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Abstract

tissue of expression of tissue specific genes.

breadth.

Background: Conventional wisdom holds that, owing to the dominance of features such as chromatin level
control, the expression of a gene cannot be readily predicted from knowledge of promoter architecture. This is
reflected, for example, in a weak or absent correlation between promoter divergence and expression divergence
between paralogs. However, an inability to predict may reflect an inability to accurately measure or employment of
the wrong parameters. Here we address this issue through integration of two exceptional resources: ENCODE data
on transcription factor binding and the FANTOM5 high-resolution expression atlas.

Results: Consistent with the notion that in eukaryotes most transcription factors are activating, the number of
transcription factors binding a promoter is a strong predictor of expression breadth. In addition, evolutionarily
young duplicates have fewer transcription factor binders and narrower expression. Nonetheless, we find several
binders and cooperative sets that are disproportionately associated with broad expression, indicating that models
more complex than simple correlations should hold more predictive power. Indeed, a machine learning approach
improves fit to the data compared with a simple correlation. Machine learning could at best moderately predict

Conclusions: We find robust evidence that some expression parameters and paralog expression divergence are
strongly predictable with knowledge of transcription factor binding repertoire. While some cooperative complexes
can be identified, consistent with the notion that most eukaryotic transcription factors are activating, a simple
predictor, the number of binding transcription factors found on a promoter, is a robust predictor of expression

Background

Is it possible to predict expression parameters of a gene
from knowledge of the promoter architecture of that
gene? If, for example, we knew the transcription factors
(TF) that bind the promoter of a gene, can we predict
the breadth of expression (BoE) (that is, the proportion
of tissues/cells within which the gene is expressed) or
the mean level of expression of that gene? It is known
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that expression patterns of gene duplicates diverge over
evolutionary time [1,2], but can we predict how different
the expression of paralogs will be knowing nothing more
than their promoter architecture? What in turn is the re-
lationship between expression breadth and the number
of TFs regulating a gene (TfbsNo.)? Given that, in
contrast to prokaryotes, the ground state for most
eukaryotic genes is inactivity [3], we might expect that
broadly expressed genes should have very many regulat-
ing TFs, assuming eukaryotic TFs are for the most part
activating [4]. However, some very broadly expressed
genes might have reverted to a more prokaryotic state
and have activity as the constitutive state and hence not
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require TF activation. Alternatively, the BoE may be con-
ferred by the ability to bind a few specialist transcription
factors or through cooperation of particular TFs, in
which case the total number of binders need not predict
breadth.

At first sight the answer to many of these questions
may appear rather trivial: surely if we know the TFs that
bind a gene’s promoter and know when those TFs are
present in cells then we must know the expression pa-
rameters of a gene [5]? However, an in-depth study of
STE12 found that expression changes in response to this
transcription factor accounted for only half the observed
expression fluctuations [6]. That the coupling between
TF presence/absence need not be such an excellent pre-
dictor is indicative of other levels of control. In addition
to transcription level regulation (presence/absence of the
relevant TFs), genes can be regulated both pre- and
post-transcriptionally. Post-transcriptionally, processes
such as nonsense-mediated decay (NMD) [7], microRNA
level regulation [8], and modulation of RNA stability [9],
can also act to reduce the transcript levels below that ex-
pected given the transcription rate, potentially buffering
larger changes in mRNA levels. Chromatin level pre-
transcriptional regulation may be the dominant factor
[10]. This can mean either higher-level chromatin archi-
tecture (open/closed chromatin configuration) [10] or
other epigenetic marks (histone modification, methyla-
tion, and so on) [11,12], all of which can modulate the
expression of the gene even if the relevant TFs are
present.

Much evidence supports a strong role for chromatin
in dictating expression profiles. For example, insertion of
the same transgene into different regions in the genome
leads to different expression levels dependent on the ex-
pression profile of the neighboring genes [13]. Similarly,
a pair of transgenes can be co-expressed if introduced in
tandem (so sharing the same chromatin environment)
but have uncoordinated expression when introduced
into unlinked locations [14]. Upregulation of one gene is
similarly thought to cause a time-lagged ripple of chro-
matin opening which leads to spikes in the expression of
neighbors [15]. More generally, at least in yeast, physical
proximity of genes, is a strong predictor of the degree of
co-expression between any two genes [16]. Indeed, for
unlinked genes, on average two genes with the identical
repertoire of TF binders, have only a weak degree of co-
expression (r° approximately 1% to 2%), much less than
the degree of co-expression of two linked genes with no
transcription factors in common (+° approximately 10%)
[16]. Moreover, DNA methylation was found to increase
or decrease BoE depending on the target sequence [17];
while CpG islands co-localize with most promoters and
are characterized by low methylation [18]. These results
all suggest that chromatin level effects are not negligible
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and that extrapolation from TF binding to expression
profile might be a relatively futile enterprise. In contrast
to this position, however, is a striking counter-example
demonstrating that the expression profile of genes in-
volved in Drosophila segmentation is well predicted by
the knowledge of TF binding sites and TF levels [5].

One approach to determine the extent to which pro-
moter architecture determines expression parameters
has been to consider the relationship between expression
divergence and promoter divergence between paralogs
within a genome or between orthologs in different ge-
nomes [19-22]. The logic is the same in both instances,
namely that if the differences from the ancestral expres-
sion profile to current expression profile have been
owing to changes in the sequence of the promoters, then
comparing multiple genes across genomes (for ortho-
logs) or within genomes (for paralogs) should reveal cor-
relations between the degree of promoter divergence
and the degree of expression divergence. In the instance
of paralogs there is an additional assumption that the
duplicate versions of the same gene were generated in a
manner that preserved the promoters. These analyses
commonly suggest little or no coupling between pro-
moter divergence and expression divergence, consistent
with a weak coupling between promoter architecture
and gene expression parameters. For example, within
yeasts divergence of transcription factor binding sites
(Tfbs) has little impact on expression divergence be-
tween orthologs [19]. Similarly, Park and Makova found
in humans that the correspondence of paralog cis-regu-
latory regions was so weakly correlated with expression
divergence in a multiple regression that it was not sig-
nificant after multi-test correction [20]. A further yeast
study found that promoter divergence explained only 2%
to 3% of expression variability [21]. These results suggest
that cis-regulatory effects are not a major influence on
expression profile. By contrast, a promoter screen in
yeast found evidence for a robust correlation between
the number of shared motifs and the degree of expres-
sion divergence between paralogs [22], although, unex-
pectedly, the absolute number of motifs the paralogs
have is approximately constant over time. Clearly, more
analysis is needed to investigate this key question in the
field of expression pattern evolution.

While the consensus view is that promoter architec-
ture does not well predict expression parameters, there
is also then a lack of perfect agreement on this. One
possible reason the studies are not obviously in agree-
ment is that there is much noise in both measures of ex-
pression and inference of which proteins bind any given
gene’s promoter. In addition, it is not immediately clear
what metric of, for example, promoter divergence would
be most informative. We return to this issue employing
a merge of two exceptional data sources, ENCODE and
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FANTOMS5. We used ENCODE ChIP-seq meta dataset
derived from multi cell-line clustered experiments pub-
lished in 2012 [23]. Whole-genome studies of regulatory
evolution in human had been unfeasible before EN-
CODE [23]. Although ENCODE experiments were per-
formed on separate cell lines, standardized experimental
protocols and a unified analytical pipeline [24] allow one
to merge ENCODE data into one meta dataset [25,26].
FANTOMS is the most comprehensive expression data-
set available, including 952 human and 396 mouse tis-
sues, primary cells, and cancer cell lines (see Table 1).
FANTOMS [27] is based on cap analysis of gene expres-
sion (CAGE). CAGE characterizes transcriptional start
sites across the entire genome in an unbiased fashion,
and at a single-base resolution level [27].

Here, then, we employ this novel data to ask whether
expression profiles can be predicted from promoter
architecture. In the first instance we wish to know
whether the total number of transcription factors bind-
ing a promoter is a good predictor. We follow this up
with the analysis of interactants and a more complex
machine learning approach. We start by resolving basic
parameters of TF binding and promoter architecture.

Results

The number of transcription factors per gene follows a
power law

Before attempting to describe any correlations between
the number of Tfbs (TfbsNo.) and expression, it is in-
structive to know what the distribution of the number of
transcription factors per gene looks like. Perhaps it is
normally distributed? To determine this, proximal pro-
moters were defined by a symmetrical window around
the transcription start site — TSS (£500 bps). The distri-
bution of TfbsNo. is not normal, instead it follows a
power law (Figure 1). At the Tfbs quality cutoff of 500,
90% of genes had between 0 and 26 transcription factor
binding sites, but there was a long-tail of genes with

Table 1 The numbers of samples in distinct FANTOM5
categories

Human Mouse
The total 952 39
Tissues 179 280
Primary cells 513 116
Cancer cell lines® 260 -
Brain tissues® 60 51
Reproductive tissues® 14 21

The first release of FANTOMS5 included 952 human and 396 mouse tissues,
primary cells and cancer cell lines. FANTOMS5 explored the entire genome
space in an unbiased and systematic fashion, without arbitrarily pre-selected
features of the microarray chip. All FANTOMS5 libraries passed strict quality
control tests.

#Cancer cell lines are only available for human.

bBrain tissues and reproductive tissues are subsets of the tissue set.
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high values (more than 26). The distribution can be de-
fined by Tukey’s five numbers: the minimum O, the
lower-hinge 0, the median 4, the upper hinge 14, and
the maximum 58. The ENCODE motif quality cutoff re-
fers to the quality score assigned to all Tfb sites and
varying from zero through 1,000 [24], proportionately to
the reliability of the predicted Ttbs. Additional details of
the distribution of the number of Tfbs mapping to pro-
moters with varied ENCODE quality cutoff and varied
promoter window size are given in Tables 2 and 3.

Effective promoter size is about 6 kb (+3,000 bps from
the TSS)

We have assumed above a given size for promoters. Can
we use our data to determine an average upper limit to
the size of promoters? We expect that TF binding sites
should be concentrated near the TSS and as we move
ever further away the increase in the number of TF
binding sites should tend to a linear function, indicating
background/random rates. As expected, the number of
Tfbs increases progressively with the window size, trans-
forming gradually to a linear, background, rate of increase
(Figure 2a). Using a derivative to determine the point at
which the trend linearizes, the outer boundary of pro-
moters is estimated at 3 kb from the TSS (Figure 2b).

