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PROTEIN FAMILY REVIEW

Cyclin-dependent kinases

Marcos Malumbres

Summary

Cyclin-dependent kinases (CDKs) are protein kinases
characterized by needing a separate subunit - a
cyclin - that provides domains essential for enzymatic
activity. CDKs play important roles in the control of cell
division and modulate transcription in response to
several extra- and intracellular cues. The evolutionary
expansion of the CDK family in mammals led to the
division of CDKs into three cell-cycle-related
subfamilies (Cdk1, Cdk4 and Cdk5) and five
transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11
and Cdk20). Unlike the prototypical Cdc28 kinase of
budding yeast, most of these CDKs bind one or a
few cyclins, consistent with functional specialization
during evolution. This review summarizes how,
although CDKs are traditionally separated into
cell-cycle or transcriptional CDKs, these activities are
frequently combined in many family members. Not
surprisingly, deregulation of this family of proteins is
a hallmark of several diseases, including cancer, and
drug-targeted inhibition of specific members has
generated very encouraging results in clinical trials.
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Gene organization and evolutionary history

Cyclin-dependent kinases (CDKs) are serine/threonine
kinases whose activity depends on a regulatory subunit -
a cyclin. Based on the sequence of the kinase domain,
CDKs belong to the CMGC group of kinases (named for
the initials of some members), along with mitogen-
activated protein kinases (MAPKs), glycogen synthase
kinase-3 beta (Gsk3[), members of the dual-specificity
tyrosine-regulated kinase (DYRK) family and CDK-like
kinases [1]. In related kinases such as MAPKs, substrate
specificity is conferred by docking sites separated from
the catalytic site, whereas CDKs are characterized by de-
pendency on separate protein subunits that provide add-
itional sequences required for enzymatic activity. To aid
nomenclature and analysis of CDKs, proteins belonging
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to this family have been recently renamed as Cdkl
through to Cdk20 [2].

CDKs were first discovered by genetic and biochemical
studies in model organisms such as yeasts and frogs
(reviewed in [3]). This work established the importance
of CDKs in promoting transitions through the cell cycle.
In addition, these studies showed that the catalytic sub-
unit, the CDK, must associate with a regulatory subunit,
the cyclin, whose protein levels are subject to regulation
during the cell cycle (this oscillation lent these regulators
their cyclin name). Since these pioneer studies con-
ducted in the 1980s, the importance of CDKs acting as a
major eukaryotic protein kinase family involved in the
integration of extracellular and intracellular signals to
modulate gene transcription and cell division has been
clearly established [3-6].

Despite their function in eukaryotic cell division and
transcription, CDKs have undergone an extraordinary
degree of evolutionary divergence and specialization. Six
different CDKs are present in budding yeast (Figure 1).
These CDKs can be grouped as, first, CDKs that bind
multiple cyclins and can regulate the cell cycle and, sec-
ond, CDKs that are activated by a single cyclin and are
involved in the regulation of transcription. In the bud-
ding yeast Saccharomyces cerevisiae, the first group con-
tains Cdc28 and Pho85, each binding nine or ten
different cyclins, respectively. This promiscuity forms
the basis for their dynamic regulation and their ability to
phosphorylate multiple substrates, thus regulating the
cell-division cycle in response to different cellular cues.
The second group comprises four CDKs - Kin28, Srb10,
Burl and Ctkl - each activated by a single specific cyclin
(Figure 1). These cyclins are usually not regulated in a
cell-cycle-dependent manner, and the members of this
second group of CDKs are involved in the control of
gene transcription.

