
Plants are immobile, and therefore they cannot choose 

their own sex partners. To cope with this handicap, 

several lineages of plants have invented a trick to facilitate 

the directed transfer of gametes: harnessing animals as 

go-betweens. Th is is known in some gymnosperms and 

even mosses [1-4], but it is in the angiosperms where 

animal pollination is most commonly encountered and 

where, in many cases, it has evolved exquisite complexity. 

Th is means that the morphology of angiosperm sex 

organs (fl owers), rather than fi tting those of the opposite 

sex, must generate a lock-and-key fi t with the animals 

that visit them. Th ese visitors do not normally come for 

sex; instead they are paid for their services, typically by 

means of sugary nectar or surplus pollen. Plants advertise 

these rewards with showy displays to assist pollinators in 

fi nding them [5,6].

However, there are peculiar challenges that come with 

such an unusual sex life. Many animals, such as bees, 

butterfl ies, fl ies, birds and bats, might be opportunis-

tically interested in nectar carbohydrates, and plants 

cannot know or see which ones are in the vicinity, nor 

can they accept or reject a visitor. Th ey can only off er 

their commodities to a diverse army of potential visitors 

from where they stand, and try their luck. Flower struc-

tures can be used to limit the type of visitor to some 

extent [7,8], but such limitation is typically not absolute 

[9]. In addition, fl owers can attempt to obtain some 

pollinator specifi city by using advertising signals that 

appeal only to certain pollinators and not others. Colors, 

patterns, scents and even acoustic or electrostatic cues 

are all known to aff ect the behavior of diff erent polli-

nators in diff erent ways [10-18]. Th e most important 

factor that determines a pollinator’s preference is often 

individual experience rather than innate predisposition 

[5,6]. Current genomic approaches will help verify this 

supposition, which, if true, should in some cases reveal 

relatively weak correlations between fl ower genotype and 

pollinator affi  nities. In terms of pollinators, a genomic 

approach can reveal the factors that enable fl ower 

visitors’ ability to be generalists, such as the number and 

diversity of olfactory receptor genes, or genes for learning 

and memory [19].

A further challenge for plants is that some fl oral traits 

that are attractive to pollinators can also be of interest to 

herbivores [20], and in some cases, fl owering plants may 

have the dual problem of attracting pollinators while 

deterring the same species in larval stages [21]. Finally, 

many fl ower traits are subject to extensive pleiotropies; 

for example, pigments that contribute to fl ower color-

ation are also used in other parts of the plant where they 

can have multiple important functions [22,23]. Flowers 

thus exist in exceedingly complex fi tness landscapes, in 

which a large number of traits might all aff ect individual 

success, as well as the dynamics of speciation and plant-

pollinator coevolution [24,25]. In this sense a genomic 

approach to understanding fl oral evolution has tremen-

dous potential to move from the traditional question ‘is 

this gene important?’ (which carries the risk of generating 

a self-fulfi lling prophecy) to a data-driven approach 

asking which genes and in which combinations are 

important and in what ways [26,27].

Paramount among these later approaches are genome-

wide association studies (GWASs) and genomic selection 

(GS), which work to fi nd correlations between genetic 

markers (such as single nucleotide polymorphisms (SNPs) 

and randomly amplifi ed polymorphic (RAD) sequences) 
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in linkage disequilibrium with phenotypic traits, and 

these approaches are being applied in both plant and 

animal breeding (for example, in maize [28,29], oil seed 

rape [30] and cows [31]). A GWAS compared 107 distinct 

phenotypes of Arabidopsis thaliana, revealing alleles of 

major eff ect for follow-up research [32]. Although 

A.   thaliana is primarily self pollinating, comparisons 

between self- and insect-pollinated plants using these 

techniques, particularly when closely related, may reveal 

the genomic architecture important to plant-animal 

interactions. Several approaches in use for assessing 

genomic variability do not require de novo genome 

assembly; for example, sequenced restriction-site-

associated DNA (sRAD) uses next-generation sequencing 

(NGS) approaches to fi nd markers (frequently SNPs) for 

genotyping [33,34] or RNA-seq (alternatively called 

whole-transcriptome shotgun sequencing) to assess 

trans cription profi les [33] across tissues or life stages. 