Broadly expressed genes have more transcription factor
binding sites

Is there something special about those genes with very
many TF binding sites? Are they for example broadly
expressed, as expected if TFs are dominantly activating?
To analyze this we presumed, in the first instance, that a
CAGE signal greater than 10 tags per million (TPM
>10) classified a gene as expressed, or ‘on’ in a given tis-
sue (this was the consensus definition accepted by the
FANTOMS5 consortium). The BoE is the fraction of tis-
sues or cell-lines in which the gene was ‘on’, that is, in
which it was transcribed. Figure 3 illustrates the distri-
bution of TPM values in human tissues (Figure 3a), and
the consequences of using too high a cutoff for BoE such
as 100 or 1,000 TPM (Figure 3b). The TPM value of 10
is equivalent to approximately 3 mRNA copies per cell,
based on 300,000 mRNAs per cell [28]. Using this defin-
ition, half of genes are relatively narrowly expressed. If,
for example, transcripts are sub-divided into three cat-
egories, narrowly expressed (0 <the BoE <0.33), inter-
mediate (0.33 < the BoE < 0.66), and house-keeping (BoE
>0.66), nearly half are tissue specific or narrowly ex-
pressed (0.46 narrowly expressed, 0.14 intermediate, and
0.21 housekeeping). Of the narrowly expressed tran-
scripts, a very small fraction, 0.042 at the cutoff of 10
TPM or 0.053 at the cutoff of 100 TPM, are tissue-
specific sensu stricto, that is, expressed in one tissue
only. The remaining 0.19 is the fraction of transcripts
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Figure 1 Histograms of the numbers of Tfbs in promoter regions depending on analysis widow size and ENCODE quality cutoff. This

figure consists of 10 panels identified through row and column margin labels. The top row provides information on Tfbs distributions including
all ENCODE sites, while the bottom row illustrates distributions at the ENCODE quality cutoff of 500. The motif quality cutoff refers to the quality
score assigned to all Tfb sites by the ENCODE consortium, which are in the range of zero to 1,000 (from low to high quality). The promoter

. The inclusion of all sites and the expansion of the analysis window

J

which lack evidence for expression in FANTOMS5 tissue
samples at the cutoff of 10 TPM, owing perhaps to their
highly restricted spatial and/or temporal expression in a
very limited subset of cells. In comparison to all genes,
ENCODE Tfbs have higher average BoE (BoE of 0.46
versus 0.295, Wilcoxon rank sum test P value = 2.995e-08)
with the fractions of tissue-specific, intermediate, and

housekeeping Tfbs at 0.32, 0.17, and 0.38. Top 10 house-
keeping Tfbs included Pol2, JunD, c-Fos, JunB, Rad21,
GTF2F1, NELFe, SREBP2, RXRA, and HSF1 (which all
had BoE >0.98). For 17 Tfbs (that is, 12% of the total) we
found no evidence of expression in tissue samples.

Might the correlation between expression breadth and
the number of Tfbs be an artifact owing to a correlation

Table 2 The distribution parameters for the number of transcription factor binding sites mapping to proximal promoters
depending on the promoter window size and ENCODE quality cutoff

Size (bps) ENCODE cutoff Min 1st Qu. Median Mean 3rd Qu. Max. SD

1 250 all_sites 1 8 23 2592 41 109 19.69
2 250 cutoff_500 1 3 8 9.952 15 56 7.84
3 500 all_sites 1 9 28 306 48 126 23

4 500 cutoff_500 1 4 9 10.96 16 58 8.64
5 1,000 all_sites 1 " 33 3593 55 162 2717
6 1,000 cutoff_500 1 4 10 12 18 71 9.52
7 5,000 all_sites 1 20 47 51.75 74 368 38.96
8 5,000 cutoff_500 1 6 13 15.55 22 105 1241
9 10,000 all_sites 1 29 61 68.75 95 515 51.34
10 10,000 cutoff_500 1 8 17 19.81 28 154 15.88
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Table 3 The percentages of genes with 1 TF, 2 TFs, and
up to 5 TFs depending on the promoter window size and
ENCODE quality cutoff
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Figure 4 and Table 4), even after controlling for all other
parameters (the corresponding partial correlation in
Table 4 has rho = 0.40). While the raw data show some

Size (bps) ~ ENCODE cutoff 1TF  2TFs Upto5TFs  scatter (Figure 5a-c) the monotonic trend is easily visual-
1 250 all_sites 604 449 19.84 ized in a box plot based on deciles of the data by BoE

2 250 cutoff_500 1206 788 3753 (Figure 5e).
3 500 all_sites sa1 385 1754 As regards possible chromatin effects we observe
4 500 cutoff 500 057 793 2458 (Table 4 and Figure 4), as expected, a positive correlation
- between BoE and ENCODE DNASEL1 signal (Spearman’s
> 1000 all_sites 46 3171508 rho =0.19, P value <2.2e-16), and a negative correlation
6 1000 cutoff_500 209 707 3187 between BoE and ENCODE methylation signal (Spearman’s
7 5000 all_sites 188 156 833 rho=-0.11, P value <2.2e-16). There was also a strong
8 5,000 cutoff_500 6.08 492 23.79 correlation of BoE with GC- and CpG-Content (rho = 033,
9 10000 all_sites 09 076 445 P value <2.2e-16; and rho = 0.42, P value <2.2e-16, respect-
ively). There was also a strong correlation between CpG

10 10,000 cutoff_500 422 338 17.82

Values in the last three columns refer to a rate in each hundred.

with a further parameter? Might indeed the chromatin
status or underlying nucleotide content be alternative
and better predictors? To explore this we consider a
multiway set of correlations and partial correlations, that
is each variable predicting breadth, controlling for all
others (Table 4, see also Figure 4). This suggested a link
between BoE and the number of transcription factor
binding sites to be the strongest correlation (/0 =0.48,

and TfbsNo. (rho=0.45, P value <2.2e-16, Figure 4)
and GC-content and the number of Tfb sites (rko =
0.29, P value <2.2e-16, Figure 4). Strikingly, however,
on multiway partial correlation, the strength of these
effects tended to diminish dramatically. Correlation
with GC went from a raw correlation of 0.33 to a partial
of just 0.03. Correlation with DNASE1 went from 0.19 to
just 0.06 and the methyl effect diminished from —0.11 to
just — 0.04. By contrast the effect of transcription fac-
tor number was relatively unchanged (0.48 prior to
multiway analysis, 0.4 after). These results suggest that
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Figure 2 Robustness to the variation in the size of the analysis window. This figure consists of three parts identified as (a - ). In (a), the
number of transcription factor binding sites depending on the size of the promoter window was shown. As expected, the number of Tfbs was
increasing progressively with the window size. However, the rate of the increase gradually decreased and transformed to linear. The point of the
transformation was the presumed boundary of the proximal promoter. To localize this boundary more precisely, we fitted a local polynomial
regression (loess) model and plotted its first derivative in (b). For all three subsets of ENCODE, there was a clear point of transformation where
the rate of change (ATfbs) became constant (marked with *), at the distance from the TSS of approximately 3,000 base pairs (that is, the

20000

Window size

promoter window of 6,000 base pairs). Thus the outer boundary of promoters was estimated at 3,000 base pairs from the transcription start site
(TSS). In (c), we show that the correlation between the BoE and the number of transcription factor biding sites was robust to variation in window
size, although its strength was decreasing as the size of the analysis window was increasing. This observation suggested that Tfbs controlling the
BoE were enriched close to the transcription start site. Note that the analyses described here used either a 2011 or 2012 ENCODE data-freeze. The
2011 meta dataset included 2.7 million peaks for 148 transcription factors, derived from 71 cell types with 24 additional experimental cell culture
conditions [31]. Peak scores varied from zero through 1,000. We used either all data or only high-quality peaks with the score above 500. The
2012 data-freeze, a broader dataset, consisted of 161 transcription factors and 91 human cell types with various treatment conditions [32].
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Figure 3 The definition of the BoE. This figure consists of two panels. (a) A histogram of all TPM values for human tissues. The following are
the characteristics of the distribution: n = 5.566005e + 06, mean = 1.807312e + 01, median = 3.090820e + 00, sd = 317,803, min =0, max = 348,120.
The cutoff of 10 TPM is signified with the red vertical line. The BoE was the fraction of samples in which the gene was ‘on’, that is, in which it
was transcribed. The tags per-million (TPM) value of 10 was accepted by the FANTOMS5 consortium as the standard threshold for a gene to be
‘on”in a given library. We considered alternative cutoffs of TPM =100 and TPM = 1,000 in (b) which compares the density plots for the BoE at the
cutoffs of 10, 100, and 1,000 TPM (see figure legend). It is clear that cutoffs of 100 and 1,000 are too high, resulting in almost no intermediate and
housekeeping genes (that is, genes with BoE >0.33).

the chromatin effects may mediate the control of gene
expression, but the prediction of BoE is best done via
transcription factor information (and this is most likely
the casual association).

Closer scrutiny of the impact of GC content as a pre-
dictor supports the view that it is GC of the core promoter

rather than a more regionalized GC content that impacts
BoE. When we divided promoters into low GC (less than
50%, n =5,650) and high GC (more or equal than 50%,
n = 25,710), the second group had more than three times
higher average BoE (the exact ratio was 0.3379/0.099 =
3.41) and on average bound more than four times more

Table 4 Correlations and partial correlations

BoE? BoE-partial  Average®  Average partial  Average -conditioned®  Average conditioned partial
Parameters  GC 0.33 -003 0.33 0.00 -0.07 0.04
GC_big -0.02 -004 -0.00 -0.01 0.01 -0.02
GC3 -0.08 —005 —-0.06 0.05 0.08 0.10
CpG 0.42 0.18 0.42 -003 -0.12 -0.16
TfbsNo. 0.48 040 0.48 -0.06 -0.13 -0.29
Methy! -011 -004 —-0.09 0.00 0.04 0.03
DNASE1 0.19 0.06 0.20 -002 —-0.06 —-007
BoE — — 0.94 091 0.45 0.63
AvgP 0.94 091 — — 0.55 —b
Avg_cond®  0.45 063 0.55 —> — —

Partial correlations (signified by the -partial suffix) are Spearman correlations between the column variable with each raw variable, that is, parameter or
explanatory variable, controlling simultaneously for all other parameters.

The parameters include four measures of GC-content: GC-content in a 1 kb proximal promoter (GC), GC-content in a 20 kbps window around the promoter
(GC_big), GC-content in a third codon position (GC3), frequency of CpG sites (CpG). TfbsNo. describes the number of transcription factor binding sites in the
promoter. Methyl is a measure of methylation while DNASE1 is the signature of open-chromatin.

Straight correlations.

PWhen calculating partial correlations for each measure of average expression (i.e. average expression and average-conditioned-on-breadth), we omitted the other
measure of average expression.
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Figure 4 A correlogram of 11 variables describing promoter architecture. In the correlogram, there are four measures of GC-content:
GC-content in a 1 kb proximal promoter (GC), GC-content in a 20 kbps window around the promoter (GC_big), GC-content in a third codon
position (GC3), and the frequency of CpG sites (CpG); there are also four measures describing the number of transcription factor binding sites in
promoters: Tfbs1 (Tfbs_length — straight number of Tfbs), Tfbs2 (Tfbs_length_unique — the number of unique Tfbs), Tfbs3 (Tfbs_length_noPol2 — the
number of Tfbs excluding Polll), and Tfbs4 (Tfbs_length_unique_noPol2 - the number of unique Tfbs excluding Polll), a measure of methylation
(methyl), a signature of digestion by DNASET (DNASET), and the BoE.

PR

Figure 5 The BoE correlated with the number of transcription factor binding sites. The BoE correlated with the number of transcription
factor binding sites in proximal promoters. Scatterplots were shown for (@) FANTOMS human tissues, (b) FANTOMS human primary cells, (c) FANTOMS
human cancer cell lines, (d) human data in Gene Expression Atlas [49]. The red line signified the linear model for the smoother line, while the blue line
signified the non-linear model. (e) An alternative illustration of the trend using a boxplot for the discretized BoE in FANTOMDS tissues. Outlying tissue-
specific genes with many transcription factor binding sites, which were likely enriched in inhibitory TFs, were marked in red. FANTOMS tissues, primary
cells, and cancer cell lines were the three subsets of samples in FANTOM5 whose numbers were given in Table 1. Numbers of tags in FANTOMS were
normalized to tags per million (TPM). The TPM value of 10 was chosen as a standard cutoff for a gene to be ‘on’. For Gene Expression Atlas, Affymetrix
average difference (AD) higher that 200 classified a gene as ‘on’ or expressed in a given tissue. Proximal promoters were defined by a symmetrical
window of 1 kb in size around the transcription start site (+500 bps from the TSS). As an additional control, we performed a randomization procedure
where proximal promoters of all genes were shuffled. The value of the t-statistic for the strength of correlation in the observed dataset was compared
against 10,000 datasets with randomized assignments between promoters and RefSegs. The value of t-statistic for observed data (54.29404) was
compared with t-statistics for 10,000 randomized datasets (mean — 0.00959) and the P value obtained was lesser than 2.2e-16.
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TFs (9.55/2.29 = 4.17). The GC content of proximal pro-
moters (defined as a 1 kbps window) was much higher
than that of surrounding DNA sequences (20 kbps
window): 0.594 versus 0.463 (Welch Two Sample ¢-test,
P value <2.2e-16). Similar results were reported by the
ENCODE consortium who found that GC content of
ChIP-seq sites was 61 + 5% for TSS-proximal peaks [29].
The exact cause of this effect is not yet fully understood.
Although some TF motifs are GC-rich [30], these are
usually much smaller than the actual ChIP-seq peaks (8
to 21 bps vs. approximately 250 bps).