The number of CDKs increased during evolution and
was marked by a greater expansion of the cell-cycle-
related group. Fungi contain 6 to 8 CDKs and 9 to 15
cyclins, whereas flies and echinodermata contain 11
CDKs and 14 cyclins, and human cells have 20 CDKs
and 29 cyclins (Box 1) [7]. Evolutionary studies suggest
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Figure 1 Comparison of yeast and mammalian CDKs. Cells of the budding yeast Saccharomyces cerevisiae contain two cell-cycle-related CDKs
that are activated by multiple cyclins - Cdc28 and Pho85. Cdk1 is the mammalian ortholog of Cdc28, whereas Cdk5 is considered to be the
Pho85 ortholog. The Cdk4/Cdké subfamily is not present in yeast. Kin28, Srb10, Burl and Ctk1 are the yeast orthologs of Cdk7, Cdk8, Cdk9 and
Cdk12, respectively. The Cdk20 and Cdk11/Cdk10 subfamilies are not represented in yeast. Also indicated is the cyclin partner for the mammalian
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that CDKs fall into eight subfamilies represented by
Cdkl, Cdk4 and Cdk5 (from the yeast cell-cycle-related
CDKs), and Cdk7, Cdk8, Cdk9, Cdkl1 and Cdk20 (func-
tioning as transcriptional CDKs) [7,8] (Figure 2). Like its
yeast ortholog, Cdkl is the only CDK essential for the
cell cycle in mammals [9], whereas both Cdk2 and Cdk3
are dispensable [3,10]. Although Pho85 is not essential
in yeast, this kinase is required for viability in some

Box 1. The cyclin family

Cyclins are a large family of approximately 30 proteins varying in
mass from 35 to 90 kDa. These proteins are structurally defined
by the presence of the so-called cyclin box, a domain of ap-
proximately 100 amino acid residues that forms a stack of five
a-helices. Many cyclins have two cyclin boxes, one amino-
terminal box for binding to CDKs, and a carboxy-terminal box
that is usually required for the proper folding of the cyclin mol-
ecule. The cyclin box is also present in other molecules such as
the retinoblastoma protein (Rb), the transcription factor TFIIB
and Cables (CDK5 and ABLT enzyme substrate 1), which are un-
likely to function as CDK activators. In general, cyclins show less
sequence similarity than the CDKs. The cyclin family contains ap-
proximately 29 protein in humans, clustered in 16 subfamilies
and three major groups: group | (cyclin B group: A-, B-, D-, E-, F-,
G, J, I'and O); group Il (cyclin Y group - a partner of the Cdk5
subfamily); and group Il (cyclin C group: C-, H-, K-, L- and T- -
major partners of transcriptional CDKs) [7,66]. Cyclin D and cyclin
E clades (partners of Cdkl and Cdk4 subfamilies) have under-
gone lineage-specific expansion and specialization in metazoa

and plants [7].

stress conditions, such as growth after starvation. Pho85
displays multiple cell-cycle-related functions as well as
regulation of gene expression, metabolism, morphogen-
esis, cell polarity and aging; it functions as an integrator
of signals such as nutrient availability, DNA damage or
other types of stress [11]. Sequencing and functional
studies suggest that the mammalian homolog of Pho85
is Cdk5, although these kinases cluster with multiple
mammalian kinases of the Cdk5 subfamily, namely
Cdkl4 to Cdkl8. Pho85 can interact with up to 10
cyclins of the Pcl1/Pcl2 or Pho80 groups, whereas mam-
malian Cdk5 is activated by non-cyclin proteins, includ-
ing Cdk5R1 (p35) and Cdk5R2 (p39). Interestingly, other
members of the Cdk5 subfamily, such as Cdkl4 or
Cdk1e, are activated by cyclin Y, which is a cyclin closely
related to yeast Pcll/Pcl2 proteins [12,13]. The Cdk4
subfamily is unique as it is only found in eumetazoans,
and the members of this family diverge equally from the
Cdkl or Cdk5 subfamilies (Figures 1 and 2) [7]. Other
cell-cycle-related subfamilies, such as the Cdkl-related
B-type CDKs, are plant specific and are not found in an-
imals or fungi [14].

Transcriptional CDKs are more conserved, both in se-
quence and function (Figure 1). Yeast Kin28 and human
Cdk7 are subunits of transcription factor TFIIH, which
is involved in transcription initiation by phosphorylating
the Ser5 residue of the RNA polymerase II (RNAPII) C-
terminal domain (CTD) at gene promoters. Cdk7 is also
able to phosphorylate and activate other CDKs, thus act-
ing as a CDK-activating kinase (CAK; Box 2). Kin28 does
not have this activity, which is mediated in yeast by a
different kinase unrelated to CDKs, Cakl [8]. The yeast
protein Srb10 is orthologous to human Cdk8 and Cdk19
and is the enzymatic component of the Mediator
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Figure 2 Evolutionary relationships among the mammalian CDK subfamilies. The name of the different CDK subfamilies functioning in the
cell cycle (orange) or transcription (green) is shown in boldface, and the domain structure of the individual proteins is depicted. The conserved

protein kinase domain (red) and some additional domains (see key) are indicated for each CDK. Human cells contain two separate genes, Cdk11A
, and a shorter protein, Cdk11
The phylogenetic tree is based on the comparison of the human kinase domains [1]. CDK, cyclin-dependent kinase.