Th ese approaches, whether applied to expressed gene 

regions or whole genomes, can accurately quantify 

genomic variation and help us to understand how much 

variation is available for selection to act on. Th e results 

may also have implications for conservation genetics, 

such as the question of which population is more variable 

and thus contributes most to the preservation of diversity.

We are still at the early stages of studying the inter-

actions between plants and their pollinators using 

genomics-based approaches. In plant biology, most 

resources were initially devoted to sequencing genomes 

of autogamous (self-fertilizing) model species (the fi rst 

being A. thaliana, with a small genome size [35]) or 

commercially important crop plants, some of which are 

not insect-pollinated [36,37]. Similarly, resources used to 

study insects were initially focused on species with 

pathogenic impacts on humans or crops, or those serving 

as model species. For the most part, species interactions 

between plants and animals have remained the domain of 

traditional genetics and quantitative trait mapping in 

combination with experiments in animal behavior. 

However, the genomes of several animal-pollinated 

plants, including some that have been models in evolu-

tionary ecology, are now available or in progress, such as 

the bee-pollinated tomato Solanum sp. [38,39], the morn-

ing glory Ipomoea sp. [40], Petunia sp. [41], and Mimulus 

sp. [42]. Th ese genera contain species with highly diverse 

ecology, and are pollinated by birds, bees and moths [43], 

which should therefore enable comprehensive insights 

into the genetic architecture underpinning fl oral traits 

that address diff erent types of pollinators.

Today, the variety of tools available for genome-level 

analysis and the decreasing costs of NGS technologies 

open the door for the large-scale analysis of non-model 

organisms. Th e 5,000 insect genome project [44] and the 

1000 plant transcriptome project [45] may have great 

potential for the understanding of pollinator-plant 

evolution. Th e scale of these projects refl ects the orders 

of magnitude reduction in costs of sequencing, and they 

include the majority of model and non-model organisms 

of active interest around the world, including represen ta-

tives from more than half (over 250) of all angiosperm 

plant families, and multiple representatives from all 

(approximately 30) major insect orders. Th ese projects 

will enable questions to be addressed that cannot be 

achieved in studies targeted at individual species, and 

they have the potential for unprecedented insights into 

the phylogeny, evolution and patterns of diversifi cation of 

angiosperms and their pollinators. For example, what is 

the nature of genetic change in plant speciation [24]? 

What is the relationship between prezygotic reproductive 

isolation via fl ower traits and associated pollinator 

behavior [46]? Did bee pollinators co-evolve and co-

diversify with angiosperm fl owers [47], and did butterfl y 

diversity emerge much later [48]? In what ways do fl oral 

traits aff ect rates of plant species diversifi cation, for 

example traits controlling bilateral fl oral symmetry and 

the morphology of nectar spurs [49]? Is the independent 

emergence of certain fl oral traits in diff erent lineages 

(such as in transitions from predominantly bee-polli-

nated ancestors to principally hummingbird-pollinated 

fl owers) mediated typically by parallel evolution (varia-

tion in homologous genes or indeed homologous muta-

tions) or by convergence using diff erent molecular-

genetic pathways with similar phenotypic outcome [49]? 

Genome-wide studies using NGS approaches, combined 

with data mining and new statistical tests, will provide 

new insights into these questions, insights that would 

have been impossible using more traditional genetic 

approaches.

Th e possibility of sequencing genomes of multiple 

individuals of a plant population allows the quantifi cation 

of intraspecifi c genetic variation for a large number of 

fl oral traits, and thus the raw material on which selection 

can act [26,27]. Moreover, comparing extant genome 

sequences with those from ancient plant material (for 

example, that conserved by permafrost [50]) will enable 

the monitoring of genomic changes across populations 

over time and the quantifi cation of the relative contri-

butions of new mutations and existing genetic variation 

to evolutionary change, and will help us to link these 

genomic changes to abiotic (for example, climate change) 

and biotic factors.