As shown in Table 5, including GC-content-related
measures (that is, GC content, CpG, and CpGoe) in a
support vector machine (SVM) learning dataset does not
substantially increase prediction accuracy over the sim-
ple SVM trained with data on Tfbs numbers. (CpGoe
is a measure of observed CpG frequency normalized by
the frequencies of G and C nucleotides proposed to
work as a proxy of methylation over large evolutionary
timescales [17]). Nevertheless, partial correlation between
BoE and CpG persisted after controlling exclusively for
TfbsNo. (rho=0.214). However, partial correlation be-
tween BoE and TfbsNo. was higher, after controlling ex-
clusively for CpG (rho = 0.37), suggesting this effect was
dominant. Taken together, these results suggested that
CpG was more of a place marker than a key part of the
mechanism. Promoter GC content was clearly distinct
from the isochore GC content or GC3 (while the latter
two correlated closely together, see Additional file 1:
Figure S7).

We note that we see little or no evidence for a class of
genes so highly broadly expressed that they dispense
with TFs altogether. In fact, there were only 39 broadly
expressed genes with fewer than 10 high-quality TFs in a
broad 10 kb window around the TSS (Additional file 2:
Table S1).

Expression level is not well predicted by Tfbs number
The correlation between the number of transcription
factor binding sites and the BoE was strongest at the

Table 5 SVM trained with data on the numbers of
interacting Tfbs (SVM-Tfbs) improved on simple
correlation, but adding data on GC content (SVM-Tfbs + GC)
did not lead to further improvement of predictions

Correlation SVM-Tfbs SVM-Tfbs + GC
T 0.447 0.6265/0.1794/0.9329  0.6328/0.1351/0.9368
PC 0.53 0.6791/0.2493/0.934 0.6761/0.2614/0.9354
ccL 0.61 0.7460/0.2541/0.9447  0.7474/0.2874/0.9432

For SVM-Tfbs and SVM-Tfbs + GC three correlations were given: prediction
(results in bold), scrambled (response vector was randomized when learning —
this is a negative control), and retained (response vector was retained in the
learning dataset - this is a positive control). SVM-Tfbs was trained with data
on the numbers of interacting Tfbs only. SVM-Tfbs + GC training dataset
additionally included data on promoter GC and CpG content.
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cutoff for a gene to be ‘on’ set at 10 TPM. The correl-
ation was much weaker at the cutoff of 100 TPM, and
disappeared at the cutoff of 1,000 TPM (Table 6). One
interpretation of this result is that TFs control mostly
where the gene is expressed, but not at what level. The
strength of expression might be regulated predominantly
by higher-level chromatin architecture or epigenetic
marks. To address this in more detail, we also ask
whether Tfbs number predicts the level of expression of
a gene.

Previous authors suggested a strong correlation be-
tween the BoE and average expression of a transcript
[17]. However, this might be, at least partially, a meth-
odological circularity. If one permits all genes that are
unexpressed in a given tissue to score zero for that tissue
(definition 1), then tissue specific genes ‘mean expres-
sion” will be dominated by the sum of zeros, hence for-
cing a tissue specific genes to have low mean level
When instead, we define mean level, as the mean level
of expression, in the tissues within which the gene is
expressed (definition 2), we find no evidence for a cor-
relation between expression breadth and expression
levels in FANTOMS5 using parametric statistics, and
only weak evidence using non-parametric statistics
(Table 7).

We can ask how these two definitions also relate to
Tfbs number. Using definition 1 of mean/median ex-
pression, we find that the number of transcription factor
binding sites correlates with the mean expression, and
the median expression, but not the maximum expression
of a transcript (see Table 6, Figure 6). However, the cor-
relations become very weak (with mean: rho = - 0.056,
P value = 8.585e-16; and with median: rkho= -0.0151,
P value = 0.0309), when they were calculated only across
tissues in which the gene was ‘on’ (at the cutoff of 10
TPM). As definition 1 forces the mean and median across
all tissues to co-vary with the breadth, the strong correla-
tions found using definition 1 were most likely just detect-
ing the primary underlying correlation with the BoE. We
conclude that the Tfbs number is a poor predictor of
expression rates when expression breadth is not a com-
pounding factor.

The correlation between TF binding sites and expression
breadth is robust

The above results strongly support the view that more
TF binding is correlated with expression in more tissues.
How robust is this result? Is it true in both normal and
diseased states? Is it robust to control for whether or
not RNA Polll is included in the set of binders? Is it
dependent on the assumed size of the promoter? In the
three sections below we consider these and other pos-
sible confounders.
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Table 6 The number of transcription factor binding sites correlated with the BoE, the mean expression, and the
median expression, but not with the value of the maximum expression of a transcript

Expression feature The strength of correlation Tfbs No. @ df° P value©
Breadth at the cutoff of 10 TPM r,=0448 t=88.1194 df=30,873 <2.2e-16
Breadth at the cutoff of 100 TPM r,=0.16 t=28.6497 df=30,.873 <2.2e-16
Breadth at the cutoff of 1,000 TPM r,=0035 t=6.1749 df=30873 6.70E-10
Mean expression r,=0.13 t=23.3451 df=30,873 <2.2e-16
Median expression r,=0.254 t=46.2675 df=30,.873 <2.2e-16
Maximum expression r,=—002 t=-35161 df=30873 0.00043
Breadth-conditioned mean expression I, =—0.041 t=—6.4983 df = 25,040 8.277e-11
Breadth-conditioned median expression r,=—0026 t=—4.1194 df = 25,040 3.811e-05

Here the mean/median were defined across all samples even if the expression level was zero. As this forces a necessary correlation with breadth, we repeated the
same using mean/median defined only for samples where expression is seen (breadth-conditioned mean and median expression).

TPM stands for ‘tags per million’. The TPM value of 10 was accepted as the standard threshold for a gene to be ‘on’ in a given library. The BoE was the fraction of
samples in which the gene was ‘on’. 10 TPM corresponded to approximately 3 mRNA copies per cell based on 300,000 mRNAs/cell [28].

“t-statistic.
PDegrees of freedom.
“Number of data-points.

Correlations are robust to alternative assumptions of the
promoter size
Given the decay in the rate of the increase of the number
of TFs as the size of promoters expands, we presume that
increasing the assumed promoter size should start to
cause a decay in the correlation between expression and
the number of TFs, just because we are diluting signal
(true TF binding) with noise (spurious or unassociated
binding). As expected (Figure 2c), the correlation between
the BoE and the number of transcription factor binding
sites, although robust to the variation in window size, de-
creases as the size of the analysis window increases. A
converse interpretation of this is that Ttbs controlling the
BOoE are enriched close to the transcription start sites.

The inter-relationship, while strongest for small win-
dow sizes, persisted for windows up to 40 kb in size

(Figure 2c), well beyond the 6 kb limit of effective pro-
moter size. We expect this limit to be greater than that
derived from the rate of increase of TFs measure (circa
3 kb + TSS) as it takes a considerable dilution of the sig-
nal of the TF loaded TSS to remove any correlation. The
trend was similar when the ENCODE meta dataset from
the 2011 freeze [25] was compared with the broader
2012 freeze [26]. Both these datasets were comprehen-
sive in their coverage of transcription factors (148 and
161, respectively). Both data freezes also covered a wide
sample space: the earlier freeze with 71 cell types and 24
additional experimental cell culture conditions [31], and
the later freeze with 91 human cell types with various
treatments [32]. Finally, the trends detected were robust
to alterations in the quality cutoff for ENCODE tran-
scription factor binding sites (Figure 2a-c).

Table 7 There is evidence for a real correlation between expression breadth and expression levels if non-parametric

statistics are used

Mean vs. breadth
(Pearson correlation)

Mean-conditioned-by-breadth
vs. breadth (Pearson correlation)

Mean vs. breadth
(Spearman correlation)

Mean-conditioned-by-breadth
vs. breadth (Spearman correlation)

parametric statistics

parametric statistics

non-parametric statistics

non-parametric statistics

r,=0.33, p <22e-16, T
r,=0.26, p <2.2e-16, PC
r,=0.34, p <22e-16, CCL
r,=0.64, p <2.2e-16, T
r,=0.52, p <2.2e-16, PC
r, =0.66, p <2.2e-16, CCL
r,=0.76, p <2.2e-16, T
r,=0.82, p <2.2e-16, PC
r, =0.88, p <22e-16, CCL

r,=-0.012, p=0.0546, T

r, =0.03, p =4.486e-09, PC
r,=0.12, p <2.2e-16, CCL
r,=—0.00015, p=09892, T
r,=0.07, p=4.264e-12, PC
r,=0.22, p <2.2e-16, CCL
r,=-0.027, p=04422, T
r,=0.021, p= 04608, PC
r,=0.12, p=0.00016, CCL

rho=0.94, p <2.2e-16, T
rho =0.95, p <2.2e-16, PC
rho=0.957, p <2.2e-16, CCL
rho=0.6, p <2.2e-16, T

rho =0.66, p <2.2e-16, PC
rho =0.66, p <2.2e-16, CCL
rho=0.24, p <2.2e-16, T
rho=0.28, p <2.2e-16, PC
rho=0.25, p <2.2e-16, CCL

rho=0.45, p <2.2e-16, T
rho=0.5, p <2.2e-16, PC
rho =0.44, p <22e-16, CCL
rho=0.41, p <22e-16, T
rho =0.49, p <2.2e-16, PC
rho =0.38, p <2.2e-16, CCL
rho=0.32, p <22e-16, T
rho=0.47, p <2.2e-16, PC
rho =0.34, p <2.2e-16, CCL

10 TPM

100 TPM

1,000 TPM

Mean-conditioned-by-breadth is the mean where the average signal is calculated only in tissues in which the gene was ‘on’.
Results obtained using non-parametric statistics are likely to be correct, as the distributions of both BoE and mean expression are not normal.

