional tumor and adjacent normal pairs enable
us to identify a subset of lncRNAs that display enriched expression specific to lung cancer as well as a subset that appear
to be broadly deregulated across human cancers. Integration of exome sequencing data reveals that expression levels
of many LCALs have significant associations with the mutational status of key oncogenes in lung cancer.
Functional validation, using both knockdown and overexpression, shows that the most differentially expressed
lncRNA, LCAL1, plays a role in cellular proliferation.

Conclusions: Our systematic characterization of publicly available transcriptome data provides the foundation
for future efforts to understand the role of LCALs, develop novel biomarkers, and improve knowledge of lung
tumor biology.
Background
Lung cancer is among the leading causes of death world-
wide and accounts for greater than 150,000 deaths per
year just in the United States, greater than the combin-
ation of the next three most common cancers (colon,
breast and prostate) [1]. To date, lung cancer research
has primarily focused on the deregulation of protein-coding
genes to identify oncogenes and tumor suppressors that
could serve as diagnostic and therapeutic targets, thereby
missing long non-coding RNAs (lncRNAs), which have
been shown to play a critical role in tumorigenesis [2,3].
Historical focus on protein-coding genes in disease
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pathology is due to the relatively recent discovery of
lncRNAs, the bias of previous technologies (such as mi-
croarrays) towards protein-coding genes, and the lack of
sufficient datasets to identify lncRNAs in lung cancer.
As part of the ENCODE project, the GENCODE con-

sortium manually curated 9,277 human lncRNAs [4].
However, current estimates suggest that protein-coding
genes may be outnumbered by lncRNAs, many of which
have yet to be discovered due to their tissue-specific ex-
pression profiles and lower expression levels than coding
genes [4]. The tissue-specific nature of lncRNAs suggests
they may serve as valuable clinical markers [4-6]. How-
ever, until we examine each tumor type more closely,
many of these clinically relevant lncRNAs may remain
elusive. Transcriptome sequencing, or RNA-Seq, offers
an unbiased approach for annotating expressed tran-
scripts [5], as exemplified by the discovery of approxi-
mately 1,800 unannotated lncRNAs in a cohort of 102
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prostate cancer patients, of which 121 were associated
with progression [6].
Although originally regarded as transcriptional noise,

several well-described examples indicate that lncRNAs
may be essential actors in cancer biology, typically facili-
tating epigenetic gene repression through chromatin-
modifying complexes. Examples include the increased
expression of HOTAIR in metastatic breast cancer [7],
ANRIL-induced silencing of p15 in leukemia [8], and
MALAT1 association with metastasis in non-small cell
lung cancer [9]. In contrast to these well-described
examples, however, only a fraction of lncRNAs have
documented roles in tumorigenesis [10-12] and even
fewer have been implicated in lung cancer. The most
well-characterized lncRNA reported in lung cancer is
MALAT1 (metastasis-associated lung adenocarcinoma
transcript 1), which is associated with high metastatic
potential and poor patient prognosis in non-small cell
lung cancer patients with and without metastatic tumors
[9,13]. More recent studies have found that the intronic
non-coding RNA (ncRNA) lncRNA-LET plays a role in
the regulation of hypoxia-mediated metastasis in squamous
cell lung carcinoma [14], intronic ncRNA AK126698 con-
fers resistance to cisplatin by targeting the Wnt pathway
[15], and the lncRNA SCAL1 (smoke and cancer-associated
lncRNA-1) is associated with tobacco-induced lung cancer
[16]. These individual studies demonstrate the growing im-
portance of lncRNAs in lung cancer while highlighting the
need to systematically identify lncRNAs altered in lung can-
cer. Given the vast quantity of lncRNAs detected and still
being discovered, this represents a unique research oppor-
tunity to uncover novel biomarkers and therapeutic targets,
and to understand their role in tumor biology.
In our study we harnessed the unbiased view of the tran-

scriptome offered by massively parallel next-generation se-
quencing platforms to explore the recently emerging class
of lncRNAs in lung cancer from 197 lung squamous cell
carcinoma and 370 adenocarcinoma tumors. Overall, we
were able to detect over 3,000 previously unannotated
lncRNAs and identify 111 lncRNAs, termed lung cancer-
associated lncRNAs (LCALs), that are strongly differentially
expressed between lung tumors and adjacent normal tissue.
For orthogonal validation we repurposed publicly available
exon array-based data coupled with experimental validation
(quantitative real-time PCR (qPCR) and rapid amplification
of cDNA ends (RACE)) for a subset of LCALs. To elucidate
the tissue specificity of lncRNAs altered in lung cancer we
conducted a meta-analysis across an additional 324 tumor
and adjacent normal pairs from seven different cancers that
were sequenced as part of The Cancer Genome Atlas
(TCGA) project. Additionally, we incorporated exome
sequencing data from TCGA to identify LCALs that were
associated with commonly mutated genes. The most
differentially expressed lncRNA, LCAL1, was functionally
validated and determined to regulate cellular proliferation
in vitro. In summary, we have systematically characterized
lncRNAs that may play a critical role in lung cancer.