P58 generated by an internal ribosome binding site.

complex involved in the regulation of RNAPII during
transcription [15]. Cdk9 is the yeast Burl ortholog,
whereas the function of yeast Ctkl in the phosphoryl-
ation of the RNAPII CTD is performed by Cdkl2 in
Drosophila and in human cells [16]. The evolutionary

Box 2. The CDK-activating kinase complex

The CAK complex (comprising Cdk7, cyclin H and Mat1)
phosphorylates the T-loop of all CDKs tested, thus participating
in their activation. Furthermore, this complex can be part of the
transcription factor phosphorylating the CTD of RNAPII as well
as multiple nuclear receptors such as retinoic acid or thyroid re-
ceptors, the estrogen receptor a or the vitamin D receptor co-
activator Ets1 [33]. The CAK complex can also be found associ-
ated with an additional subunit of TFIIH - the DNA-dependent
helicase Xpd - forming a complex known as CAK-XPD. This com-
plex plays a role in the coordination and progression of mitosis,
likely as a consequence of the redistribution of CAK within dif-
ferent cell compartments during the late nuclear-division steps
[671.

relationship of the Cdk11 and Cdk20 subfamilies to the
yeast CDKs is not clear, although these proteins are well
conserved [7]. Unlike cyclins for cell-cycle-related ki-
nases, the cyclin subunits of transcriptional CDKs do
not show significant oscillations in protein levels during
the cell cycle, and these transcriptional CDKs are there-
fore regulated by protein-protein interactions or other
mechanisms. Transcription-related kinases possibly orig-
inated after cell-cycle-related CDKs and became more
diverse as the complexity of transcription increased [17].

Characteristic structural features

Like other CMGC kinases, CDKs are proline-directed
serine/threonine-protein kinases with some preference
for the S/T-P-X-K/R sequence as a consequence of the
presence of a hydrophobic pocket near the catalytic site
that accommodates the proline (position +1). However,
the requirement for the basic residue in the +3 position
is not maintained in Cdk4 or transcriptional CDKs,
which display a less-stringent S/T-P-X consensus. Some
other family members such as Cdk7 or Cdk9 are not ne-
cessarily proline directed and can also phosphorylate
residues in the absence of the +1 proline [18].
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The CDKs range in size from approximately 250 amino
acid residues, just encompassing the catalytic serine/
threonine kinase domain, to proteins of more than 1,500
residues, with amino- and/or carboxy-terminal exten-
sions of variable lengths (Figure 2). Like all kinases,
CDKs have a two-lobed structure. The amino-terminal
lobe contains beta-sheets, whereas the carboxy-terminal
lobe is rich in a-helices, and the active site is sandwiched
in-between. The N-lobe contains a glycine-rich inhibitory
element (G-loop) and a unique major helix - the C-helix
(containing the PSTAIRE sequence in Cdkl). The C-lobe
contains the activation segment, which spans from the
DFG motif (D145 in Cdk2; EMBL:AK291941) to the APE
motif (E172 in Cdk2) and includes the phosphorylation-
sensitive (T160 in Cdk2) residue in the so-called T-loop
(Figure 3). In the cyclin-free monomeric form the CDK
catalytic cleft is closed by the T-loop, preventing enzym-
atic activity. In addition, the activation segment in the C-
lobe - a platform for binding of the phospho-acceptor
Ser/Thr region of substrates - is partially disordered.