T =tissue samples, PC = primary cell lines, CCL = cancer cell lines.
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Figure 6 The correlation between the BoE in human tissues, the mean and the maximum expression, and the number of transcription
factor binding sites. This figure consists of 16 parts identified as (a - p). Four measures related to the BoE were considered: (a, b, ¢, d) the BoE
at the cutoff of 10 TPM, (e, f, g, h) the BoE at the cutoff of 100 TPM, (i, j, k, I) the mean expression, and (m, n, o, p) the maximum expression.
The number of transcription factor binding sites was estimated in four different approaches: (a, e, i, m) the total number, (b, f, j, n) the number
of unique binding sites, (c, g, k, 0) the total number excluding RNA polymerase Il binding sites, and (d, h, I, p) the number of unique binding
sites excluding the polymerase. The red line signified the linear model for the smoother line, while the blue line signified the non-linear model.
The correlation between the number of transcription factor binding sites and the BoE at the cutoff of 10 TPM was robust under four different
approaches to estimating the number of transcription factor binding sites. Interestingly, this correlation was driven by transcripts with between
zero to 20 binding sites (r, = 0.42), and was much weaker for promoters with more than 20 sites (r, = 0.098). At the value of approximately 20 on
the X-axis (a-d), the blue smoother (the non-linear model) reached a plateau and diverged from the red smoother (the linear model). This figure
suggests that the correlation presented here was strongest at the cutoff for the BoE of 10 TPM, and was not biased by the polymerase or another

Broadly expressed genes have more transcription factor binding sites).

individual transcription factor. The correlations with the mean expression were likely secondary to the correlation with the BoE (see Results:

The correlations are stronger across cell lines than across

gross tissues

To control for the possibility of a sample bias or differ-
ences between normal and diseased tissues, we tested
whether the correlation between the BoE and the num-
ber of transcription factor binding sites held across the
entire FANTOMS5 sample space. Figure 5a and Figure 6
show the results for human tissues. We confirmed that
the trends are also seen for primary cells (Figure 5b and
Additional file 3: Figure S1) and cancer cell lines (Figure 5¢
and Additional file 4: Figure S2). The Pearson correlation
coefficient (r,) between the BoE and the number of tran-
scription factor binding sites equaled 0.53 for primary

cells, and 0.61 for cancer cell lines. The correlation is
strikingly stronger for cell lines than for tissues. It makes
sense that the correlation was stronger for primary cells
and cell lines (* approximately 28% to 37%) than for
tissues (° approximately 20%), as tissues are complex
mixtures of cell types where some of the cell-type-specific
signal might have been lost.

The correlation between the BoE and the number of
transcription factor binding sites holds when RNA
polymerase Il sites are excluded

Above we considered all bindings at promoter regions of
genes, including RNA polymerase II binding sites. One
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might readily object that if one includes Polll binding
then highly expressed genes may well have more bind-
ings, if only because they have more Polll. Might then
the correlation between the BoE and the number of
transcription factor binding sites be driven by RNA poly-
merase II binding sites, or biased by another abundant
transcription factor?

To investigate this we employed four approaches for
counting, these being: (1) the total number of binding
sites; (2) the number of unique binding sites; (3) the
total number of binding sites excluding RNA polymerase
II; and (4) the number of unique binding sites excluding
the polymerase. We find that the correlation holds
regardless of the method (see Figure 6). Indeed, results
using these four measures were largely indistinguishable.
For example, when polymerase sites were excluded, the
correlation between the number of transcription factor
binding sites and the BoE in human tissues was 0.434 (t =
84.8393, df=31,093, P value <2.2e-16). The correlation
was 0.435 when additionally only unique sites were
counted (t=85.1458, df=31,093, P value <2.2e-16). In
comparison, the original correlation including all sites was
0.448 (t=88.2645, df=31,093, P value <2.2e-16), and
when only unique sites were counted 0.45 (t=88.6194,
df = 31,093, P value <2.2e-16). Indeed, the three derived
measures correlated very highly with the original mea-
sure with correlation coefficients in pairwise compari-
sons of 0.994, 0.997, and 0.992 for unique sites, no Polll
sites, and unique sites excluding Polll (all P values
<2.2e-16), respectively.

We can also turn the data the other way around and
ask whether sites with more TF bindings also have more
PollIl. Such a correlation would provide sound evidence
that more TFs do indeed result in more transcription.
We find this to be the case. After excluding its own sites,
the polymerase signal correlated strongly with the total
number of transcription factor binding sites (r, = 0.75).
The correlation between the BoE and the number of
transcription factor binding sites persisted after control-
ling for the polymerase signal (partial Spearman’s correl-
ation coefficient equaled 0.3).

The divergence of the promoters of paralogs strongly
predicts divergence of their expression patterns

As discussed in the introduction, a common method
to approach the problem of the degree of promoter-
centered control of gene expression has been to ask
about the similarity in gene expression of paralogs as a
function of the similarity in their promoter domains. In
addition to the correlation between the BoE and the
number of transcription factor binding sites, we found
that the divergence of proximal promoters (measured via
a Jaccard Index on Tfbs repertoire — see Materials and
methods) correlated strongly with expression divergence,
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measured by Pearson’s R. The r, for this trend equaled
0.282 when only the youngest paralog pairs were taken into
account. The r, was even higher when all daughter pairs
were taken into account 0.54 (t = 239.8391, df = 136,608,
P value <2.2e-16). However, the latter comparisons were
not fully independent and the results might have been
biased by large gene families with a high number of pair-
wise comparisons. For example, the core histones of
H2A@, H2B@, and H3@ families underwent dramatic
expansions in placental mammals, resulting in paralogs
which are highly co-expressed in proliferating tissues such
as the thymus and the testis (manuscript in preparation).

Pearson’s correlation corresponds well to biologist’s
intuitive understanding of what co-expressed genes are
and has frequently been used in the past to measure
expression divergence [1,2,33]. This is because biologists
are frequently interested in the identification of tissue-
specific or disease-specific biomarkers, and Pearson’s
correlation works well for tissues-specific genes. None-
theless, it is suggested [34] that Pearson’s correlation
may be affected by the noise present in microarray data.
However, alternative measures such as the Euclidean
distance may be biased by normalization [35]. We used
three types of correlation to measure paralog co-
expression: Pearson’s, the Kendall rank correlation coef-
ficient, and Spearman’s rank correlation coefficient. The
correlation between promoter divergence and paralog
co-expression held irrespective of the type of the cor-
relation statistic, whether parametric or non-parametric
(Figure 7). As expected, the correlation disappeared
when duplicate pairs were randomized as a means of
negative control (Figure 7d, e, f). The correlations are
not simply owing to some paralogs switching from be-
ing lowly to broadly expressed (or vice versa). Rather
the correlations remains even when we consider para-
logs with approximately the same breadth (Table 8,
Figure 8).

While the divergence of expression between paralogs
is predicted by the divergence of transcription factor
repertoire, we additionally observe a trend for young
duplicates to be preferentially tissue-specific and have
fewer transcription factor binding sites in their pro-
moters. Duplicates mapping to the youngest taxa group
(that is, primates) have average BoE almost four times
lower, and average TfbsNo. 2.7 times lower (Figure 9a,
Tables 9 and 10) than duplicates mapping to the oldest
group (that is, eukaryotic). Genes that originated though
mammalian gene duplication events had intermediate
BoE, at approximately 155% of primate BoE, and less
than half of the average eukaryotic BoE and TfbsNo.
The differences in mean BoE and TfbsNo, were highly
statistically significant with all pairwise comparisons
having very low P values (see Additional file 5: Table S3
and Additional file 6: Table S4).
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Figure 7 Expression pattern divergence between paralogs correlated with promoter divergence. Expression pattern divergence between
duplicates was measured with either: (a) Pearson’s correlation; (b) the Kendall rank correlation coefficient; or (c) Spearman’s rank correlation
coefficient. Promoter divergence was measured using Jaccard index (JI). The correlation disappeared when duplicate pairs were randomized

(d, e, f) proving that it was well defined and specific. The red line signified the linear model for the smoother line, while the blue line signified
the non-linear model. This figure suggests that the correlation between the BoE and the number of transcription factor binding sites persisted if
alternative non-parametric measures of expression distances between paralogs were used. Details of the correlations were given in Table 8.
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To investigate the origin of new tissue-specific genes,
we divided duplication events into three subclasses:
‘housekeeping conserved’ (both paralogs were house-
keeping), ‘tissue —sp. conserved’ (both paralogs were
tissue-specific), and ‘transformative’ (where one daughter
gene was housekeeping while the other was tissue-
specific). The relative proportion of ‘tissue — sp. conserved’

events increases for younger taxa indicating that this class
of duplication events is responsible for the majority of the
increase of tissue-specificity observed for young taxa
(Figure 9¢ and d). This accords with a model suggesting
that successful duplication events tend to be those with
minimal impact [36,37]. It also accords with the finding
that tissue-specific genes are more likely to belong to large

Table 8 The correlation between the Jaccard index (JI) and paralog co-expression was robust in respect to the BoE

The BoE of paralogs Pearson'’s correlation between JI ¢ df° n° P value
and paralog co-expression

Both paralogs were tissue-specific 0.219 164535 5323 8,023 <2.2e-16

Both paralogs were intermediate 0.157 37538 551 663 0.000192

Both paralogs were housekeeping 0217 8.0303 1,297 1,510 2.22E-15

One gene tissue-specific, the other housekeeping 0324 154364 2,026 2,361 <2.2e-16

Transcripts were divided into tissue-specific (BoE <0.33), intermediate (0.33 < BoE <0.66), and house-keeping (BoE >0.66).

“t-statistic.
PDegrees of freedom.
“Number of data-points.
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which a transcript was ‘on’.

Figure 8 The correlation between the promoter divergence of paralogs and paralog co-expression was robust in respect to the BoE of
target genes. Four sets of paralog pairs were considered: (a, b, €) both paralogs were tissue-specific with the BoE <0.33, (d, e, f) both genes
were intermediate, (g, h, i) both genes were housekeeping with the BoE >0.66, and (j, k, I) one of the paralogs was tissue-specific and the other
housekeeping. Pearson’s (a, d, g, j), the Kendall rank correlation coefficient (b, e, h, k), and Spearman”s rank correlation coefficient (¢, f, i, I) correlations
were plotted. The correlation between the Jaccard index (JI) and paralog co-expression was robust under all these conditions. Paralog promoter
divergence was measured using the JI. Paralog expression divergence was measured using Pearson’s correlation. The red line signified the linear model
for the smoother line, while the blue line signified the non-linear model. Numbers of tags in FANTOMS were normalized to tags per million (TPM). The
TPM value of 10 was chosen as a standard cutoff for a gene to be ‘on’, and the BoE was defined as the fraction of FANTOMS5 human tissue samples in

J

gene families [2]. The coupling between duplication age
and breadth may bias some statistics. If the BoE of a gene
in any manner predicts divergence in expression, this bias
has the potential to mislead any analysis that considers
the degree of divergence between promoters and diver-
gence in expression, as the least diverged duplicates (that
is, the youngest duplicates) will be systematically biased
towards the tissue-specific end of the spectrum. However,
the trend for gradual expression divergence of paralogs
was described in both multicellular [1,2], and unicellular
organisms [38] where tissue-specificity cannot be an issue.

Broad expression is associated with specific transcription
factors or groups of cooperating factors

The broad-brush correlations that we have addressed
above suggest that the more TFs bind a promoter the
more broadly expressed the gene. But are there some TFs

that are especially influential in driving broad expression
or is the effect simply owing to an accumulation of TFs
causing increased likelihood of broad expression? To ad-
dress this, we clustered the BoE with a matrix of transcrip-
tion factors to identify key associations (Figure 10).