Here, we provide a historical perspective and a future 

outlook on the molecular and genomic basis of plant-

pollinator interactions. We review what has been learned 

from traditional genetic approaches and the genomic 

search for quantitative trait loci (QTLs), the potential for 

new genomic approaches to document plant-pollinator 

interactions, and the application of these studies to 
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understand the evolutionary and ecological mechanisms 

governing these interactions.

Traditional single and multi-locus genetic analyses

Th e infl uence of pollinator choice on the evolution of 

various sensory cues displayed by fl owers is well 

documented (for example, [11-17,51]; Figure 1). Genetic 

analyses of plant-pollinator interactions can be roughly 

divided into studies that document candidate genes and 

quantify pollinator response to manipulation, those that 

explore genetic pathways and mechanisms of fl oral traits 

[52] and studies that seek to understand the evolutionary 

history of species interactions, such as adaptive radiations 

of plants and their pollinators [53].

Floral traits are sometimes controlled by a relatively 

small number of genes [54]. For example, in the common 

morning glory (Ipomoea purpurea), various aspects of 

pigmentation are controlled by single loci [55]: one locus 

determines pink versus blue fl owers, another controls 

intensity, a third controls the patterning and degree of 

pigmentation, and a fourth locus has epistatic eff ects on 

the other three loci [56-58]. Pollinator selection for 

specifi c loci has been tested in various contexts. For 

example, red fl owers are relatively poorly detected by 

insect pollinators that lack red receptors [59], whereas 

hummingbirds have such receptors and can thus detect 

and identify red fl owers more easily [13,60,61]. In cases 

in which fl ower color is controlled by a small number of 

loci, crossing experiments can directly assess pollinator 

responses to a specifi c allele (Figure  1, 2). Among 

monkey fl owers, the predominantly hummingbird-polli-

nated species Mimulus cardinalis is orange and the 

typically bee-pollinated M. lewisii is pink. Th e diff erence 

in coloration is governed by variation at a single locus 

(YUP), which controls presence/absence of carotenoids 

in the petals. Substituting the YUP allele in each species 

with its counterpart from the other species (while leaving 

all other fl oral traits, including morphology, unaff ected) 

caused hummingbirds to prefer M.  lewisii fl owers with 

altered (“bird-fl ower-like”, orange) pigmentation over 

wild-type fl owers (which they rarely visited). Bumblebees, 

conversely, visited M.  cardinalis more frequently than 

wild-type fl owers if the fl owers had M.  lewisii-like 

pigmentation, showing that a single major mutation 

aff ecting fl ower color may generate a profound shift in 

pollinator spectrum [59,62]. Genomic methods such as 

sRAD or homologous gene sequencing from target loci 

can be used to compare genotypes between individuals, 

species and so on within radiations in the search of 

genotypes (such as SNPs) that segregate with particular 

phenotypes.

It is important to emphasize, however, that studies on 

pollinator ‘attraction’ or ‘preference’ for certain fl oral 

phenotypes should not be conducted in fi eld conditions, 

because the preferred type of fl ower will most likely just 

be the one that is most similar to those experienced by 

the pollinators before the start of the experiment. For this 

reason, it is necessary to experiment with laboratory-

reared pollinators that have no previous exposure to 

natural fl owers before a preference test begins [63]. Using 

this approach on wild-type snapdragons (Antirrhinum 

majus) and various mutants that aff ect fl ower visual 

appearance and morphology, it has been possible to 

disentangle how visitation frequencies of various fl ower 

types emerge as a complex interplay between pollinator 

innate bias, fl ower detectability and learned preference 

[10,64].

Although many fl oral traits are controlled by a single 

locus, many more are multi-locus traits. Some fl oral 

scent cues that infl uence pollinators may be aff ected by a 

relatively small number of genetic loci, detected by 

screening for QTLs. For example, some fl oral traits in 

Petunia species are controlled by several loci of relatively 

large eff ect. F2 plants from crosses between P.  axillaris 

(which produces scent cues) with P.  exserta (which has 

no scent) led to the identifi cation of two QTLs, one on 

chromosome II and another on chromosome VII, that 

together explained 60% of the variation in the production 

of benzenoid volatiles between the two species [65]. 