Cyclin-dependent kinase activation

Upon binding of the cyclin to Cdk2, the CDK C-helix packs
against one specific helix in the cyclin partner through a sur-
face characterized by extensive hydrophobic interactions.
Association of cyclins to the C-helix promotes a rotation in
the axis of this segment, generating new interactions that
are part of the active ATP-binding site. In addition, cyclins
take the C-lobe activation segment out of the catalytic site
so that the threonine becomes accessible for activating
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phosphorylation by CAK (Figure 3). This phospho-
threonine acts as a rigidifying hub, stabilizing the activated
form of the kinase heterodimer [18,19]. The extent of the
CDK-cyclin interface varies in the structure of Cdk4, Cdk9
or yeast Pho85 [18,20,21]. For instance, Cdk2 and cyclin A
contact each other at both the N- and C-lobes, whereas the
contacts between Cdk4 and cyclin D are limited to the N-
lobe, and, unlike Cdk2, the cyclin does not impose an active
conformation on the kinase as the Cdk4 ATP-binding site is
still inaccessible to its substrates, even in the presence of the
cyclin [20,21]. How Cdk4 becomes active is not completely
clear, although the binding of the substrate is thought to in-
duce the activation segment to open and to fit to the
phospho-acceptor site. Some CDKs, such as Cdk5 or its
yeast ortholog Pho85, do not require phosphorylation in the
activation segment for activity, and these kinase can adopt
the correct conformation through other interactions [18].

In addition to the consensus kinase domain, a few
CDKs contain additional domains with functional relevance.
Cdk16, Cdk17 and Cdk18 (containing a PCTAIRE sequence
in the C-helix) are characterized by a conserved catalytic do-
main flanked by amino- and carboxy-terminal extensions in-
volved in cyclin binding. Phosphorylation of the Cdkl6
amino-terminal domain blocks binding to cyclin Y, provid-
ing a novel mechanism for regulation of these complexes
[22]. In Cdkl2 and Cdk13 (characterized by a PITAIRE
motif), the kinase domain is localized in the center, and add-
itional Arg/Ser-rich motifs in the amino terminus serve as
docking sites for the assembly of splicing factors and regula-
tors of splicing (Figure 2). These two kinases also contain

-
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Catalytic
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Figure 3 A three-dimensional view of CDK structure and activation. In monomeric Cdk2 (left; [PDB:THCL]), the major C-helix (N-lobe) and
the activation domain are close, ensuring that the catalytic pocket is inaccessible. Upon binding of cyclin A (right: [PDB: 1JST]), the C-helix and
the activation domain are pulled apart - a configuration that is further fixed by phosphorylation of residue T160, making the catalytic pocket ac-
cessible for enzymatic activity. The position of the inhibitory Thr14 (T14) and Tyr15 (Y15) residues in the G-loop is also shown. Color code: CDK
subunit, orange; cyclin subunit, green; purple indicates specific named protein domains. CDK, cyclin-dependent kinase.
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proline-rich motifs, mostly concentrated in their carboxy-
terminal region, that serve as binding sites for Src-homology
3 (SH3), WW or profilin-domain-containing proteins [16].

Cyclin-dependent kinase inhibition

The glycine-rich region (G-loop) in the N-lobe is an
additional regulatory region as it contains residues (Thr14
and Tyrl5 in Cdk2; Figure 3) whose phosphorylation in-
hibits kinase activity. Phosphorylation of Thrl4 and/or
Tyrl5 residues by Weel and Mytl kinases inhibits several
family members, preventing cell-cycle progression, for
instance, in response to DNA damage. Elimination of
these phosphates by phosphatases of the Cdc25 family
is then required for activation of CDKs and cell-cycle
progression [3,23]. Inhibitory phosphorylation at Thr14
and Tyrl5 does not result in major changes in the CDK
structure, but does inhibit the CDK activity by reducing
the affinity of the CDK for its substrates. However, phos-
phorylation at Tyrl5 seems to be activating in the case of
Cdk5, perhaps by improving substrate recognition [18].
These residues are not present in Cdk7, in agreement with
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the general belief that this kinase is constitutively active
and regulated at different levels.

Cell-cycle-related CDKs can also be negatively regulated
by binding to small proteins of the INK4 or Cip/Kip fam-
ilies of inhibitors [19,24]. INK4 proteins (p16”<*,
p152#  518MK% and p19™€#) are specific for the Cdk4
subfamily and interact with the monomeric CDKs. They
function by distorting the cyclin interface and the ATP-
binding pocket, thus preventing activation of Cdk4 and
Cdké by D-type cyclins or by CAK [24]. Members of the
Cip/Kip family of inhibitors (p21“?*, p27°%! and p57%?)
contact both the CDK and cyclin subunits and are able to
inhibit CDK-cyclin heterodimers, giving additional levels of
regulation once these complexes have already formed [19].