Results
Identification of novel unannotated transcripts
To comprehensively characterize the lncRNA landscape
in lung cancer we analyzed poly-A purified RNA-Seq
data from three cohorts: (1) 197 squamous cell carcin-
omas with 34 matched adjacent normal from TCGA
[17] (LUSC cohort); (2) 298 adenocarcinomas with 55
matched adjacent normal from TCGA (LUAD cohort);
and (3) 72 adenocarcinomas and adjacent normal pairs
from a Korean population [18] (Seo cohort). To identify
novel unannotated transcripts, the aligned reads for each
sample underwent de novo assembly using Cufflinks [19]
and were subsequently merged together into a consensus
lung cancer transcriptome (Figure 1A). As none of these
data sets utilized stranded library protocols, we were
prevented from discriminating any regions in which two
independent transcripts overlap. Therefore, we focused
solely on intergenic transcripts (as described in Materials
and methods). To ensure that transcripts were not previ-
ously annotated, the consensus lung transcriptome was
compared against a comprehensive gene database com-
prised of UCSC [20], Ensembl [21], GENCODE [22],
and RefSeq [23] as well as a set of lncRNAs in human
development [5]. To remove extensions of annotated
transcripts, we filtered any transcript intersecting a
protein-coding exon. Last, transcripts lacking a splice
junction, and therefore could be due to potential DNA
contamination, or less than 200 nucleotides in length
were filtered. This resulted in the discovery of 3,452
multi-exon genes residing within intergenic regions of
the genome (Table S1 in Additional file 1).

Characterization of novel lncRNAs
To ensure that the novel candidates that we predicted
did not encode proteins, we used GeneID [24] and
CPAT [25] to measure (1) the protein-coding potential
and (2) the ORF size in each lncRNA sequence. For
comparison, genes were classified into four categories:
(i) unannotated transcripts (Novel); (ii) non-coding
RNAs annotated by RefSeq (Known_RNA); (iii) protein-
coding genes annotated by RefSeq (mRNA); and (iv)
previously annotated lncRNAs (lncRNAs) [5]. The un-
annotated transcripts have a lower coding potential and
ORF length relative to protein-coding genes but similar
coding potential to known RNA genes and recently re-
ported lncRNAs (Figure 1B; Figure S1A,B in Additional
file 2; Table S2 in Additional file 1). Additionally, the ex-
pression levels of the novel unannotated transcripts
were skewed towards lower expression, which was also
observed with annotated RNAs and recently discovered
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Figure 1 LncRNA transcript characterization. (A) Schematic of experimental workflow and RNA-Seq analysis. (B) Coding potential of unannotated
transcripts using GeneID. Values at the top indicate the number of genes above 450. (C) Distribution of transcript lengths for lncRNAs (red), novel transcripts
(green), and protein-coding genes (blue). (D) Distribution of number of exons per transcript for lncRNAs (red), novel transcripts (green), and protein-coding
genes (blue). (E) H3K4me3 histone modifications associated with active promoters in A549 cells. nt, nucleotides; TSS, transcriptional start site.
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lncRNAs (Figure S1C in Additional file 2). In addition
to expression levels, the transcript characteristics of the
novel lncRNAs mimic previously reported lncRNAs. As
shown in Figure 1C, the overall transcript length of the
novel lncRNAs (median 1,823 nucleotides) is shorter
than protein-coding genes (2,757 nucleotides; t-test,
P-value <5.4 × 10-8), which is expected given the bias of
lncRNAs having fewer exons than protein-coding genes
(Figure 1D).
It was recently found that transposable elements sig-

nificantly contributed to the origin, diversification, and
regulation of lncRNAs in human and vertebrates [26,27].
Consistent with earlier reports [26,27], we also found
that repetitive elements accounted for 30.2% of the novel
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lncRNAs, with the most abundant families including LINE/
L1, LINE/L2, SINE/Alu, SINE/MIR, and LTR/ERVL-MaLR
(Figure S1D in Additional file 2).
To determine whether the predicted novel lncRNAs

are independent transcripts rather than extensions of
neighboring protein-coding transcripts [28], we lever-
aged existing ENCODE ChIP-Seq data available for the
H3K4me3 histone modification that is associated with
active promoters. We focused on the epithelial cell line
(A549) derived from a lung carcinoma tissue to better
reflect our tumor tissue cohort. We observed enrichment
for histone modifications characterizing transcriptional start
sites and active transcription (Figure 1E). Protein-coding
transcripts had the highest enrichment, with recently dis-
covered lncRNAs [5] and novel lncRNAs showing nearly
equivalent profiles. Taken together, characterization of
the unannotated transcripts suggests that they are novel
lncRNAs.

Altered lncRNA expression in lung cancer tissues relative
to adjacent normal lung tissues
An initial investigation of well-characterized lncRNAs
across cancers (reviewed in [2,3]) revealed that most
lncRNAs with known oncogenic function either do not
appear to be altered in our lung cohorts or are very
lowly expressed (Figure 2A). For instance, although
HOTAIR appears to have a strong log fold change be-
tween tumor and normal tissues, its median tumor
expression level is <0.1 FPKM (fragments per kilobase of
transcript per million mapped reads). Therefore, we
sought to identify lncRNAs showing significant expres-
sion differences between tumors and normal lung tissues
in each of the three cohorts. Before testing for differen-
tial expression, we applied a series of filtering steps (see
Materials and methods) to focus on intergenic non-
coding RNAs displaying reliable expression levels across
a majority of the samples (Figure S2A in Additional
file 2). We identified 1,027 differentially expressed
lncRNAs in LUSC, 592 in LUAD, and 481 in Seo (Tables
S3 to S5 in Additional file 1; Figure S2B-D in Additional
file 2). Of these, 240 were commonly differentially
expressed in all three cohorts (55 up- and 185 down-
regulated; Figure 2B,C).
Using the results from all three cohorts, we composed

a list of 111 intergenic lung cancer-associated lncRNAs
(LCALs) that represent the most highly expressed and
differentially expressed transcripts (Figure 2D; Table S6
in Additional file 1). Fifty LCALs were differentially
expressed in all three cohorts, 22 in two cohorts, and 39
unique to a single cohort. Not surprisingly LUSC had
the most cohort-specific lncRNAs, as it is the only squa-
mous cell lung cancer cohort in the study. Additionally,
57 LCALs were differentially expressed in both adeno-
carcinoma cohorts and 21 were differentially expressed
in a single adenocarcinoma cohort. The differences be-
tween the LUAD and Seo lncRNAs may represent differ-
ences in the ethnic backgrounds amongst the patient
population since the Seo cohort is an exclusively Korean
patient population.
The 111 LCALs include a lncRNA known to play a role

in lung cancer (SCAL1 [16]), cancer-associated lncRNAs
not previously implicated in lung cancer (CCAT1 [29], ESC-
CAL-1 [30], LINC00261 [31], linc-UBC1 [32], UCA1 [33],
ENST00000547963 [34], and PART-1 [35]), a lncRNA im-
plicated in a lethal lung developmental disorder (FENDRR
[36]), and three previously unannotated lncRNAs. Interest-
ingly, the remaining 99 lncRNAs were previously annotated
in normal human tissues but not implicated in human
disease.