First, the BoE was merged into one matrix with the
number of ENCODE transcription factor binding sites.
Next, a heatmap was drawn for this matrix in order to
determine which transcription factors correlated closest
with the BoE, that is, which transcription factors acted
as molecular switches for house-keeping expression
(Figure 10). The heatmap in Figure 10 uses Pearson’s
correlation as the distance measure. Similar results were
obtained for human tissues with both the Kendall rank
correlation coefficient and Spearman’s rank correlation
coefficient (Additional file 7: Figure S5 and Additional
file 8: Figure S6). We also investigated distance-based
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Figure 9 The correlation between BoE and TfbsNo. is recapitulated over evolution. (a) A boxplot for BoE depending on age of gene

duplication. (b) A similar boxplot of TfbsNo. Young genes are more tissue-specific and have fewer TF binders. The correlation between TfbsNo.
and BoE was strongest for young genes (Spearman rho =0.531, 0.513, 046, 0447, and 0.403 for increasingly older taxon groups, from primate
through to eukaryotic genes). To explain the origins of additional tissue-specific genes in younger taxa, we divided duplication events into three
subclasses: ‘housekeeping conserved’, ‘tissue — sp. conserved’, and ‘transformative’. (¢, d) barplots for the three different mechanistic subtypes of

gene duplication events (absolute numbers and relative proportions thereof, respectively).

correlations such as Euclidean, Manhattan, or Minkovski
distances but these measures did not recover any non-
trivial clustering.

Four broad classes of transcripts emerged through this
integrative analysis. Class A genes are typical broadly
expressed Tfbs-rich genes. Class B genes are unusually

broadly expressed Tfbs-poor genes. Class C are unusual
tissue-specific Ttbs-rich genes, while class D are typical
tissue-specific Tfbs-poor genes. These four classes are
marked A to D in Figure 11. The numbers of transcripts
in A, B, C, and D are 7,824, 3,206, 3,593, and 16,170, re-
spectively. The mean numbers of Tfbs per transcript in

Table 9 Young duplicates were more tissue-specific

Table 10 Young duplicates had fewer Tfbs regulators

Taxa group Mean BoE sd n Taxa group sd n TfbsNo.
1 Primate 0.09 0.22 2,359 1 Primate 6.86 2,034 3.66
2 Mammalian 0.14 0.27 3,783 2 Mammalian 7.51 3,647 4.81
3 Vertebrate 0.28 0.32 14518 3 Vertebrate 8.13 14,322 6.60
4 Animal 0.24 0.31 12,329 4 Animal 7.74 12,124 6.02
5 Eukaryotic 035 0.36 1,757 5 Eukaryotic 943 1,728 10.02

Each taxon group excludes duplications mapping to taxa of preceding groups.
For example, the vertebrate group consists of vertebrate duplications which

are not mammalian. All pairwise comparisons were significantly different with
very low P values (see Additional file 5: Table S3).

Each taxon group excludes duplications mapping to taxa of preceding groups.
For example, the vertebrate group consists of vertebrate duplications which
are not mammalian. All pairwise comparisons were significantly different with

very low P values (see Additional file 6: Table S4).
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Figure 10 The clustering of the BoE with the number of transcription factor binding sites. The BoE clustered with RNA polymerase Il and
the transcription initiation factor TFIID (TAF1). More interestingly, in human tissues, the BoE also clustered tightly with Mxi1, YY1, NFKB, HEY1,
Sin3A, and c-Myc, suggesting these transcription factors were key in determining the BoE (this cluster was marked as A). Other transcription
factors formed two clusters with low and high distance to the BoE (these clusters were marked as B and C, respectively). Many clusters of
co-localizing transcription factors could be observed and were annotated (a-y). To test the robustness of this analysis, the number of transcription
factors was measured in several different ways, which reassuringly clustered together and proved indistinguishable (part of the A cluster). The different
measures were: sum of all sites (marked as Tfbs_x_length), sum of unique sites (Tfbs_x_length_unique), sum of all sites without RNA polymerase Il
(Tfbs_x_length_noPol2), and finally the sum of unique sites without the polymerase (Tfbs_x_length_unique_noPol2). The BoE was also transformed in
several ways which proved equivalent by forming a tight cluster (part of the A cluster). Namely, the BoE was encoded as either a continuous variable
(marked as breadth_continuous), discretized into three bins (breadth_discrete_3), discretized into 10 bins (breadth_discrete_10), or transformed and

each class are: 18.77, 5.41, 16.41, and 1.99 (in FANTOMS5
human tissues, 500-cutoff, ENCODE 2011 data-freeze).
Here the cutoffs of 10 for Tfbs and 0.33 for the BoE are
used. Differentially distributed transcription factors are
listed in Additional file 9: Table S2 with their respective
frequencies in clusters A, B, C, and D. P values were cal-
culated using Fisher’s exact test with a Bonferroni correc-
tion for multiple testing.

As expected, the BoE clustered with RNA polymerase
IT and the transcription initiation factor TFIID — TAF1.
This was perhaps unsurprising as the polymerase and
TAF1 are constitutive components of the transcription
apparatus. More interestingly, in human tissues, the BoE

also clustered closely with Mxil, YY1, NFKB, HEY],
Sin3A, and ¢c—Myc (this cluster was marked with an A in
Figure 10) suggesting these transcription factors were
among control switches. In human primary cells, the
BoE also clustered with the polymerase, TFIID, NFKB,
HEY1, Sin3A, and c—Myc (Additional file 10: Figure S3).
However, in cancer cell lines, the BoE only clustered
with RNA polymerase II and TFIID (Additional file 11:
Figure S4) suggesting that cancerous transformation in-
terferes with the majority, except the most rudimentary,
control switches for the BoE.

Other transcription factors formed two clusters with
either low or high distance to the BoE (these clusters
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Figure 11 Conceptual diagram of the four classes of tissue-specific and broadly expressed transcripts rich or poor in transcription
factor binding sites. The four classes were marked with A, B, C, and D. The cutoffs were as follows: 10 transcription factor binding sites for
Tfbs-rich, the BoE of 0.33 for broadly expressed, and the TPM value of 10 for a gene to be ‘on’. The BoE was defined as the fraction of FANTOM5
human tissue samples in which a transcript was ‘on’. The biological interpretation of this figure was that typical housekeeping genes were Tfbs-rich,
while typical tissue-specific genes were Tfbs-poor. The diagram uses Figure 5a as its background to illustrate the number of transcripts in each of the
four classes. The four classes of transcripts will facilitate classification of transcription factors and their impact on individual genes as either activatory or
inhibitory (Additional file 9: Table S2).

were marked with a B and a C in Figure 10). These two
clusters could be enriched in either housekeeping tran-
scription factors (B), or tissue-specific transcription factors
(C). In cancer cell lines (Additional file 11: Figure S4),
clusters with low (B) and high (C) distance to the BoE
could be enriched in oncogenic transcription factors, and
anti-oncogenic or tumor-specific transcription factors,
respectively.

Many clusters of co-interacting transcription factors
can be inferred from Figure 10. These clusters were
marked with lowercase letters: (a) Nanog and Pou5fl;
(b) Srebpl and Srebp2; (c) STAT1-3; (d) mef2a and
mef2b; (e) GATA-1 and GATA-2; (f) MafF and MafK;
(g) BAF170 and BAF155; (h) AP-2 alpha and gamma; (i)
FOS and FOSL2; (j) Jun and JunD; (k) FOXA1l and

FOXAZ2; (1) HNF4A and HNF4G; (m) CTCF targeted by
three different antibodies; (n) Rad21, SMC3, and CTCFL;
(o) Pol3, BRF1, RPC155, and BDP1; (p) E2F1, E2F4, and
E2F6; (q) SIX5, Znf143, and ETSI; (r) ELK4 and ELF1; (s)
PAX5 targeted by two different antibodies; (t) ZBTB33,
BRCA1, and CHD2; (u) NELFe, GTF2B, and TAF7; (v)
POU2F2 and Oct-2; (w) NF-YB, NF-YA, c-Fos, and SP1;
(x) USF1 and USF2; (y) Polll and TAF1. Some apparent
clusters are the same transcription factors targeted by
different antibodies (for example, the CTCF rabbit
polyclonal, the CTCF_C -20 goat polyclonal, and the
CTCE_SC -5916 goat polyclonal antibody) and so should
be disregarded. By contrast, some of the clusters are
known cooperative complexes. For example, Rad21 and
SMC3 form the cohesin complex. The cooperation
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between Nanog and Poufl (alias Oct4) is well described
[39]. Other clusters suggest entirely new molecular inter-
actions which should provide material for experimental
verification.

A support vector machine (SVM) method predicts the BoE
better than the correlation alone

Given the evidence for cooperativity between TFs in
their association with BoE and for key control TFs, we
would expect that more sophisticated statistical tools
should improve the predictive ability of a model relating
TF binding to expression breadth. To address this we
established a machine learning approach. Our intention
here is not to produce a better statistical model by in-
corporating non-causal (for example, rate of protein evo-
lution) and causal (TF binding) predictors of expression
breadth. Rather we simply wish to ask whether incorpor-
ation of the likely causal factors in a more sophisticated
statistical framework permits better understanding of
the control of expression breadth.

The SVM is a commonly used machine learning ap-
proach to prediction. We trained the SVM using a ran-
domly chosen half of the dataset. Each row of the basic
SVM training data-frame was a vector representing the
number of Tfbs of each gene; although, we also consid-
ered SVMs trained using promoter GC and CpG con-
tents (Table 5). The resulting SVM model was then
applied to predict the value of the BoE for the other half
of the dataset. Note that in this mode of operation with
continuous data being predicted, an SVM is best
regarded as a form of non-linear regression (rather than
a discrete classifier) and hence the appropriate metric
for considering its ability is the correlation between the
observed and predicted variable (rather than AUC, ac-
curacy, and so on). Such a correlation-based appraisal
also permits direct comparison with the simple correl-
ation approach examined above.

As noted above, in cancer cell lines, the correlation be-
tween the BoE and the number of transcription factor
binding sites is 0.61. The SVM’s prediction improved on
this and correlated with the observed value of the BoE
with 7, = 0.7460 (Table 5). Results described herein were
obtained using the promoter window of 1,000 base pairs
but essentially identical values were obtained using the
promoter window of 4,000 base pairs (data not shown).
As negative and positive controls we used a teaching
dataset where the response variable was scrambled or in-
cluded as one of the training features, respectively. The
SVM is thus capable of explaining 58% of the variation,
as opposed to the correlation method’s 37%. The predic-
tion accuracy was not due to polymerase signal alone
since the SVM performed equally well when TAF1 and
all types of polymerase II sites were removed (r, = 0.759).
Moreover, the predictor did not simply rely on summing

Page 17 of 26

up of Ttbs, since an SVM trained using only the sums of
Tfbs as features (Ifbs_x_length, Tfbs_x_length_unique,
Tfbs_x_length_noPol2, Tfbs_x_length_unique_noPol2) did
not improve on the simple correlation (r, =0.646, P =
0.42). The number of support vectors was high (approxi-
mately 60% of the training cases) suggesting that no
simple discriminatory features could be found. Taken to-
gether, these results underlined a cooperative effect of
many Tfbs acting together and clustering in a narrow win-
dow around the TSS to control the BoE.

Are promoters in open chromatin ‘sticky’?

Even though specific interactions can be identified, that
a simple correlation approach can capture so much is
striking. The fact that a correlation approach works is
consistent with the notion that most transcription fac-
tors in eukaryotes are activators. There is, however, an
alternative interpretation of the correlation between
number of TFs and increasing expression, this being that
it reflects more a passive process of spurious TF binding.
A simple model in which open/transcribed chromatin is
to some degree ‘sticky’ could in principle predict the
same correlation. At the limit there might be a single TF
that forces broad expression, but because of its presence
other TFs are recruited, not because they are needed,
but because TFs might be attracted to open chromatin
and transcriptional hotspots as iron filings are attracted
to a magnet. In this context, were for example GC rich
sequence ‘sticky’ for transcription factors, this might ex-
plain the GC-TF correlations. However, such a ‘sticky’
model would require strong binding of the TFs to the
DNA, rather than weak and short-lived non-specific inter-
actions which are most unlikely to resist the processing of
the TE-DNA interaction in ChIP-seq methodology.