QTLs can, of course, correspond with large genetic inter-

vals containing tens or even hundreds of genes, and so it 

is important to pinpoint the exact genes (and their 

number) to understand the ease with which an evolution-

ary transition between, for example, a scented and a 

scentless fl ower type can occur. To do that, the authors 

[65] developed introgression lines for high resolution 

mapping and localized one gene, ODORANT1, which 

encodes a MYB-type transcription factor that mapped to 

the QTL on chromosome VII. Th e breeding lines were 

then used to demonstrate that hawkmoths prefer scented 

plants, particularly when given choices between plants 

spaced over short distances [65]. QTLs have also been 

associated with many other aspects of pollination syn-

dromes in P.  axillaris (pollinated by nocturnal hawk-

moths) and P.  integrifolia (pollinated by diurnal bees), 

including corolla length, nectar volume, style/stamen 

arrangement and fragrance [66].

Many traits show continuous phenotypic distributions 

and environmental interactions, with examples in the 

shape and size of petals, corolla tubes, stamens and 

pistils, as well as placement and arrangement of anthers 

and stamens, nectar volume, and the number of ovules 

and pollen grains [67]. Frequently, traits are controlled 

not by a single or a few genes, but by multiple genes 

across the genome, each with small eff ects. To detect the 

causes and consequences of these eff ects, the genome of 

Petunia will be very useful because molecular markers 

(for example SNPs) can be mapped to the scaff old for 
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GWAS studies. NGS approaches, analyzing many 

thousands of short sequences from across the genome or 

from the transcriptome, off er huge potential for GS, 

because they enable phenotype prediction by examining 

the combination of genetic markers that most strongly 

correlates with phenotype [28,31]. Th e method requires 

fi nding associations between genome-wide markers and 

a trait of interest in a population of individuals with 

known phenotype and then applying the derived 

knowledge to predict phenotype in new individuals [28]. 

Th e approach has already proved successful in enhancing 

milk production in cows, and lines have been adopted by 

the dairy industry worldwide [31], although the statistical 

approaches are currently limited to analyses of markers 

in populations of highly related individuals. For 

pollinator-fl oral evolution questions, the future will 

require analyses of more divergent populations, and for 

this the statistics will need to be extended.

In some cases, small genetic changes controlling fl oral 

traits not only generate a shift in the principal pollinators 

that visit the fl owers, but also in the unwanted visitors, 

such as nectar-thieving ants [20]. In addition to sugars, 

which constitute the principal reward in most fl oral 

nectar, many other substances are also found in nectar. 

Bitter substances, such as caff eine or nicotine, repel 

visitors at high concentrations, but at low concentrations 

can be attractive [68] and indeed have benefi cial eff ects 

on pollinator learning and memory for fl oral traits [69]. 

Diff erent fl ower visitors can vary in their response 

thresholds for the repellent eff ect; for example, in 

Nicotiana attenuata fl owers, moths responded more 

strongly to the presence of nicotine (repulsion) and 

benzyl acetone (attraction) in nectar than hummingbirds 

[20]. RNA interference on only two loci can block the 

production of both benzyl acetone and nicotine, resulting 

in fewer visits and nectar removal by pollinators, which 

has fi tness eff ects (for example, altering seed set), but it 

also alters damage by herbivores, and nectar theft by ants 

[51]. Th is provides an example of how complex the 

interactions between selection and genetic associations 

can be in relationships between plants, pollinators and 

antagonists such as herbivores [67].

Beyond isolating fl oral mechanisms aff ecting pollinator 

behavior, genetic analysis provides a molecular phylo-

genetic context for the evaluation of correlated diver-

gence between plants and their pollinators, as well as the 

demographic changes of populations. One of the earliest 

phylogeographic studies involved restriction site map-

ping and length polymorphism analysis of the honeybee 

Apis mellifera [70]. Phylogenetic perspectives using both 

genetic and genomic information serve to clarify the 

origin of particular traits (for example, [71]) as well as the 

timing of adaptive radiation. It is these radiations that 

may allow inter- and intraspecifi c comparisons, particu-

larly with respect to closely related out-groups with 

diff erent phenotypes.