LncRNAs associated with lung cancer subtypes
Lung cancer is a heterogeneous disease comprised of dif-
ferent subtypes and molecular aberrations. Therefore,
we next sought to better understand the role of lncRNAs
in each subtype. We found 463 and 315 up- and down-
regulated genes, respectively, in LUAD tumors relative
to LUSC (Table S7 in Additional file 1; Figure S3 in
Additional file 2). Of the 50 LCALs that differentiated
tumor from normal tissues across all three cohorts, 27
were differentially expressed between LUAD and LUSC
tumors. This subset of LCALs could potentially serve as
important biomarkers for lung cancer due to their differ-
ential expression between tumor and normal lung tissue
as well as between adenocarcinoma and squamous cell
carcinoma tumors.

Orthogonal validation of altered lung adenocarcinoma
lncRNAs using Affymetrix exon arrays
To provide additional independent validation of altered
lncRNA expression, we repurposed the existing Affymetrix
Human Exon 1.0 STarray with publicly available expression
profiling data from an independent cohort of 20 adenocar-
cinoma lung cancer patient tumor and adjacent normal
samples collected at the University of Pittsburgh (Gene
Expression Omnibus accession GSE12236) [37]. In total,
81.25% of all lncRNAs were covered by at least one
probeset overlapping an exon (including 57.9% of the
3,246 novel lncRNAs). Of the 111 LCALs, 98 (88.3%)
were covered by at least one probeset. This demon-
strates that although the Human Exon Array is able to
measure expression levels of a large number of lncRNAs, it
does not provide the same genome-wide coverage as RNA-
Seq and therefore misses potentially informative lncRNAs.
Next, we wanted to determine whether the LCALs

were also differentially expressed in the adenocarcinoma
array data. We restricted our analysis to 66 LCALs that
were covered by at least one probeset and differentially
expressed in at least one of the adenocarcinoma cohorts.
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Figure 2 Altered lncRNAs across lung cancer subtypes. (A) Expression levels of lncRNAs with known oncogenic function across three lung
cohorts, denoted by different colors. The size of each point is proportional to average FPKM expression across the tumors for up-regulated lncRNAs
or across the normal tissues for down-regulated lncRNAs. The x-axis shows log2 fold change of tumor relative to normal. (B,C) Venn diagrams showing
the overlap of significantly up-regulated lncRNAs (B) and down-regulated lncRNAs (C). (D) Expression levels of tumor and normal samples for each
cohort across the 111 LCALs. Colored bars to the right designate in which cohort(s) a given LCAL is differentially expressed.
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The array confirmed differential expression of 45 of the
66 (68.2%) LCALs (Figure 3; Table S8 in Additional
file 1). This validation rate increased to 83.3% (40/48)
when considering LCALs called differentially expressed
in both adenocarcinoma cohorts.
Experimental validation of LCALs in cell lines and an
independent tissue panel
To further confirm alterations of lncRNA expression in
lung cancer, we validated a subset of LCALs across a panel
of lung cancer cell lines by qPCR (Figure S4 in Additional
file 2). Moreover, we confirmed the cancer-specific expres-
sion of the six lncRNAs by qPCR in an independent cohort
of lung tissues, collected at Washington University,
comprised of adenocarcinoma with matched control
tissue and squamous cell carcinoma and matched
control tissue (Figure 4; Figure S5 in Additional file 2).
This independent cohort confirmed the subtype-specific
expression of LCAL80 and LCAL85 (Figure S5E,F in
Additional file 2).
LncRNAs are known to display features typical of
transcription by RNA polymerase II, including 5′ cap-
ping, 3′ polyadenylation, and intron splicing [38]. How-
ever, despite observing H3K4me3 marks, indicative of
promoter regions for the novel lncRNAs, we were still
concerned that the lower expression levels of lncRNAs
would poorly define the transcript boundaries. There-
fore, to characterize the lncRNA transcripts and ensure
that we observe the full-length transcript, we designed
gene-specific primers for four lncRNA genes and con-
ducted 5′ RACE and 3′ RACE using Invitrogen’s Gene
Racer Kit. In each instance we were able to recapitulate a
full-length transcript corresponding to the observed RNA-
Seq coverage (Figure 4; Figure S5 in Additional file 2).