Localization and function

Cdk1 and Cdk4 subfamilies

The general picture in mammalian cells is that Cdk4
and Cdk6, upon transcriptional induction of D-type
cyclins in response to several mitogenic stimuli, promote
entry into the cell cycle (Figure 4) [25]. These kinases
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\09\(‘ ICVCEJ
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CycH
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Figure 4 An overview of CDK functions in the cell. Each CDK (in orange boxes) is shown in a complex with its major partner (green) - for clar-
ity, only a few substrates are depicted. Most CDKs function in the nucleus (orange background), whereas a few family members are attached to
the cell membrane or display cytoplasmic activities (blue background). Classical cell cycle CDKs - Cdk4, Cdk6, Cdk2 and Cdk1 - regulate the transi-
tions through the different phases of the cell-division cycle. These activities are at least partially mediated by the control of multiple transcription
factors (TFs) or regulatory elements such as the retinoblastoma protein (Rb). Cdk10 and Cdk11 also control transcription by phosphorylating TFs,
hormone receptors and associated regulators (HRs), or splicing factors (SPFs). Cdk7, Cdk9 and Cdk12 directly phosphorylate the C-terminal domain
(CTD) of RNA polymerase Il (RNAPII), thus modulating the different phases of generation of transcripts. The Mediator complex is specifically regu-
lated by Cdk8 or the highly related Cdk19. Cdk7 functions as a CDK-activating kinase (CAK) by directly phosphorylating several of the CDKs men-
tioned above. Cdk5 displays many functions in the cell, but it is better known for its function in the control of neuron-specific proteins such as
Tau. The members of the Cdk14 subfamily, such as Cdk14 itself or Cdk16, are activated at the membrane by cyclin Y and also participate in many
different pathways, such as Wnt-dependent signaling or signal transduction in the primary cilium. It is important to note that, for clarity, many in-
teractions between CDKs and other partners, substrates or cellular processes are not shown - for instance, Cdk1 can bind to other cyclins and can
also phosphorylate more than 100 substrates during mitotic entry that are not indicated here. CAK, CDK-activating kinase; CDK, cyclin-dependent
kinase; CTD, C-terminal domain; Rb, retinoblastoma protein; RNAPI, RNA polymerase II; SPF, splicing factor; TF, transcription factor.
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phosphorylate and inactivate the retinoblastoma protein
(Rb), an adaptor protein that assembles different protein
and protein-DNA complexes that repress transcription
in response to a wide range of control mechanisms [25].
In human cells, Rb contains 13 conserved sites that are
phosphorylated by CDKs in proliferating cells. Com-
plexes between cyclin D and Cdk4 or Cdké phosphoryl-
ate residues Ser807 and Ser811, priming Rb for further
phosphorylation by these or other CDKs at other sites
[26]. CDK-dependent inactivation of Rb (or its relatives
pl07 and pl130) results in de-repression of multiple
genes encoding proteins required for DNA synthesis (S
phase) or mitosis [25]. The activity of Cdk2 might also
contribute to this process, although this kinase could
have additional functions in DNA replication or DNA
repair. Once cells have duplicated their DNA, Cdkl be-
comes activated by A- and B-type cyclins, promoting
cellular processes such as centrosome maturation and
separation, chromosome condensation and mitotic entry
after nuclear envelope breakdown [3]. This simplified
view is obscured owing to multiple non-consensus inter-
actions between CDKs and cyclins and compensatory
roles [6]. For instance, when Cdk4 and Cdké6 are absent,
Cdk2 can bind to D-type cyclins [27]. Cdkl can also
bind to cyclin E or cyclin D in the absence of Cdk2 or
Cdk4, respectively [9], suggesting a scenario reminiscent
of the yeast cell cycle in which Cdc28 is sufficient to in-
duce all cell-cycle transitions by interacting with differ-
ent cyclins [6].

Cdk5 subfamily and cyclin-Y-related kinases

Despite its similarity to other cell-cycle-related Cdks, Cdk5
is the prototype of what are termed atypical CDKs. This
kinase is activated by the non-cyclin proteins Cdk5R1 (p35)
or Cdk5R2 (p39), and phosphorylation in the T-loop is not
required for its activation [2829]. Although Cdk5 is
expressed in multiple cell types, its activity is thought to be
more restricted owing to the expression of its activators
p35 and p39 in terminally differentiated cells such as neu-
rons [28]. However, in addition to its crucial functions in
neuronal biology, Cdk5 plays multiple roles in gene expres-
sion, differentiation, angiogenesis and senescence, among
others [5,28,29].