Figure 1. Interactions of diff erent plants and pollinators; genomes are indicated symbolically. Left to right: the hummingbird-pollinated 

Aquilegia formosa, the bee-pollinated Ipomea pes-caprae, the moth-pollinated Silene latifolia and the sexual mimic Ophrys exaltata with its pollinator, 

a male Colletes cunicularius bee. Many of these affi  nities are neither fi xed nor exclusive, as indicated by dashed diagonal arrows. Arrows between 

the chromosomes symbolize the many interactions of diff erent loci distributed among the genomes, mediated by the phenotypes of plants and 

pollinators. Genomic approaches will probably lead to a better understanding of how interactions infl uence the evolution of molecular traits 

and their variability. The scent molecules β-ocimene, lilac aldehyde and (Z)-7-pentacosene (from left to right) are representative examples of 

the respective pollination systems bee pollination, moth pollination and sexual mimicry. Images reproduced, with permission, from [6] and the 

photographers: FP Schiestl (bumblebee, Silene, Ophrys), SD Johnson (sphingid moth), SA Hodges (Aquilegia), RARaguso (Ipomea), NJ Vereecken 

(Colletes bee).
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Interspecifi c hybridization and polyploidy

When considering the consequences of interactions 

between angiosperms and their pollinators, it is vital to 

consider two predominant processes infl uencing angio-

sperm diversity: interspecifi c hybridization and poly-

ploidy (or whole-genome multiplication; Figure  2). At 

least 25% of species form interspecifi c hybrids [72], 

result ing in introgression of characters between species 

and, rarely, the formation of homoploid hybrid taxa [24]. 

Th is process results in complex, reticulate patterns of 

evolution in many angiosperm groups, making it diffi  cult 

or impossible to circumscribe species boundaries. In 

addition, polyploidy is widespread and is thought to have 

infl uenced all angiosperms, having occurred at the base 

of both the seed plants and angiosperms [73] and within 

most lineages thereafter, sometimes surprisingly fre-

quently. For example, the apparently diploid species 

A. thaliana, a model species because of its small genome, 

has undergone three rounds of polyploidization since the 

divergence of angiosperms [74,75], and the existence of 

natural cultivars with double the expected number of 

chromosomes reveal that the process is ongoing. Indeed, 

an analysis of chromosome counts across multiple genera 

led Wood et al. [76] to predict that polyploidy accounts 

for 15% of angiosperm speciation events. Furthermore, 

many polyploids form in association with interspecifi c 

hybridization (allopolyploidy [77,78]).

A consequence of such a high prevalence of inter-

specifi c hybridization and polyploidy in the ancestry of 

angiosperms is that much diversity is generated. Recent 

advances in NGS approaches, including RNA-seq, reveal 

that these evolutionary processes can aff ect the genome 

and transcriptome, which in turn must govern changes to 

the metabolome and phenotype [74]. At the genome 

level, there is much variation in the outcome of allo-

polyploidy, from considerable genomic restructuring, 

even between progeny of the same cross, or little at all, 

depending on the example [74]. At the level of the trans-

criptome, there can be large-scale changes in both the 

Species 1 Species 2

Hybrids

(a)

BackcrossingBackcrossing

Speciation

Mimulus lewisii
Bee-pollinated

 Mimulus cardinalis
Hummingbird pollinated

 

F1 hybrid   

F2 hybrids  

(b)

Nicotiana attenuata Nicotiana obtusifolia 

5 synthetic allopolyploids

(c)

Figure 2. Hybridization, polyploidy and fl ower phenotypes. 

(a) Interspecifi c hybridization can generate a large range of 

characters in hybrids, including intermediate characters and 

potentially characters that fall outside the range found in the parents 

(transgressive characters). Hybrids usually backcross to one or both of 

the parents, providing gene fl ow between species. Herbivores and/

or pollinators may select for particular combinations of characters. 