Aberrantly expressed lncRNAs across human cancers
We next investigated whether the identified LCALs have
tissue-specific expression profiles, ideal for a putative
biomarker, or are altered across numerous human can-
cers, suggesting that they may have a more common
oncogenic or tumor suppressive role in multiple cancers.
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We conducted a pan-cancer analysis of RNA-Seq data
from 324 matched tumor and adjacent normal pairs
from seven additional TCGA solid tumor types (breast
invasive carcinoma [39], colon adenocarcinoma [40],
head and neck squamous cell carcinoma, kidney renal
clear cell carcinoma [41], stomach adenocarcinoma, thy-
roid carcinoma, and uterine corpus endometrial carcin-
oma [42]). We found that 52.3% (58/111) of LCALs
were specific to lung cancer and 24.3% (27/111) were
differentially expressed in only one additional cancer
type (Figure 5A,B). This demonstrates that most LCALs
are specific to lung cancer and thus may have potential
use as tissue-specific biomarkers.
We further investigated LCALs that were altered across

multiple cancers. Of the nine LCALs that were altered in at
least three additional cancers, only LCAL84 has been previ-
ously studied in cancer. LCAL84 (ENST00000547963) is a
member of a three-lncRNA signature associated with the
survival of patients with esophageal squamous cell cancer
[34]; thus, it is not unexpected that it is differentially
expressed in the two squamous cell cohorts, head and neck
and lung, although it is also differentially expressed in colon
and stomach adenocarcinoma. Two of the experimentally
validated LCALs, LCAL5 and LCAL80, were also broadly
altered across three additional cancers (Figure 5C). This
meta-analysis emphasizes the potential significance of pre-
viously uncharacterized lncRNAs across multiple cancers.

Associations with mutation status
A recent study demonstrated the impact of oncogene-
activating mutations on lncRNAs [43]. Therefore, to de-
termine if LCAL expression levels are associated with
mutational status we focused on 16 protein coding genes
that have been reported by TCGA as mutated in at least
10% of lung cancer tumors [44]. We tested each TCGA
lung cohort separately due to differences in the muta-
tional frequencies between the subtypes. In LUAD, TP53
and KEAP1 mutational status are associated with 19 and
8 LCALs, respectively. In LUSC, NFE2L2 mutational sta-
tus is associated with six LCALs (Figure 6A). None of
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Figure 4 LCAL expression in lung cancer. (A-C) Coverage maps showing the average expression levels of tumor and normal samples across
all three lung cancer cohorts for LCAL1 (A), LCAL5 (B), and LCAL7 (C). Annotated RefSeq (dark blue), Ensembl (red), Human Body Map lncRNAs
(brown), and full-length transcripts as determined by 5’ and 3’ RACE in H322M cell line (black) are shown below each plot. (D-F) qPCR validation
in an independent cohort of human adenocarcinoma and matched controls and squamous cell carcinoma and matched controls for LCAL1 (D),
LCAL5 (E), and LCAL7 (F). Insert tables distinguish ‘high’ and ‘low’ expression of LCALs in tumors using the value as denoted by the dotted line.
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the remaining mutations in either LUAD or LUSC had an
association with more than a single LCAL. The mutational
status of NFE2L2 and KEAP1, which have been shown to
regulate cell response to oxidative damage [45], is associ-
ated with expression levels of multiple LCALs, including
LCAL51, or SCAL1 (Figure 6B). Additional significant asso-
ciations with TP53, NFE2L2/KEAP1, CDKN2A, and HGF
are shown in Figure S6 (Figure S6 in Additional file 2).
Characterization of LCAL1
To determine if the lncRNAs found in this study have
phenotypic consequences, we chose to examine the
most differentially expressed lncRNA, LCAL1, in both
adenocarcinoma and squamous cell carcinoma. LCAL1 is
located on chromosome 6q14.1 and produces a three-exon
transcript (Figure 4A). ENCODE data show DNaseI hyper-
sensitivity and transcription factor binding upstream of
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Figure 5 Aberrantly expressed lncRNAs across human cancers. (A) Distribution of the number of cancer types in which LCALs are
differentially expressed. All lung cohorts were considered as one cancer type, and x = 1 corresponds to differentially expressed in lung only. (B)
Heatmap showing the distribution of differentially expressed LCALs across the three lung cohorts and seven additional TCGA cohorts. Black bars
designate that an LCAL is differentially expressed in a given cancer. (C) Expression levels and fold changes for six LCALs that were experimentally
validated. The size of each point is proportional to average FPKM expression across the tumors for up-regulated lncRNAs or across the normal
tissues for down-regulated lncRNAs. Colors and symbols correspond to cancer type. Only cancer types in which the LCAL is differentially
expressed are plotted. BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; HNSC, head and neck squamous cell carcinoma; KIRC,
kidney renal clear cell carcinoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.
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LCAL1, suggesting regulatory activity within the LCAL1
promoter (Figure S7 in Additional file 2). Interestingly,
LCAL1 lacks strong base pair conservation, using PhyloP.
However, LCAL1 appears to be evolutionarily conserved
amongst primates, suggesting a more recent evolution
(Figure S7 in Additional file 2). Subcellular localization re-
vealed that LCAL1 was enriched in the nucleus, which is
common amongst lncRNAs associated with gene regulation
[4] (Figure S8 in Additional file 2).
Next, we wanted to assess the functional significance

of LCAL1. Short interfering RNAs (siRNAs) were de-
signed to help assess the function of LCAL1 in lung can-
cer. Greater than 50% knockdown of LCAL1 in the cell
line H322M, which models adenocarcinoma, with two
different siRNAs resulted in decreased cell growth as
measured by cell counting for six days. Both LCAL1
siRNA knockdowns in H322M caused at least a 24% de-
crease in cell growth starting at day 2 and a 37% or 50%
decrease in cell growth in siRNA 1 or siRNA 2, respect-
ively, at day 6 compared to control cells (Figure 7A). In
our original panel of nine different cancer cell lines,
LCAL1 was only highly differentially expressed in one
cell line; therefore, we screened additional squamous cell
carcinoma lines and found LCAL1 to be highly differentially
expressed in HCC95 (Figure S9 in Additional file 2).
Greater than 50% knockdown of LCAL1 in HCC95 cells re-
capitulated cell growth observations in the H322M cell.
Both siRNA knockdowns in HCC95 caused at least a 30%
decrease in cell growth starting at day 2, which was main-
tained through to the end of the experiment at day 6 com-
pared with control cells (Figure 7B). Furthermore, stable
overexpression of LCAL1, using two different clones,
in the control cell line BEAS-2B showed a significant
increase in cellular proliferation starting on day 2 and
continuing until the end of the experiment at day 6
with a 38% and 43% growth increase, respectively
(Figure 7C). Overexpression of LCAL1 in normal
BEAS-2B cells, at physiological levels in human tu-
mors, is proof of principle that this lncRNA is suffi-
cient to affect cellular growth independently of other
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Figure 6 Association between LCAL expression and mutation
status. (A) Significant associations between LCAL expression and
mutation status. Red bars designate significant associations (false
discovery rate (FDR) <0.01) across LUAD tumors and blue bars across
LUSC tumors. (B) Expression levels of SCAL1 (LCAL51), measured by
log2 FPKM, for wild-type (WT; black), NFE2L2 mutant (red), KEAP1
mutant (green), and both NFE2L2 and KEAP1 mutant (blue) samples.
Data points are ordered by expression levels and symbols designate
cohort (squares for LUAD, circles for LUSC). Thick colored lines represent
the median expression levels across each group. P-values for each
mutational association are also reported (*FDR <0.05, **FDR <0.01).
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common cancer mutations, thus highlighting the im-
portance of LCAL1 in lung cancer biology.
To confirm that changes in cell growth were due to a