Interestingly, the Cdk5 activators carry an amino-
terminal myristoylation motif that is required for their
membrane targeting (Figure 4). Until recently, Cdk5 was
thought to be the only membrane-associated Cdk, but re-
cent data suggest that the CDKs Cdkl4 to Cdkl18
(PFTAIRE and PCTAIRE kinases) display similar activ-
ities upon binding to cyclin Y. Like Cdk5, Cdk16 requires
no T-loop phosphorylation, suggesting that cyclin Y, like
p35, tightly interacts with the activation loop, alleviating
the need for an activating phosphorylation [13]. Cyclin Y
is also N-myristoylated, and cyclin-Y-dependent recruitment
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and activation of Cdkl4 at the plasma membrane results
in phosphorylation of the Wnt co-receptor Lrp5/Lrp6
(Figure 4). Cdk16 also binds to cyclin Y, and these com-
plexes phosphorylate several proteins, including N-
ethylmaleimide-sensitive factor (NSF) for the control of
exocytosis [30], and are essential for spermatogenesis [22].
The partner CDKs of cyclin Y display overlapping roles
as knockdown of individual CDKs in Xenopus embryos
failed to produce a phenotype, whereas depletion of cyc-
lin Y and its highly related homolog cyclin-Y-like re-
sulted in a Wnt loss-of-function phenotype [31]. In
addition to the relevance of the Wnt pathway in the
control of transcription, B-catenin and other Wnt regu-
lators localize to centrosomes and/or kinetochores and
regulate the formation and orientation of the mitotic
spindle and the process of chromosome segregation
[31]. In fact, cyclin Y reaches maximum levels at G2-M
phase of the cell cycle and is degraded in a ubiquitin-
dependent manner, similarly to mitotic cyclins, suggest-
ing a crucial role for the cyclin-Y-Wnt pathway during
cell division [12]. It is interesting to note that CDKs and
cyclins of this subfamily, such as Cdk17 or cyclin Y, are
highly conserved, at levels similar to Cdkl or cyclin B
[13]. In most cases, the cellular relevance of many
Cdk5-subfamily members remains to be established.

Control of RNA polymerase Il by transcriptional
cyclin-dependent kinases

One of the most important activities of CDKs is revers-
ible phosphorylation of the CTD of the largest subunit
(Rpb1) of RNAPII (Figure 4). The CTD consists of mul-
tiple repeats of an evolutionarily conserved heptapeptide
possessing the consensus sequence Tyr-Ser-Pro-Thr-Ser-
Pro-Ser, with the number of repeats varying among dif-
ferent organisms, ranging from 26 repeats in yeast to 52
in mammals. The CTD is the target of multiple post-
translational modifications, including phosphorylation,
generating a complex regulatory code known as the
CTD code. The CTD regulates the cycling of RNAPII
between a hypophosphorylated form, able to enter the
preinitiation complex, and a hyperphosphorylated form
capable of processive elongation of the transcript [32].
Multiple CDKs can phosphorylate the CTD, including
cell-cycle-related kinases Cdkl or Cdk2 and most tran-
scriptional CDKs of the Cdk7, Cdk8 and Cdk9 subfam-
ilies (Figure 4). Cdk7 is a member of the ten-subunit
general transcription factor TFIIH that phosphorylates
Ser5 and Ser7 of the heptad during initiation and pro-
moter clearance [33,34]. Cdk7 also phosphorylates and
activates Cdk9, thus promoting downstream events [34].
To release the paused RNAPII and allow productive
elongation, Ser2 of the heptad is then phosphorylated, a
process in which both Cdk9 and Cdk12 have been impli-
cated. Cdk9 binds to T-type cyclins (T1 and T2) as a
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subunit of the positive transcription elongation factor b
(P-TEFD) that stimulates elongation. Cdk9 is the ortholog
of Burl, which contributes to phosphorylation of the Ser2
mark at the 5 ends of genes [16,35]. Although Cdk9 was
thought to be the major Ser2 kinase required for efficient
elongation, recent data suggest that this requirement is
mediated by a second substrate of Cdk9, the elongation
factor subunit Spt5, whose Cdk9-dependent phosphoryl-
ation relieves the early pausing step [35]. Recent studies in
Drosophila and human cells suggest that Cdk12, in com-
plex with cyclin K, is the yeast Ctkl ortholog responsible
for most of the Ser2 phosphorylation at the CTD and
especially the phosphorylation at promoter-distal regions
[36,37]. Depletion of Cdkl2 resulted in defective Ser2
phosphorylation at a subset of genes - mostly long and
complex ones - but not a change in the rate of global
transcription. Cdk12 is specifically required for the
transcription of genes involved in the response to DNA
damage, establishing a new link between the transcrip-
tional machinery and cell-cycle regulation [37]. Cdkl
can also phosphorylate the CTD, and this activity is
thought to inhibit transcription, although its physio-
logical relevance has not been established. Transcript
termination results in dephosphorylation of RNAPII,
making it ready for another round of re-initiation. Al-
though the control of dephosphorylation is not well
understood, several CDK-counteracting phosphatases
such as Cdc14 are likely to be involved [38,39].