(b) F1 and F2 hybrids between bee-pollinated Mimulus lewisii and 

predominantly hummingbird-pollinated M. cardinalis. In F2 the 

diff erent fl owers show a range of intermediate characters. Adapted, 

with permission, from [59] (Copyright (1999) National Academy of 

Sciences, U.S.A.). (c) Synthetic allopolyploids of Nicotiana attenuata 

and Nicotiana obtusifolia generate fl owers and seeds with a larger 

range of characters than is found within the range encompassed by 

the parental phenotypes. Adapted, with permission, from [110].
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nature (which genes are expressed) and in the total 

amount of RNA expressed [79] per cell, the signifi cance 

of which is yet to be understood. Recurrent polyploidy in 

angiosperm evolution has also resulted in the evolution 

of genes in large multigene families [80]. With the 

evolution of gene duplicates, there can be relaxed selec-

tion on one of the gene copies, enabling it to diverge, 

potentially to acquire new functions. Th is can lead to 

individual gene members of the family having diff erent 

metabolic roles, as observed through their diff ering 

patterns of gene expression [79]. For example, gene dupli-

cates of anthocyanin-regulating transcription factors in 

Mimulus from Chile have evolved independently in 

separ ate tetraploid lineages to generate red fl oral pigmen-

tation in fl ower lobes [81]. Interspecifi c hybridization and 

allopolyploidy provide the opportunity for new, trans-

gres sive characters to evolve. Transgressive characters 

[24] can be observed at all levels from the transcriptome 

to infl orescence morphology [79,82] and may arise 

through novel cis-trans interactions in the genome [83] 

or by ‘mixing and matching’ of diff erent metabolic path-

ways found in the parents.

An example in which gene duplication has led to the 

evolution of a large plant gene family with key functions 

in plant-insect interactions is seen in the terpenoid 

synthase genes, encoding enzymes that synthesize vola-

tile compounds called terpenoids that mediate inter-

actions with mutualists and antagonists [84]. Minor 

structural changes in terpenoid synthase genes are 

known to change the product of the encoded enzymes, 

allowing rapid evolutionary change in volatile com-

pounds [85]. Another example is the desaturase genes, 

which encode key compounds for pollinator attraction in 

the highly specifi c sexual mimicry systems in orchids of 

the genus Ophrys [18,86]. Ophrys species have large, 

variable families of desaturase genes with high allele 

diversity and species-specifi c expression patterns. Varia-

tion in structural genes, as well as changes in their 

expression levels, are likely mechanisms allowing rapid 

evolutionary responses to fl uctuating pollinator commu-

nities. A major challenge for understanding the link 

between genotypic and phenotypic variation, however, is 

the functional characterization of gene copies and 

diff erent alleles [18,87] and their respective roles in deter-

min ing key traits in plant-insect interactions. Th is 

approach will require methods and statistics to be 

developed from GS studies to diverse natural situations, 

enabling the characterization of multiple genes with 

small eff ects, as already discussed.

Genomic tools to document plant-pollinator 

interactions

Although the term ‘genomic’ tends to imply the analysis 

of entire genomes and genome assembly, genomic 

methods themselves can be applied to other practical 

aspects of pollinator-plant interactions [40]. Molecular 

methods of documenting species interactions began with 

traditional immunological and genetic methods (reviewed 

in [88]) but progressed to genomic methodologies, in 

particular NGS (reviewed in [89]). One approach is to 

use NGS to amplify millions of homologous sequences 

from a target gene from DNA extracted from a mixed 

biomass and compare the resulting sequences with 

curated databases of sequences of known origin (for 

example, [90,91]) in a ‘food forensics’ approach [92]. Th e 

use of genomic sequencing platforms (such as Illumina, 

Roche 454 and Ion Torrent) for fragment analysis is one 

of the most common techniques. Th is approach enables 

diagnosis of specifi c and hard-to-observe interactions 

(such as nocturnal pollination) using targeted gene 

ampli fi cation in the context of ‘ecological genomics’ 

(Figure 3).