proliferative effect of LCAL1 expression, Alamar Blue
proliferation experiments were also conducted. After 72
hours LCAL1 knockdown cells were replated and
Alamar Blue reduction was assessed on days 2, 4, and
6. We see a similar significant decrease of proliferation
in both siRNA constructs compared with scrambled
control in both H322M and HCC95 cell lines (Figure
S10 in Additional file 2). In addition, there was no
change in apoptosis or necrosis in both cell lines with
decreased LCAL1 expression compared with control as
measured by annexin V and propidium iodide staining
at 72 hours post-knockdown (data not shown). These
results highlight the biological importance of LCAL1 in
promoting tumorigenesis.
Discussion
The utilization of lncRNAs as biomarkers, and more
recently active tumorigenic factors influencing protein
function, demonstrates the necessity for more extensive
studies characterizing and understanding the role of
lncRNAs in disease progression. In this study we used an
unbiased approach to systematically categorize lncRNAs in
567 tumors from three separate publicly available RNA-Seq
lung data sets. We identified 111 intergenic lung cancer-
associated lncRNAs, or LCALs, most of which were not
previously implicated in cancer development and progres-
sion. Further stratification of the 111 LCALs determined 27
LCALs to be subtype-specific, and therefore might serve as
important biomarkers to form a molecular signature in
stratifying adenocarcinoma and squamous cell carcinoma.
A meta-analysis across seven additional cancers established
that most (over 50%) LCALs appear to have restricted ex-
pression in lung cancer, suggesting they may be involved in
disease pathogenesis and serve as putative biomarkers.
Moreover, a small percentage of LCALs are highly differen-
tially expressed in at least one other cancer, with nine being
expressed in at least three additional cancers. This analysis
highlights the importance of lncRNAs not only in lung can-
cer but also as broad oncogenic factors and lays the
groundwork for future studies to determine the mecha-
nisms by which these newly discovered non-coding RNAs
act in cancer progression.
In our study we provided a comprehensive analysis to de-

tect novel lncRNAs across lung cancer patients that led to
the annotation of over 3,000 novel lncRNAs. However, to
ensure that we were annotating high-confidence candidates
we focused on multi-exon genes. Additionally, the publicly
available data collections used for this study did not utilize
stranded libraries and therefore did not allow for accurate
annotation of antisense non-coding RNAs. Furthermore,
the data used in this study focused on polyA+ RNA and
therefore may have missed some non-coding RNAs. How-
ever, for the first time we were able to identify solid tumor-
associated lncRNAs not previously implicated in lung
cancer as well as uncharacterized lncRNAs altered in lung
cancer. For example, linc-UBC1 (LCAL6) was discovered
in bladder cancer [32]; UCA1 (LCAL52) in bladder [33],
ovarian [46] and breast cancer [47]; LINC00261 (LCAL62)
in gastric cancer [31]; ESCCAL-1 (LCAL80) [30] and
ENST00000547963 (LCAL84) [34] in esophageal squamous
cell carcinoma; CCAT1 (LCAL85) in colon cancer [29]; and
PART1 (LCAL92) in prostate cancer [35] and glioblastoma
multiforme [48]. Overall, these findings emphasize the im-
portance of unbiased sequencing approaches to better
understand the non-coding RNA landscape of cancer.
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Figure 7 LCAL1 expression affects cell growth. (A, B) Cell proliferation assay in H322M (A) and HCC95 (B) cells using LCAL1 siRNAs. qPCR
validation of LCAL1 siRNA knockdown is shown on the right. (C) Cell proliferation assay in BEAS-2B overexpressing clones of LCAL1 with qPCR
validation of LCAL1 expression in BEAS-2B cells on the right. @P≤ 0.05, *P ≤ 0.01, **P ≤ 0.001 by a two-tailed Student’s t-test. The same significance
applies for siRNA 1 and siRNA 2 at all time points. All error bars are mean ± standard error of the mean across n = 3 biological replicates in two
independent experiments.
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One of the major challenges for studying lncRNAs is
to determine their potential functional role. Interestingly,
mutations in well-established oncogenes have shown asso-
ciation with lncRNAs. For example, the lncRNA BANCR
was found as a recurrently overexpressed transcript in
BRAFV600E-mutant human melanoma, which is the most
activating mutation in melanoma, with a potential role in
regulating cell migration [43]. Additional studies have
also established that lncRNAs, such as lncRNA-p21,
contain functional p53-binding motifs [49], indicating
these lncRNAs serve as transcriptional targets in key
biological pathways. Here we discovered that some
LCALs are also associated with mutational status,
thereby implicating them in key oncogenic pathways.
In addition to altered LCAL expression associating
with TP53 mutation status, some of the LCALs also as-
sociated with mutations in KEAP1 and NFE2L2, which
are key players in the oxidative stress pathway. For in-
stance, SCAL1 (LCAL51) was found to be associated
with KEAP1 mutation status in LUAD and NFE2L2
mutation status in LUSC (Figure 6B) and was recently
shown to act downstream of NRF2 and mediate oxida-
tive stress protection in airway epithelial cells [16]. The
association of SCAL1 with oxidative stress, which has
been previously explored through experimental valid-
ation [16], further supports that the association of
LCAL expression with mutational status can poten-
tially elucidate their function and serve as the basis for
future cancer biology studies.
To determine the importance of these LCALs in lung