Several facts argue against the ‘sticky’ model. First, our
approach has recovered known interacting complexes,
such as cohesin and CTCF [40,41], suggesting that much
of the signal is owing to functional rather than spurious
effects. Furthermore the correlation between breadth
and number of transcription factors is more profound
for transcripts with fewer than twenty transcription fac-
tor binding sites (r, = 0.42), than it is for transcripts with
more than twenty (r, = 0.098). We would expect the op-
posite if Ttbs simply accumulated in a runaway positive
feedback loop.

In addition, we can ask whether the TF binding sites
are clustered within promoters. Were the ‘sticky’ spuri-
ous binding model correct, we might also expect that TF
bindings sites are randomly located within promoters.
By contrast, a model of cooperative binding to DNA and
the synergistic mode of action in attracting polymerase
and activating transcription, might predict TF bindings
sites to cluster and overlap more than expected by
chance. These two alternative concepts are illustrated in
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Figure 12a and c. Figure 12a illustrates a situation where
Tfbs are located in a ‘stacked’ arrangement close to the
TSS. This arrangement results in high percentage over-
lap in pairwise Tfbs comparisons. To test for any trend
on the whole genome scale, we calculated percentage
overlap in all pairwise Tfbs comparisons in each pro-
moter (1 kb) for 25,930 RefSeq transcripts (Figure 12b).
The observed overlap (corresponding to the ‘stacked’ ar-
rangement of Ttbs illustrated in Figure 12a) was con-
trasted against a randomized dataset where Tfbs were
assigned random positions within the same proximal
promoter (corresponding to the random arrangement of
Ttbs illustrated in Figure 12c¢ and resulting in a lower
percentage overlap in pairwise Tfbs comparisons). The
average observed overlap across all promoters and Tfbs
pairs was 0.4586%, much higher than the average overlap
in the randomized dataset (0.2295%), suggesting ‘stacked’
rather than dispersed arrangement of Tfbs (t-test, P
value <2.2e-16). These results are in agreement with the
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general trend demonstrated by ENCODE for almost all
transcription factor binding sites to have highest dens-
ities very close to the TSS [29,42]. As an example, we
show the SRSF2/MESDI11 locus in Figure 12d. This
locus on chromosome 17 (start at 74,732 kbps, end at
74,734 kbps) has the highest number of Tfbs in our
dataset, which are clearly overlapping or ‘stacked’. The
SRSF2/MEFSD11 locus has 71 Ttbs in the window +
1,000 bps from the TSS and drives bidirectional tran-
scription of serine/arginine-rich splicing factor 2 (SRSF2)
and major facilitator superfamily domain containing 11
(MESD11).

A further argument against the ‘sticky’ model of Tfbs
binding comes from the examination of the BoE of
ENCODE Tfbs and their targets. We detected a strong
correlation between the average BoE of Tfbs targets and
the BoE of respective regulating Ttbs (Additional file 12:
Figure S8) with the Spearman rho=0.3176 (P value =
0.0001242). Tissue-specific Tfbs bind on average more
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Figure 12 TF binding sites are clustered (or ‘stacked’) within promoters. Two theoretically possible alternative Tfbs distributions in proximal
promoters are illustrated in (a) and (c): (a) illustrates a situation where Tfbs are located in a ‘stacked’ arrangement close to the TSS. This
arrangement results in high percentage overlap in pairwise Tfbos comparisons. In contrast, (c) illustrates a situation where Tfbs are randomly
distributed in the proximal promoter. To test for these two trends on the whole genome scale, we calculated percentage overlap in all pairwise
Tfbs comparisons in each promoter (1 kb) for 25,930 RefSeq transcripts (b). The observed overlap (corresponding to the ‘stacked’ arrangement of
Tfbs illustrated in (a) was contrasted against a randomized dataset where Tfbs were assigned random positions within the same proximal
promoter (corresponding to the random arrangement of Tfbs illustrated in (c) and resulting in a lower percentage overlap in pairwise Tfbs
comparisons). As an example, we demonstrate the SRSF2/MFSD11 locus in (d), which has the highest number of Tfbs (that is, 71) in our dataset,
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tissue-specific genes (mean BoE of targets 0.394), than
housekeeping Tfbs (mean BoE =0.468), Wilcoxon rank
sum test P value = 6.805e-05. Under the pure ‘sticky’
model, we would expect no correlation. The picture is not
clear-cut, however. Clearly, tissue-specific transcription
factors can have targets in promoters of housekeeping
genes. It is possible that housekeeping expression in
certain tissue-types demands activation by this tissues
unique transcription factors in addition to the standard set
of TFs mediating housekeeping expression. Finally, TFs
may differ in the degree of ‘stickiness’. Some TFs may be
‘sticky’ towards open chromatin, while others bind very
specifically, perhaps playing a key role in the initial act of
the opening of the chromatin.

Another argument against the ‘sticky’ model is that
open/close chromatin is only a binary signal which can-
not account for all the complexities of spatiotemporal
gene regulation in vertebrates. Moreover, the correlation
between the BoE and DNASEL sensitivity, an excellent
marker of open chromatin, was much weaker than that
between the BoE and the number of potential interacting
transcription factors (Table 4).

Yet another argument against the sticky model is that
TfbsNo. describes the general affinity landscape of pro-
moters for Tfbs binding (that is, the ability to bind TFs).
Which TFs are actually bound will depend on a particular
tissue and may vary greatly. This is because ENCODE in-
puts were derived datasets, where individual peaks from
different tissues were merged if tagged to the same tran-
scription factor binding site. In fact, counting Tfb sites
across different tissues would be a source of a logical error,
as a circular association between the BoE and the presence
of Tfb sites in multiple tissues would obscure any causal
connections.

While multiple lines of evidence argue against the
‘sticky’ chromatin model as the best explanation for the
correlation between BoE and number of TF binding sites
we cannot entirely refute the hypothesis. Indeed scrutiny
of the number of TFs binding the very most broadly
expressed genes (right most column in Figure 5e) sug-
gests that these have slightly more TFs than expected
given the numbers in the prior bins. There also remains
the possibility that the TFs that drive broad expression
are themselves ‘sticky’ and attract more TFs. Such a
model is more ad hoc than the ‘sticky’ chromatin model,
having to make the extra assumption that only TFs asso-
ciated with broad expression are ‘sticky’, for which we
see no a priori defense. Moreover, this model cannot
simply explain some of the above results, such as the
stronger correlation for the less broadly expressed genes.

Prediction of the tissue of expression is moderate at best
Above we have asked if we can predict breadth from
knowledge of TEBS. A possibly harder question is whether
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contained within the promoter architecture is evidence of
which tissue or tissues a narrowly expressed gene is
expressed in (rather than just the narrowness of that ex-
pression). In principle a machine learning approach might
be devised to employ the data that we have assembled to
tackling such an issue. We took a similar approach to the
SVM given above to predict tissues-specific expression
(that is, BoE). The main difference was that the continu-
ous response variable was the preferential expression
measure (PEM) in a given tissue instead of the BoE.

For a given transcript Y we consider its expression
level in tissue X and divide that by Y’s mean expression
in all tissues. This ratio is PEM for that transcript in that
tissue. So a high PEM for gene Y in tissue X means it is
preferentially expressed in tissue X. For all transcripts
we then consider the average PEM for a given tissue
(PEM,,,). This provides a metric of the degree to which
genes are preferentially expressed in tissue X. We then
ask about our ability to predict PEM values. To this end
we train our SVM against PEM values and ask it then to
predict PEM values of genes outside of the training set.
If the SVM works, our predictor should correlate with
our observed results. Within each tissue we then correl-
ate predicted PEM for all genes against observed PEM
for the same genes in the same tissue. These correlation
scores are on the Y-axis in Figure 13.

We find that SVMs trained using a matrix of TF fre-
quencies can at best modestly predict preferential ex-
pression for some tissues (such as the brain and the
adipose tissue, the liver, the lung, and the breast) with
the correlation between the predicted and the observed
expression of up to r,=0.36 for brain (Figure 13) (note
that as before the SVM is trained against continuous
data so the appropriate metric of accuracy is a correl-
ation coefficient). That brain was the best predicted may
well reflect the fact that brain is also the tissue with the
highest number of preferentially expressed genes. In-
deed, we see an overall correlation between predictive
ability (correlation strength) and the mean degree of
preferential expression (PEM,,,) for genes expressed in
any given tissue (10 =0.54). That is to say, the tissues
for which we fail to predict the preferential expression of
transcripts are the tissues with few preferentially ex-
pressed transcripts (for example, thyroid, salivary gland,
skin, bone marrow). Overall, we conclude that at best we
have only a moderate ability to predict degree of prefer-
ential expression of genes in any given tissue and that
this diminishes greatly when the tissues themselves have
few tissue specific genes.

An alternative binary classifier for the prediction of
tissue-specific expression

An alternative approach to prediction of tissue-specific
(that is, narrow) expression is to divide the transcripts
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Figure 13 SVMs predict preferential expression for some tissues, such as the brain and the adipose tissue. The average preferential
expression measure (PEM,,,) expresses the degree of preferential expression of genes expressed in a given tissue. An individual PEM value for
each transcript equals its expression in a given tissue divided by its average expression across all tissues. This being a continuous variable,
prediction accuracy is the correlation between SYM's predicted value of the response variable and its observed value in the half of the dataset
designated for prediction (the other half was used for training). The highest prediction accuracy was achieved for the adipose tissue and the
brain tissue cluster (which were also the two tissues with the highest degree of tissue-specific expression). Overall, there was a strong correlation
between the overall degree of preferential expression in a given tissue (PEM,,¢) and the power to predict preferential expression in this tissue
(Spearman’s correlation of 0.543). For technical details of the SVMs used see Materials and methods.
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into two categories: tissue-specific and not tissue-
specific, at the cutoff of the BoE of 0.33 (that is, one-
third of tissues). The approach taken here is identical to
the one described above (see: A support vector machine
method predicts the BoE better than the correlation
alone) except that the input and output measures of the
BoE were discretized. Standard validation charts for such
a SVM-based binary classifier are shown in Additional
file 13: Figure S9. The area under the ROC curve
equaled 0.816. Inclusion of GC content does not im-
prove this SVM’s predictive ability, confirming the irrele-
vance of this feature.

Discussion

The results above support the view that, to a consider-
able degree, components of the expression profile, not-
ably expression breadth, and in turn expression breadth

divergence, can be predicted from knowledge of the TF
binders of a given gene. That such a result was not, for
the most part, captured previously, may be explained as
limitations in the prior data. That we can recover the
BoE result using the previously available Gene Expres-
sion Atlas [43], suggests that it is the high resolution
ENCODE transcription factor binding data that is key.
Given that the ‘sticky’ chromatin model fails to make a
parsimonious explanation of the data, we conclude that
the data support the suggestion that most eukaryotic
TFs are activating.

Here, while touching on expression level, we have con-
centrated on expression breadth and divergence in
breadth. Our results, however, suggest a series of further
questions. How, for example, are we to interpret the evi-
dence for cooperation between partners not previously
known to be cooperative? Assuming antibody cross-
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reactivity is not the explanation, these statistically associ-
ated TFs suggest experimental tests for apparent coop-
erativity. Our analysis of whether it is possible to predict
the tissue of expression of tissue specific genes suggests
that a support vector approach has limited success at
best. Given that we have the best success for the tissue
(brain) with the most data, it may yet prove to be the
case that with better techniques and more data this
problem may become more tractable.