Cdk8 and its closely related family member Cdk19 as-
sociate with C-type cyclins as part of the multi-subunit
Mediator complex (Figure 4) [15]. This complex func-
tions as a bridge linking gene-specific activators to the
general RNAPII transcription machinery at the pro-
moter, thus influencing nearly all stages of transcription
and coordinating these events with changes in chroma-
tin organization. Cdk8 (or Cdk19), along with cyclin C,
Med12 and Med13, form the so-called Cdk8 module
characteristic of the free Mediator form, devoid of
RNAPII. The Cdk8 module responds to several intra-
cellular signaling pathways, and it is commonly associ-
ated with repression of transcription, although it can
also activate transcription [15]. Cdk8 has multiple tar-
gets and phosphorylates several transcription factors,
affecting their stability and activity. Recent evidence
suggests various roles in gene activation in the p53 net-
work, the Wnt-B-catenin pathway, the serum-response
network and other pathways governed by Smads or the
thyroid hormone receptor [40]. Cdk8 also modulates
Cdk?7 activity by phosphorylating cyclin H, thus imped-
ing Cdk7 activity and inhibiting initiation of transcrip-
tion [33]. Finally, Cdkl9 associates with similar
Mediator complexes, although these complexes are
likely to possess a specificity that is yet to be estab-
lished [41].
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Cdk11 and Cdk20 subfamilies

Cdk11 proteins are the products of two highly related
genes in mammals (CDK1IA and CDKIIB) encoding
Cdk11APMO and Cdk11BPMO [2], as well as two smaller
alternative proteins, Cdk11AP*® and Cdk11BP%, resulting
from translation from an internal ribosome-binding site
generated during G2-M phase. Cdkl1 binds to L-type
cyclins and participates in the coordination between
transcription and RNA processing, particularly alterna-
tive splicing [42]. In budding yeast, Cdkll has been
shown to be a crucial factor for the interaction of the
Cdk8 module with the Mediator complex through phos-
phorylation of conserved residues of the Med27 and
Med4 Mediator subunits (Figure 4) [43]. Cdk11 also par-
ticipates in many other pathways, such as hormone re-
ceptor signaling or autophagy [44-46]. The short isoform
of Cdkl1, Cdk11P®%, is specifically expressed at G2-M,
and its kinase activity is required for duplication of the
centrioles, spindle dynamics and sister chromatid cohe-
sion at centromeres during mitosis [47-49]. Lack of Cdk11
results in mitotic defects in mouse embryos, highlighting
the crucial role of this ‘transcriptional’ kinase in the cell
cycle [3].

Cdk10 is activated by cyclin M, a cyclin mutated in
STAR syndrome, a developmental abnormality charac-
terized by toe syndactyly, telecanthus and anogenital and
renal malformations [50]. Cdk10-cyclin-M phosphory-
lates Ets2, promoting its degradation by the proteasome
[50]. STAR-associated mutations in the gene encoding
cyclin M impair binding of cyclin M to Cdk10, resulting
in increased Ets2-dependent transcription of c-Raf and
over-activation of the MAPK pathway. In the insect
Helicoverpa armigera, Cdk10 modulates gene transcrip-
tion by steroid hormones by promoting the interaction
between heat-shock proteins and the ecdysone receptor
EcRB1 [51].