disease pathology, we proceeded with functional stud-
ies of LCAL1, the top up-regulated lncRNA in both
LUAD and LUSC. Cellular proliferation studies re-
vealed an oncogenic phenotype, as shown by siRNA
knockdown studies of LCAL1 resulting in decreased
cellular growth in two cellular models of lung cancer, a
non-small cell lung carcinoma cell line (H322M) and a
squamous cell carcinoma cell line (HCC95). Moreover,
as proof-of-principle, our LCAL1 overexpression stud-
ies highlight increased proliferation compared with
control BEAS-2B empty vector cells, suggesting that
altered LCAL1 is sufficient for promoting the etiology
of the disease. Furthermore, our LCAL1 experiments
highlight the potential functional contribution add-
itional LCALs may have in various facets of lung
tumorigenesis.
Conclusions
To date, lung cancer research has primarily focused on the
deregulation of protein-coding and microRNA genes to
identify oncogenes and tumor suppressors as potential
diagnostic and therapeutic targets. However, lncRNAs rep-
resent an emerging and under-studied class of transcripts
that have a significant role in human cancers. This study
leverages RNA-Seq data from approximately 550 patient
specimens representing an unmatched lung cancer tran-
scriptome analysis to date to discover 111 lung cancer-
associated lncRNAs (LCALs). We have experimentally
validated a subset of LCALs and demonstrated that the
most commonly up-regulated lncRNA across lung sub-
types, LCAL1, contributes to cellular proliferation. A meta-
analysis across human cancers revealed a subset of LCALs
that have restricted expression and may represent putative
biomarkers while a subset appear to be altered in multiple
solid tumors, suggesting a common oncogenic role. Taken
together, our study highlights the comprehensive scope of
lncRNAs (both previously known and novel) that may con-
tribute to lung cancer. While we already demonstrate the
biological significance of LCAL1, our study provides a
framework for subsequent research exploring additional
LCALs in lung tumorigenesis as well as assessing their
prognostic and predictive potential.

Materials and methods
Lung RNA-Seq datasets
Raw sequences from three previously sequenced lung
RNA-Seq datasets were downloaded: (1) 72 adenocarcin-
oma tumor and adjacent normal pairs [18] (referred to as
'Seo') from EBI-SRA under accession number ERP001058;
(2) 55 adenocarcinaoma tumors and adjacent normal pairs,
plus an additional 243 unmatched tumors, from TCGA (re-
ferred to as 'LUAD'); and (3) 34 squamous cell carcinoma
tumors and adjacent normal pairs, plus an additional
163 unmatched tumors, from TCGA [17] (referred to
as 'LUSC'). Sequence reads were aligned using TopHat
v1.3.0 [50].

Discovery of unannotated lncRNAs
All available samples (adjacent normal, matched tumor,
unmatched tumor) from the LUAD, LUSC and Seo co-
horts were used to discover novel expressed transcripts.
Transcript assemblies were generated using Cufflinks
v2.0.2 [19] in de novo mode and subsequently merged
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together with Cuffmerge to generate a consensus tran-
scriptome across the cohort. To identify unannotated
transcripts, a comprehensive set of protein-coding gene
annotations was generated by downloading RefSeq, UCSC,
Ensembl and GENCODE v17 gene annotations, in gene
transfer format (GTF) and aggregated together (each down-
loaded on 20 September 2013). Additionally, the lncRNAs
identified from the Human Body Map project were down-
loaded from UCSC and aggregated to the protein-coding
GTF. Cuffcompare was used to compare the lung cancer
consensus transcriptome with our comprehensive protein-
coding and lncRNA gene reference. The Cuffcompare
results were filtered for gene loci that were classified as un-
annotated (‘u’) and none of the transcripts overlapped an
existing gene annotation. This subset was defined as ‘novel
transcripts’. Analysis of coding potential of lncRNAs was
performed on transcript sequences using GeneID [24] and
CPATand were both pre-trained for human genes [25].
Enrichment for H3K4me3 histone modifications in

lung cancer cells was conducted using ENCODE ChIP-
Seq data downloaded from the UCSC browser tracks.
Coverage was aggregated across 500 nucleotide bins for
20 kb upstream and downstream of the transcription
start site for each transcript in the following categories: (i)
protein-coding, (ii) known RNAs (reported in RefSeq), (iii)
lncRNAs recently annotated in human development, (iv)
novel lncRNAs found in this study, and (v) random. The
random transcriptional start sites were determined by
selecting genomic coordinates randomly throughout the
genome.

Repetitive element analysis of lncRNAs
RepeatMasker annotation for human genome (hg19 as-
sembly) was downloaded from the UCSC database [20].
BEDTools intersect [51] was used to identify overlap be-
tween repetitive elements and transcript exons. Repeti-
tive elements that overlapped at least 10 nucleotides
with an exon were considered for further analysis. Any-
thing that was not classified as a transposable element
(such as low complexity, satellites, and simple repeats)
was removed from further analysis.