A further open issue is whether we can extrapolate
our results to non-human species. An ability to infer
mutational changes in promoters that are likely to have
a major impact on expression, in poorly studied close
relatives would be of considerable value in determining
those promoters and TFs that might be (or have been)
under selection in humans to switch gene expression
‘on” or ‘off” in tissues key to human uniqueness. Given
the above result (or the moderate ability to predict brain
specific genes) there may be some prospect of identify-
ing some lineage specific changes that might have af-
fected human brains.

Conclusions

We present evidence that expression breadth and para-
log expression divergence are strongly predictable with
knowledge of transcription factor binding in the prox-
imal promoter. A simple metric, the number of binding
transcription factors found on a promoter, is a robust
predictor of expression breadth in human tissues. How-
ever, prediction of the tissue of expression is moderate
at best.

Materials and methods

Data sources

FANTOMS5

Primary FANTOM5 CAGE data [44] (see also: [45])
were processed by the consortium Work-package 4
(WP4) to produce expression tables, mapping CAGE
tags to genes, contained in the following three files:

(T) human.tissue. hnCAGE.hgl9.tpm.refgene.osc.txt -
human tissues;

(PC) human.primary_cell h\CAGE.hgl19.tpm.refgene.osc.
txt - human primary cells;

(CCL) human.cell_line. hCAGE.hg19.tpm.refgene.osc.txt -
human cancer cell lines.

These were tab-delimited text files with the header
section describing columns, library names, and the total
number of reads for each library. These files were pre-
processed using standard methods to facilitate their im-
port to the R statistical environment with the read.table
command with row-names being RefSeq accession
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numbers and column-names identifying tissue, cell-type,
or cell line from which CAGE tags were sequenced.

ENCODE

ChIP-seq data were described in the section below (As-
sembling TF binding data to define promoter architecture).
The links to the files and description of inputs can be
found in the following webpage references [25,26,31,32].
ENCODE Dnase sites, which mark regions of accessible
chromatin across the ENCODE set of cell-lines [46,47],
and methylation signal for the HeLa cell line were also re-
trieved from ENCODE [48].

Gene Expression Atlas

Gene Expression Atlas (GEA) data [49] were used to inde-
pendently confirm the correlation between the number of
mapping transcription factors and the BoE. We see this as
valuable that this strong trend could be detected using
two very different expression technologies: one based on
next generation sequencing (FANTOMS5) and a second
one based on microarray hybridization (GEA).

Assembling TF binding data to define promoter
architecture

The 2011 meta dataset included 2,750,490 ChIP-seq
peaks for 148 transcription factors, derived from 71 cell-
types with 24 additional experimental cell culture condi-
tions [25]. Peaks were called and merged using UCSC
clustering tools (encodeMergeReplicates, regClusterBe-
dExpCfg, and hgBedsToBedExps). Crucially, this proced-
ure merges peaks for the same TF across replicates, cell
lines, and from different labs into one. Peak scores var-
ied between zero to 1,000 (proportionately to the Tfbs
prediction reliability). We used either all data, or only
high-quality peaks with the score over half the max-
imum (that is, 500) to avoid noisy data associated with
multi-mapping next-generation sequencing tags. For the
correlation between the BoE and the number of tran-
scription factor binding sites, we verified that results
analogous to those for the January, 2011, data-freeze
[25] were obtained using a broader September, 2012,
data-freeze [26]. The 2012 data-freeze consisted of 161
transcription factors and 91 human cell types with vari-
ous treatment conditions [32]. The ENCODE prepro-
cessing pipeline merges all overlapping binding sites for
a TF in different cell lines into a single site. Therefore,
the cumulative metric which we calculate corresponds
to the total capacity of a promoter to bind TFs (that is,
promoter architecture), rather than to the actual number
of sites in any particular cell- or tissue-type or across the
sample space. This is crucial, as our approach relies on
defining the promoter architecture, that is to say the
binding landscape, rather than summing up Tfbs across
the tissues which would be dangerously tautologous to
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measuring BoE. However, we took great care not to fall
into this trap. On top of the ENCODE’s merging proced-
ure, we employ an additional safeguard by introducing a
metric which only counts each TF once even if the pro-
moter can bind this TF at alternative genomic locations
(that is, Tfbs_x_length_unique). The correlation between
Tfbs_x_length and Tfbs_x_length_unique was almost per-
fect (r,=0.9929) and these two measures supported
identical biological conclusions in all analyses (ensuring
that no single Tfbs could introduce a bias).

The Jaccard index for promoter divergence

The JI measured the overlap between two sets of gen-
omic features [50]. The index was calculated as the ratio
of the intersection over the union (JI = I/U). JI equaled 1
when the intersection equaled the union (that is when
there was a perfect overlap). JI equaled 0 when there
was no overlap.

FANTOMS5 gene expression tables

CAGE tags were mapped to RefSeq transcripts +500 bps
from their transcription start sites. The numbers of tags
were normalized to tags per million (TPM). Finally, the
TPM value of 10 was chosen as the default cutoff for a
gene to be ‘on’ (unless stated otherwise). We down-
loaded RefSeq in BED format from the hgl9 UCSC gen-
ome browser using the table browser tool. This dataset
included 40,856 human transcripts, including messenger
RNAs (NM-accession) and non-coding transcripts (NR-
accession). Non-coding transcripts included structural
RNAs and transcribed pseudogenes. The dataset was
later processed with BEDtools [51].

Gene Expression Atlas

Gene Expression Atlas [43] was employed to confirm
the correlation between the BoE and the number of
transcription factor binding sites in proximal promoters
(Figure 5d). Affymetrix average difference (AD) higher
that 200 classified a gene as ‘on’ or expressed in a given
tissue. Affymetrix ids were mapped to RefSeq ids using
R annotation object hgu95aREFSEQ from the hgu95a.db
package. ENCODE transcription factors were mapped to
RefSeq just as in the FANTOMS5 analysis.

TreeFam and the inference of gene duplications
TreeFam [52] used evolutionary histories of individual
genes to construct phylogenetic trees and to date gene
duplications [52]. In our hands, TreeFam consistently
delivered high quality phylogenetic trees which were con-
gruent with the insights of molecular biologists [53,54].
TreeBeST was the tree-building engine behind Tree-
Fam. TreeBeST merged a maximum likelihood tree from
PHYML [55] with neighbor-joining trees based on P-
distance, Ka, and Ks. TreeBeST used smart heuristics
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intended to maximize the similarity between the gene
tree and the species tree and to minimize the number of
predicted gene duplications and losses.

TreeFam release eight was based on Ensembl version
54 and included 79 species, 1,539,621 genes, and 16,064
families. Phylogenetic timing was used to associate gene
duplications with the emergence of different taxa. The
Vertebrata and the Bilateria were consistently linked
with the most numerous waves of duplications in ani-
mals [54]. The algorithm for speciation and duplication
inference (SDI) reconciled gene trees with the species
dendrogram. SDI also inferred duplications, speciation
events, paralogy, and orthology.

The comparison of all paralog pairs versus the
comparison of youngest pairs only

Combinatorics explains why there are more possible
paralog comparisons than paralogs. In a set of n ele-
ments, the number of k-combinations was equal to the
binomial coefficient (‘z choose k). K equals two for pair-
wise comparisons. For example, there were 10 possible
pairwise comparisons in a family of five paralogs. There
were 45 legitimate pairwise comparisons in a family of
10 paralogs. However, these comparisons might not be
regarded as independent data points, and the results
might have been biased by a few large gene families. The
best alternative was to perform a comparison between
each paralog with only its closest relative (that is, only
the most recent duplicate).

The duplicator

The dataset used in the preparation of this study was re-
leased to the public domain as an R package called the
Duplicator [56]. R data-frames with data on duplications
mapping to different taxa can be found in R helper envi-
ronments for the package (env_duplicator_base and
env_duplicator_vectors), which are located in the path
duplicator/data/duplicator. Naming conventions indicate
the species of origin. For instance, the R data-frames con-
taining human data are called: dupEventl2 genes LL hs
(individual genes) and dupEvent12_genes_LL_hs2 (paralog
pairs).

Data-frames in the package follow the denormalized
data model. For example, the R data-frame dupEvent12_
genes_LIL_hs2 has the following fields: family (TreeFam
family 1D), node (unique identifier for each gene du-
plication node), taxon (taxon of duplication), gene.x
(ENSEMBL ENSG ID for paralog x), familySide.x, pri-
mary_acc.x (Entrez IDs for paralog ), gene.y (ENSEMBL
ENSG ID for paralog y), familySide.y, primary_acc.y
(Entrez IDs for paralog y). FamilySide was a flag with
values of one or two defining on which side of the dupli-
cation node the gene was located; this flag was used to
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prevent multiple comparisons on the ‘same side’ of the
primary duplication node if later duplications occurred.

The analytical pipeline

The analytical pipeline consisted of three stages: (1) data
retrieval and remodeling; (2) the detection of the overlap
between promoters and transcription factor binding sites;
and (3) parsing, statistical tests, and figure generation.

(1)Data retrieval and remodeling (the pre-BEDtools
stage). This stage consisted of data retrieval from
TreeFam and remodeling into R data-frames. Helper
environments held these data-frames for later use,
and stored intermediate results.

(2) The detection of the overlap between promoters and
transcription factor binding sites (the BEDtools
stage). We checked if two sets of genomic features
overlapped using BEDtools. We used mostly
coverageBed and intersectBed. CoverageBed calculates
the depth of coverage of features in the file A against
the file B. Herein, coverageBed was used to calculate
the depth of coverage by ENCODE transcription
factor binding sites in promoters (coverageBed -a
ENCODE_Tfbs -b RefSeq_promoters > result).
IntersectBed writes the original entry in the file A for
each overlap when used with the ‘-wa’ option
(intersectBed -a ENCODE_Tfbs -b RefSeq_promoters
-wa > result). This identified the exact type of
transcription factor binding sites in the overlap. An
alternative analysis pipeline was constructed using
R/BioC packages GenomicRanges and [Ranges.
However, the R/BioC pipeline proved prohibitively
slow even on SNIC Supercomputers. The alternative
pipeline was used only to verify the results of the
main BEDtools-based pipeline.

(3)Parsing, statistical tests, and figure generation (the
post-BEDtools stage). Postprocessing was performed
in R and Bioconductor (version 2.11). Standard
Bioconductor packages such as Biodist, gplot, ggplot,
rtracklayer, TxDb.Hsapiens. UCSC.hg19.knownGene,
and GOstats were used.

The post-BEDtools analysis was divided into the four
steps listed below.

Step (1) Parsing BEDtools output into an R list.
BEDtools output in the browser extensible data
(BED) file format was read into R as a data-frame.
The data-frame was then remodeled into an R list
called resjaccard_ENCODE_Tfbs_substrate. Each
element of the list was indexed with a RefSeq
transcript id as the accession key. A vector of
ENCODE transcription factor binding sites was
contained within each element of the list. Transcription
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factor parsing and creation of the list were performed
by the script called env_bed_jaccard_make_I.R.
Intermediate results were stored in the R helper
environment named env_promoter_bed_500_res_env.
Step (2) The Jaccard index calculation.
The JI was calculated using the script resjaccard_
ENCODE_Tfbs_substrate. Additionally, a
randomized dataset was generated using sampling
without replacement. The randomized dataset was
used to calculate a control distribution of the JI.
Step (3) Additional calculations.
The following additional variables were calculated:
relative frequencies of different transcription factor
binding sites, intersection, union, and the JI
depending on the taxon of duplication. These
calculations were performed by scripts called
env_jaccard_analyse_result_bed_sampled.R and
env_jaccard_analyse_random_bed_sampled.R.
Step (4) Figure generation.
Manuscript figures were generated automatically
using ggplot2 from intermediate results stored in R
helper environments.