Finally, Cdk20 (also known as cell cycle-related kinase
(CCRK)) can interact with cyclin H and originally was
proposed to have CAK activity for Cdk2, suggesting a
close relationship with Cdk7. However, its role as a CAK
is controversial [52], and additional data suggest that it
functions as an activating kinase for MAK-related kin-
ase/intestinal cell kinase (ICK) [53]. Expression of Cdk20
activates [(-catenin-TCF signaling to stimulate cell-cycle
progression [54], whereas its inhibition results in accu-
mulation of ICK at the ciliary tips and prevents cell-
cycle entry [55] (Figure 4).

Frontiers

It is abundantly clear that the CDK family is central to
multiple signaling pathways controlling transcription
and cell-cycle progression. CDKs probably originated as a
system to modulate cell-cycle-promoting activity in re-
sponse to various cellular scenarios. Over the course of
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evolution, both CDK and cyclin gene families have inde-
pendently undergone a significant number of functional
specializations [7]. Many of the interactions between spe-
cific mammalian CDKs and cyclins have been reported
in vitro. However, the biochemical promiscuity in CDK-
cyclin interactions makes it difficult to evaluate properly
the in vivo physiological relevance of specific CDK-cyclin
complexes. For instance, Cdkl is thought to be activated
mainly by A- and B-type cyclins but can also bind to, and
be activated by, D- or E-type cyclins in the absence of
Cdk4/Cdké or Cdk2, respectively [9,27,56]. Cdk5 can also
bind to D-type cyclins, although to what extent these com-
plexes are active or relevant in vivo is not clear. The situ-
ation is even more complex for the lesser-known family
members for which there are no current iz vivo data [2].

Although the comparison of the yeast CDKs has pro-
moted the convenient division between transcriptional
and cell-cycle activities, the multiple interactions be-
tween these two activities in higher eukaryotes makes it
difficult to maintain this simple classification. First, tran-
scription and cell-cycle progression cannot be opposed
as these processes function at different layers in cell
biology. Arguably, transcription is a major regulatory
pathway required for cell-cycle entry. Major cell-cycle-
related kinases such as Cdk4 and Cdké mostly function
by phosphorylating transcription regulators such as Rb
or Smads [3,25], and the archetypal cell-cycle kinase
Cdkl also phosphorylates multiple transcription factors
and epigenetic modulators (Figure 4) [5]. By contrast,
major ‘transcriptional’ CDKs such as Cdk7 or Cdk11 dir-
ectly control cell-cycle progression, in some instances
independently of transcription. Finally, a single CDK can
have separate cell-cycle-related and transcriptional activ-
ities. As an example, Cdk6 has recently been character-
ized as a chromatin factor (Figure 4) that regulates
transcription factors involved in angiogenesis or the NF-
kB pathway [57,58], a process independent of the clas-
sical Cdk4/6-cyclin-D-Rb pathway involved in cell-cycle
regulation.

As a consequence of their importance in multiple pro-
cesses, CDKs are frequently mutated or deregulated in dis-
ease. A classic example is the almost universal deregulation
of the CDK-cyclin-Rb pathway in cell-cycle entry during
malignant transformation [25]. Underlining the signifi-
cance of CDKs, inhibitors of Cdk4 and Cdké received in
2013 the Food and Drug Administration ‘breakthrough
therapy’ designation for treatment of patients with breast
cancer [59]. Other members of the CDK family can also
be considered as interesting targets for therapeutics in
cancer or other diseases. Cdk5 displays multiple roles in
neurodegenerative diseases [28] and in other tissues with
relevance to diabetes, cardiovascular disease or cancer [29].
Cdks8 exhibits copy-number gains in colon cancers, and re-
cently it has been characterized as a coactivator of the

Page 8 of 10

beta-catenin pathway in colon cancer cell proliferation
[60,61]. Cdk10 is a major determinant of resistance to
endocrine therapy for breast cancer [62], and inhibition of
Cdk12 confers sensitivity to inhibitors of poly (ADP-ribose)
polymerases PARP1 and PARP2 [63]. Cdk14 confers motil-
ity advantages and metastatic potential in hepatocellular
carcinoma motility and metastasis [64,65]. Finally, as indi-
cated above, cyclin Y kinases regulate the Wnt pathway
[31], providing new therapeutic opportunities that are yet
to be explored. Hence, it seems very likely that new targets
within the CDK family will be explored in the near future
for therapy of cancer or other diseases.
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