Gene expression analysis
Figure S2A in Additional file 2 shows the multiple steps
of our differential expression pipeline. A custom annota-
tion file comprised of lncRNAs from multiple sources
was generated by merging noncoding transcripts from
GENCODE v17, Ensembl, UCSC, Human Body Map,
and our novel lncRNAs. All single-exon transcripts were
removed. This list was then merged with all RefSeq non-
coding transcripts, including single-exon transcripts, and
all transcripts less than 200 nucleotides were removed.
Transcripts overlapping an exon from a RefSeq protein
coding gene or Ensembl pseudogene were removed,
resulting in 34,308 unique transcripts spanning 14,091
gene loci. Gene expression FPKM values were calculated
with Cufflinks v2.0.2 using this custom lncRNA annota-
tion file. Additionally, a table comprising read counts for
each transcript was calculated using BEDTools version
2.17.0 [51]. We removed lowly expressed transcripts (at
least 75% of samples had FPKM <0.1 or read count <25).
The set of remaining transcripts was reduced to a set of
non-overlapping regions (or 'genes') by comparing all
overlapping transcripts and keeping the transcript with
the largest average FPKM across all samples as the
representative transcript for that region. After TMM
normalization [52], edgeR version 3.0.8 [53] was used
to identify differentially expressed transcripts between
tumor and normal pairs using a matched pair design
for the Seo, LUAD and LUSC datasets using cutoffs of
false discovery rate (FDR) ≤10-5 and absolute fold
change ≥2. To obtain the list of LCALs, we selected
lncRNAs for which the following criteria all held across
at least one cohort: (1) differentially expressed, (2) highly
expressed (average tumor or normal FPKM ≥2), and
(3) large fold change between tumor and normal (fold
change ≥8).
The same pipeline was used for discovering differen-

tially expressed lncRNAs between tumor subtypes. The
only difference was that instead of using a matched pair
design, we tested for a difference between subgroups
after adjusting for gender (LUAD, n = 297; LUSC, n =
196; two samples without gender information were re-
moved). Heatmaps were generated for each dataset using
standardized values by subtracting the median and divid-
ing by the median absolute deviation of each lncRNA.
Rows (lncRNAs) were clustered using Ward’s method.

Expression levels of validated LCALs
For the six LCALs that were experimentally validated
(LCALs 1, 5, 7, 18, 80, and 85), coverage across the tran-
script was calculated by counting the read depth at each
base using custom perl scripts and the Bio::DB::Sam Bio-
Perl package. Coverage maps shown in Figure 4 and in
Figure S5 in Additional file 2 were created in R using
SigFuge version 1.1.2 [54]. For the tables shown in
Figure 4 and in Figure S5 in Additional file 2, the cutoff
for classifying samples as high or low expression was de-
termined by maximizing the Matthews correlation coef-
ficient [55] and two-sided P-values were calculated using
Fisher’s exact test.