The SVM

The SVM is a commonly used machine learning tech-
nique for regression. We used the R package e1071, an R
implementation of libsvm. Each row of the basic SVM
training data-frame was a vector representing the num-
ber of Tfbs for each gene; although, we also considered
SVMs trained using promoter GC- and CpG-contents
(Table 5). The training dataset was scaled and centered.
We used a radial kernel as a regression machine. After a
grid search for optimal parameter values, the following
SVM parameters were used: cost=1, gamma = 0.01, and
epsilon = 0.1. The continuous response variable was either
the BoE or the preferential expression measure (PEM).

Data access

Access to FANTOMS5 is provided at the FANTOMS5
public website, including the UCSC genome browser
mirror, and FANTOMS5’s own CAGE-focused ZENBU
genome browser.

Additional files

Additional file 1: Figure S7. Promoter GC-content was a place marker
distinct from isochore GC content or GC3. This figure consists of four parts.
In the upper-left part, we show that isochore GC-content and GC3
corresponded closely to each other. However, promoter GC-content was
quite distinct from the isochore GC-content with a large population of high
GC promoters located in low-GC chromosomal regions (the upper-right
part). There was no simple direct relationship between methylation and BoE
(see bottom-left, the red line is the fitted loess curve). Low-GC promoters
formed a clearly distinct group from high-GC promoters in terms of average
BoE when a correlation between core promoter-GC and BoE was plotted

on a scatterplot (bottom-right, the blue line is the fitted loess curve).
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Additional file 2: Table S1. There is little or no evidence for a class of
genes so highly broadly expressed that they dispense with TFs
altogether. There were only 39 broadly expressed transcripts (the BoE in
human tissues > 0.9) with fewer than 10 TFs in the promoter (defined as
a broad 10 kb window around the TSS). Concerted action of multiple TFs
appears necessary for housekeeping expression. The columns of the table
encode as follows: RefSeq, EntrezID, gene symbol, and gene name.

Additional file 3: Figure S1. The relationship between the BoE, the
mean and the maximum expression in human primary cells, and the
number of transcription factor binding sites. This figure consists of 16
parts identified as (a - p). Four measures related to the BoE were
considered: (a, b, ¢, d) the BoE at the cutoff of 10 TPM, (e, f, g, h) the BoE
at the cutoff of 100 TPM, (i, j, k, I) the mean expression, and (m, n, o, p)
the maximum expression. The number of transcription factor binding
sites was estimated in four different approaches: (a, e, i, m) the total
number, (b, f, j, n) the number of unique binding sites, (c, g, k, 0) the
total number excluding polymerase binding sites, and (d, h, |, p) the
number of unique binding sites excluding the polymerase. The red line
signified the linear model for the smoother line, while the blue line
signified the non-linear model. This figure confirms the robustness of the
findings presented in Figure 6 across the FANTOMS5 sample space (that is,
in human primary cells).

Additional file 4: Figure S2. The relationship between the BoE, the
mean and the maximum expression in human cancer cell lines, and the
number of transcription factor binding sites. This figure consists of 16
parts identified as (a - p). Four measures related to the BoE were considered:
(a, b, ¢, d) the BoE at the cutoff of 10 TPM, (e, f, g, h) the BoE at the cutoff of
100 TPM, (i, j, k, I) the mean expression, and (m, n, o, p) maximum
expression. The number of transcription factor binding sites was estimated
in four different approaches: (a, e, i, m) the total number, (b, f, j, n) the
number of unique binding sites, (c, g, k, o) the total number excluding
polymerase binding sites, and (d, h, I, p) the number of unique binding sites
excluding the polymerase. The red line signified the linear model for the
smoother line, while the blue line signified the non-linear model. This figure
confirms the robustness of the findings presented in Figure 6 across the
FANTOMS sample space (that is, in human cancer cell lines).

Additional file 5: Table S3. P values for pairwise BoE comparisons
using Wilcoxon rank sum test for data in Table 9. NOTE: P value
adjustment method: ho/m.

Additional file 6: Table S4. P values for pairwise TfbsNo. comparisons
using Wilcoxon rank sum test for data in Table 10. NOTE: P value
adjustment method: holm.

Additional file 7: Figure S5. The clustering of the BoE with the
number of transcription factor binding sites in human tissues (Kendall
rank correlation coefficient). Transcription factors clustering closest with
the BoE were marked as A. Other transcription factors formed two
clusters with low and high distance to the BoE (these clusters were
marked as B and C, respectively). To test the robustness of this analysis,
the number of transcription factors was measured in several different
ways, which reassuringly clustered together and proved indistinguishable.
The different measures were: sum of all sites (marked as Tfbs_x_length),
sum of unique sites (Tfbs_x_length_unique), sum of all sites without RNA
polymerase Il (Tfbs_x_length_noPol2), and finally the sum of unique sites
without the polymerase (Tfbs_x_length_unique_noPol2). The BoE was also
transformed in several ways which proved equivalent by forming a tight
cluster. Namely, the BoE was encoded as either a continuous variable
(marked as breadth_continuous), discretized into three bins (breadth_
discrete_3), discretized into 10 bins (breadth_discrete_10), or transformed
and expressed as a square root (breadth_sqrt_1).

Additional file 8: Figure S6. The clustering of the BoE with the
number of transcription factor binding sites in human tissues
(Spearman’s rank correlation coefficient). Transcription factors clustering
closest with the BoE were marked as A. Other transcription factors
formed two clusters with low and high distance to the BoE (these
clusters were marked as B and C, respectively). To test the robustness of
this analysis, the number of transcription factors was measured in several
different ways, which reassuringly clustered together and proved
indistinguishable. The different measures were: sum of all sites (marked

as Tfbs_x_length), sum of unique sites (Tfbs_x_length_unique), sum of all
sites without RNA polymerase Il (Tfbs_x_length_noPol2), and finally the
sum of unique sites without the polymerase (Tfbs_x_length_unique_noPol2).
The BoE was also transformed in several ways which proved equivalent by
forming a tight cluster. Namely, the BoE was encoded as either a
continuous variable (marked as breadth_continuous), discretized into three
bins (breadth_discrete_3), discretized into 10 bins (breadth_discrete_10), or
transformed and expressed as a square root (breadth_sqrt_T).

Additional file 9: Table S2. Transcription factor frequencies in the four
classes of transcripts (A, B, C, D) in respect to the BoE and the number of
TFs. Because of the large number of rows, this is a supplementary table
available as a text file in the supplementary material. NOTE: The four
classes of transcripts were illustrated in Figure 11. Typical broadly
expressed Tfbs-rich genes were summarized in column A. Unusual
broadly expressed Tfbs-poor genes were summarized in column B.
Unusual tissue-specific Tfbs-rich genes were summarized in column C.
Typical tissue-specific Tfbs-poor genes were summarized in column D.
The numbers of transcripts in respective classes were 7,824, 3,206, 3,593,
and 16,170. The frequencies of transcription factors were expressed as
fractions of all sites in a given class. The total sums of Tfbs in A, B, C and
D were: 146,863, 17,336, 58,978, and 32,134. The mean numbers of Tfbs
per a transcript in each class were: 18.77, 541, 1641, and 1.99. P values of
Fisher's test were given. All data were calculated for FANTOMS5 human
tissues. Future work should facilitate classification of all transcription factors
and their impact on individual genes as either activatory or inhibitory.

Additional file 10: Figure S3. The clustering of the BoE with the
number of transcription factor binding sites in human primary cells. In
human primary cells, the BoE clustered with the polymerase, TFIID, NFKB,
HEY1, Sin3A, and c-Myc (this cluster was marked as A). Other transcription
factors formed two clusters with low and high distance to the BoE (these
clusters were marked as B and C, respectively). To test the robustness of this
analysis, the number of transcription factors was measured in several
different ways, which reassuringly clustered together and proved
indistinguishable. The different measures were: sum of all sites (marked as
Tfbs_x_length), sum of unique sites (Tfbs_x_length_unique), sum of all sites
without RNA polymerase Il (Tfbs_x_length_noPol2), and finally the sum of
unique sites without the polymerase (Tfbs_x_length_unique_noPol2). The
BoE was also transformed in several ways which proved equivalent by
forming a tight cluster. Namely, the BoE was encoded as either a
continuous variable (marked as breadth_continuous), discretized into three
bins (breadth_discrete_3), discretized into 10 bins (breadth_discrete_10), or
transformed and expressed as a square root (breadth_sqrt_T).

Additional file 11: Figure S4. The clustering of the BoE with the
number of transcription factor binding sites in human cancer cell lines. In
cancer cell lines, the BoE only clustered with RNA polymerase Il and TFIID
(this cluster was marked as A) suggesting that cancerous transformation
disables most normal control switches for the BoE. Other transcription
factors formed two clusters with low and high distance to the BoE (these
clusters were marked as B and C, respectively). To test the robustness of
this analysis, the number of transcription factors was measured in several
different ways, which reassuringly clustered together and proved
indistinguishable. The different measures were: sum of all sites (marked
as Tfbs_x_length), sum of unique sites (Tfbs_x_length_unique), sum of all
sites without RNA polymerase Il (Tfbs_x_length_noPol2), and finally the
sum of unique sites without the polymerase (Tfbs_x_length_unique_noPol2).
The BoE was also transformed in several ways which proved equivalent by
forming a tight cluster. Namely, the BoE was encoded as either a
continuous variable (marked as breadth_continuous), discretized into three
bins (breadth_discrete_3), discretized into 10 bins (breadth_discrete_10), or
transformed and expressed as a square root (breadth_sqrt_T).

Additional file 12: Figure S8. There was a positive correlation between
the BoE of transcription factors and the average BoE of their targets. The
BoE of transcription factors in FANTOMS tissues was plotted on the X-axis
of the scatterplot (signified by Tfbs_BoE). The unweighted mean of the
BoE of all target genes (that is, all genes that have a given Tfbs in their
proximal promoter) was plotted on the Y-axis (signified by Mean_target_
BoF). As both the independent and dependent variables were highly non-
normally distributed, we used non-parametric correlation (Spearman’s
rho=0.3176). An alternative measure, a weighted mean, in which that data
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points were weighted according to the actual number of transcription
factor binding sites was also considered and gave almost exactly the same
correlation. The blue line is the fitted loess curve.

Additional file 13: Figure S9. Performance of SYM models as the
predictor of tissue-specific (that is, narrow) expression. Tissue-specific
expression was defined as BoE lower than 0.33 (that is, a gene that was
expressed in less than one-third of tissues) and transcripts were categorized
as either tissue-specific or not (that is, in a binary classification). This figure
consists of four panels. The panels display standard predictor validation
charts for the basic SYM model (SYM-Tfbs): (a) the ROC curve, (b) the
precision/recall graph, (c) the sensitivity/specificity plot, and (d) the lift chart.
The curves were averages from 10 different cross-validation runs. The area
under the ROC curve equaled 0.816 (standard deviation equaled 0.002325).
The parameterization of the curves was performed using the value of the
linear SVM output and visualized by printing cutoff values at the
corresponding curve positions (the curve was also colored according to the
cutoff). The curves were plotted using R package ROCR. Essentially identical
results were obtained a more complex SVM model with added data on GC
content (SYM-Tfbs + GC), with AUC=0.816.
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