Human exon array validation
Affymetrix Human Exon 1.0 ST Array data for 20 lung
adenocarcinoma tumor and adjacent normal pairs [37]
were downloaded from Gene Expression Omnibus
(GSE12236). We chose to repurpose this array plat-
form because it has the most comprehensive probe
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coverage of lncRNA genes. The genomic coordinates
for each probeset were converted from hg18 to hg19
using the UCSC Genome Browser LiftOver tool [56].
Probesets overlapping exons of lncRNAs were determined
using custom perl scripts. For annotated lncRNAs, only
probesets on the correct strand were used. For the novel
lncRNAs where the strand is unknown, overlapping probes
on either strand were used. The raw CEL files were
processed using Affymetrix Power Tools [57] with
RMA normalization [58] to generate transcript-level
intensity estimates. For each LCAL that was called dif-
ferentially expressed in either adenocarcinoma cohort
(LUAD or Seo), a paired Wilcoxon signed rank test
was performed. LCALs with P < 0.05 were considered
to be validated by the array.
Aberrantly expressed lncRNAs across human cancers
TCGA MapSplice aligned BAM files [59] were downloaded
from TCGA for tumor and adjacent normal pairs from the
following tissue types: breast invasive carcinoma (n = 104
pairs), colon adenocarcinoma (n = 16), head and neck squa-
mous cell carcinoma (n = 37), kidney renal clear cell carcin-
oma (n = 69), stomach adenocarcinoma (n = 30), thyroid
carcinoma (n = 58), and uterine corpus endometrial carcin-
oma (n = 10). A table comprising read counts for each
transcript from our custom lncRNA annotation file was cal-
culated using BEDTools version 2.17.0 [51]. Similar to the
edgeR pipeline previously described, transcripts less than
200 nucleotides, with only one exon, or overlapping known
pseudogenes were removed along with protein coding
genes. Log fold changes were obtained from edgeR and
FPKM [19] expression values were manually calculated as
109(M/(T × L)) where M is the number of reads mapping to
a transcript, T is the total number of mapped reads, and L
is the transcript length. LncRNAs with FDR ≤10-5, absolute
fold change ≥2, altered in the same direction as lung, and
either average tumor FPKM or average normal FPKM ≥1
were called significantly differentially expressed.
Association of LCALs with mutation status
The most frequently mutated genes in lung cancer were
determined as having over 10% mutation rate in either
the LUAD or LUSC cohort, as reported in Figure 2 from
Kandoth et al. [44]. Mutation calls were downloaded
from TCGA [60]. Attention was restricted to 167 LUAD
and 178 LUSC samples with both RNA-Seq and muta-
tion data. A Wilcoxon rank sum test was used to test for
significance between mutational status and expression of
each LCAL (using manually calculated FPKM values).
For each mutated gene, P-values for the LCALs were
corrected for multiple comparisons using the Benjamini
and Hockberg FDR correction [61], and a significance
threshold of 0.01 was used.
Cell culture and human lung cancer RNA
A549, HOP62, HOP92, NCI-H522, -H32, -H460, -H322M,
and -H226 were a kind gift from Dr Van Tine at
Washington University. Calu-1, SK-MES-1, SW900, and
HCC95 were a kind gift from Dr Loren Michel at
Washington University. HCC827 was a kind gift from
Dr Leonard Maggi at Washington University. BEAS-2B
cells were purchased from American Type Culture Col-
lection (Manassas, VA, USA). All cells were grown in
RPM1-1640 (Invitrogen, Carsbad, CA, USA) with 10%
fetal bovine serum and 1% penicillin/streptomycin.
RNA (2 μg) from lung cancer tissue and their matched
controls was obtained from the Tissue Procurement
Core at Washington University.
RNA isolation and cDNA synthesis
Total RNA was isolated with the RNeasy Mini Kit (QIA-
GEN) with DNase 1 treatment according to the manu-
facturer’s instructions. cDNA was synthesized from total
RNA using High Capacity cDNA Reverse Transcription
Kit with random hexamers (Invitrogen). Human lung
cancer tissue RNA was used to make cDNA with the
Superscript III RT-PCR Kit (Invitrogen).
Quantitative real-time PCR
At least two biological replicates were used for qPCR
using PowerSyBr Green (Invitrogen). The comparative
CT (ΔΔCT) method was used with values first normal-
ized to the housekeeping gene RPL32, and then to
BEAS-2B control. All primers were obtained from Inte-
grated DNA Technologies (Coralville, IA, USA) and are
listed in Table S9 in Additional file 1. Primer efficiency
between 90 and 110% was determined for each primer
candidate.
RACE
5’ and 3’ RACE was done using the GeneRacer Kit (Invi-
trogen) according to the manufacturer’s instructions.
RACE PCR products were obtained with Platinum Taq
High Fidelity (Invitrogen) using the GeneRacer primer
(supplied) and a gene-specific primer (GSP) listed in
Table S10 in Additional file 1. Nested PCR was also per-
formed for most transcripts. Products were visualized on
a 2% agarose gel and purified by gel extraction (QIA-
GEN). This product was then cloned into pcr4-TOPO
vector (Invitrogen) and grown in TOP10 Escherichia
coli. Clones were sequenced with the M13 forward primer
at The Protein and Nucleic Acid Chemistry Laboratory
at Washington University. Full-length sequences were
uploaded to GenBank under the following accession num-
bers: KF773845 (LCAL1), KF773846 (LCAL5), KF773847
(LCAL7), and KF773848 (LCAL80).
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siRNA knockdown experiments
Stealth siRNA oligonucleotides were synthesized by Invi-
trogen. The following siRNA sequences were used for
knockdown of LCAL1: siRNA 1 GGACAGGCTGCAGT
CATCATATGGA and siRNA 2 GGCATGTGTTCAGA
CATATCCTAAA. Cells were transfected with 50 pmol
of siRNA and a scrambled-matched %GC oligo as con-
trol with RNAimax Lipofecatmine (Invitrogen) following
the manufacturer’s instructions. Knockdown efficiency
was determined by qPCR at time of plating for assay.
After 72 hours, cells were then plated at 200,000 cells/
well for proliferation assays. Cells were counted using
the Beckman Z1 Coulter Counter at days 2, 4, and 6. At
least three biological replicates were performed for each
siRNA construct over two experiments.
Alamar Blue proliferation assays
Seventy-two hours after transfection, cells were seeded
at 3,000 cells/well in a 96-well dish to assess viability via
Alamar Blue according to the manufacturer’s instruc-
tions (Sigma). Subsequent cells were then used for RNA
isolation to detect relative expression of LCAL1. Fluores-
cence intensity was then measured with Gen5 software
on Synergy Hybrid (BioTek) at days 2, 4, and 6 post-
knockdown after one hour incubation with Alamar Blue.
At least four biological replicates were done for each
siRNA construct over two experiments.
Retroviral infection and generation of BEAS-2B cell lines
stably expressing LCAL1 variants
The full length LCAL1 transcript was PCR amplified
from H322M cells and cloned into the pCFG5-IEGZ
vector (a kind gift from Dr Ron Bose). Full-length inserts
were confirmed with Sanger sequencing at The Protein
and Nucleic Acid Chemistry Laboratory at Washington
University. Retroviral infection of BEAS-2B cells were
performed according to Kavuri et al. [62]. Briefly, the
amphotrophic producer cell lines were transfected with
10 μg of LCAL1 and empty control retroviral vectors by
calcium phosphate precipitation and incubated for 24
hours. Viral supernatants were harvested after an add-
itional 24 hour incubation. Virus was added to BEAS-2B
cells seeded in six-well dishes in the presence of 8 μg/ml
Polybrene. BEAS-2B cells were centrifuged at 2,500
RPM for 1.5 hours at 22°C and supernatant exchanged
for fresh media. After 10 to 14 days of 125 μg/ml zeocin
selection, cells were plated at 200,000 cells/well for pro-
liferation assays. Cells were counted using the Beckman
Z1 Coulter Counter at days 2, 4, and 6. At least three
biological replicates were performed for each stable cell
line over two experiments. Cells were also collected for
validation of LCAL1 expression by qPCR.
Nuclear localization
H322M lysates were fractionated into nuclear and
cytosolic fractions according to the PARIS kit protocol
(Invitrogen) and gene expression was assessed by qPCR.
Results were normalized to the housekeeping gene RPL32,
and then to total RNA. U6 was used as a positive control
for nuclear gene expression and GAPDH and MT-RNR1
were used as positive cytoplasmic gene expression. Three
biological replicates were conducted over two independent
experiments.

Additional files

Additional file 1: Supplementary Tables S1 to S10.

Additional file 2: Supplementary Figures S1 to S10.
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