Th e goal of these analyses is to accurately diagnose 

species-level interactions that cannot easily be docu-

mented in the wild. Th e most recent investigations have 

focused on predator-prey or herbivorous inter actions 

rather than mutualistic interactions, in part because 

reference taxonomic databases of molecular information 

for animals have developed faster than those for plants. 

Interactions among species form the basis of ecosystem 

functioning and underlie evolutionary and ecological 

principles of conservation biology. However, directly 

measuring biological diversity is much simpler than 

characterizing the interactions between taxa [93]. Th ese 

relationships between species form the building blocks of 

food webs, and exploring the mechanisms structuring 

these interaction patterns is crucial in understanding 

their spatial-temporal variation and predicting their 

responses to disturbance. Knowing precisely which 

pollinators visit which plants in the wild is also vital to 

our measurements of selection, particularly when trying 

to clarify whether a particular pollinator is a true 

specialist or whether their behavior is fl exible.

We expect there to be swift progress in this fi eld since a 

plant barcoding community consortium [94] proposed 

that a combination of genomic regions (including the 

plastid regions rbcL and matK) should be used as the 

core barcode for land plants, to be supplemented by the 

plastid intergenic spacer trnH-psbA or the nuclear 

ribosomal internal transcribed spacers (ITS). Th e fi nal 

selection of a standard plant barcode is leading to the 

rapid acquisition of databases of plant barcodes for 

taxonomic and biodiversity analysis (Box  1). Th e appli-

cation of these databases to study mutualistic interactions 

between plants and animals is, however, in its infancy. In 

Hawaiian solitary bees, molecular identifi cation of the 

pollen carried (using the ITS region) linked these grains 

to the local fl ora and revealed preferential foraging for 
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pollen from native species [95]. Similar extensions using 

trnL and other offi  cial plant barcode genes for the study 

of plant-animal interactions are under way by several 

research groups ([96,97], and the authors) with the 

potential to rapidly diagnose thousands of individual 

pollination events simultaneously without the need for 

lab or ious morphological identifi cation of pollen (Figure 3).

Genomes of plants and pollinators

Th e accumulation of complete genome sequences is 

increasing quickly providing larger numbers of genome 

scaff olds (reference genomes) for the assembly of related 

taxa, an approach that will be exploited for our under-

standing of non-model species. As an example, the 

genome of the honeybee A. mellifera has been sequenced 

and is available as version 4 (about 236 megabases with 

7.5X coverage, N50 contig  = 41  kb, N50 scaff olds  = 

362 kb) [19]. A survey of this genome revealed a higher 

than expected number of odor receptor genes and novel 

genes for nectar and pollen utilization, as well as more 

loci involved in learning and memory than have been 

observed in Drosophila [19]. Th e number of olfactory 

receptor genes is more than twice as high as in other 

insects that have been examined, perhaps refl ecting the 

Figure 3. A schematic of genomic methods as applied to document plant-pollinator interactions. The development of high-throughput 

sequencing platforms for genome analysis coupled with the establishment of public databases of standardized marker regions for the express 

purpose of taxonomic identifi cation (for example, BOLDSYSTEMS [111] and the National Center for Biotechnology Information [112]) has enabled 

the development of a branch of ecological genomics devoted to documentation of species interactions. An unobserved fl ower visitation event 

can be conclusively demonstrated by sequencing plant markers from the mixed pollen sample carried by the pollinator (either in the gut or on 

the animal). The resulting markers can be compared with public or private collections of taxonomically validated references for species-level 

documentation of the ecological event. This enables large-scale measurements of species’ interactions to be largely automated. The resulting 

databases can be used to quantitatively measure a variety of ecologically and evolutionarily important events, such as the relative specialization 

or generalization of specifi c plant-animal pairs, the selection pressure of one group of species on another, the economic impact of a particular 

ecosystem service (for example, pollination of a particular crop of interest) or the response of an ecological system to disruption. Photographs 

reproduced with permission of EL Clare, MB Fenton (bee on fl ower) and J Nagel (bat with pollen on its fur).

CTGGTGTTAAAGATTATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCAT
TTCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTA
CATGGACAACTGTGTGGACCGATGGACTTACGAGCCTTGATCGTTACAAAGGGCGGTGCTATGGAATCGAGCCTG
TTCCTGGGGAAGAAAATCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTA
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importance of pheromones in the orchestration of social 

organization in honeybees but also underpinning the 

sophisticated olfactory learning abilities that bees show 

in fl oral visitation. Olfactory cues are also potentially 

important to bat pollinators [98]. Olfactory receptors 

show substantial divergence in bats compared with other 

terrestrial mammals [99], although this is seen in both 

pollinating and non-pollinating species.

Th ere are also signifi cant phylogenetic insights that 

emerged from the honeybee genome, and comparison 

with other insect genomes. A survey of 185 genes from 

sequenced insect genomes suggests that the Hymenop-

tera share a common ancestor with all other holo-

metabolous insects (beetles, moths and fl ies) [71]. Th ese 

authors propose [71] that previous phylogenetic hypo-

theses, in which this arrangement was not recovered, 

were based on poorly resolved analyses based on single 

loci or small numbers of loci. Th e split between 

Hymenop tera and other holometabolous insects is 

estimated to have occurred nearly 300 million years ago 

[71]. It is likely that no study of any single or small 

number of genes could reliably reveal this ancestral 

relationship. Only the analysis of dozens of protein 

alignments derived from genome-level scans provides 

suffi  cient support to resolve the relationship. Well 

resolved phylogenies, particularly depicting ancient 

branching points, allow better characterization of evolu-

tionary pressures involved in adaptive radiations, 

demographic shifts and major leaps in phenotypic 

evolution. Th is is particularly true when there is con-

vincing evidence that diversifi cation may be based, at 

least in part, on the selective pressure of two (or more) 

species involved in a mutualistic relationship.

Th e genomes of several insect-pollinated plant species 

have now been sequenced or are currently being 

sequenced (see [38-42] and [100-103]). An interesting 

model for studying the genomics of adaptive divergence 

is the genus Mimulus. Sequences of the whole genome 

and of expressed sequence tags (ESTs) of Mimulus 

guttatus (version 1.0 early release: about 322  Mb 

arranged in 2,216 scaff olds, about 301  Mb arranged in 

17,831 contigs, N50 scaff old = 81, N50 contig = 1,770) are 

being assembled and are now available for browsing on 

the Phytozome website [42], containing approximately 

321.7 Mb assembled (of 362 Mb [104], arranged in 2,216 

scaff olds). Th ere are extensive genetic resources for 

Mimulus, including ESTs, polymorphic markers, linkage 

maps, bacterial artifi cial chromosome libraries, seed 

stock and centralized repositories of this information for 

public use ([105], reviewed in [106]). Mimulus is a model 

system for studying adaptive phenotypic traits by analysis 

of pollinator selection, as it contains extensive phenotypic 

and genomic variation explored in both laboratory and 

fi eld contexts. Furthermore, the potential for hybridiza-

tion between species forms a continuum from high 

compatibility to reproductive isolation (reviewed in 

[106]), enabling the examination of interactions between 

fl oral traits and reproductive barriers. Although model 

species allow an understanding of evolutionary mecha-

nisms of one particular system in detail, important 

insights will be gained by comparative approaches span-

ning the diversity of diff erent plant-pollinator systems. 

Th is promises insights into animal sensory systems, fl oral 

signals and morphology that may co-evolve or be shaped 

by pre-existing biases [6]. Th e availability of powerful 

sequencing and bioinformatics tools will allow us to 

study non-model systems, including those with very large 

genomes, allowing insights through comparative 

approaches [66,100-103].

One obvious next step is to ask questions about parallel 

phenotypic diversifi cation. Genome studies have the 

potential to uncover whether parallel phenotypic changes 

are caused by similar underlying genomic architecture 

(for example, parallel phenotypes associated with homo lo-

gous genes and mutations), or achieved through many 

alternative genetic mechanisms [27]. Th e exploration of 

parallel cases of divergence increases statistical power 

because evolutionary trends can be examined in replicate 

[27] and genomic approaches will add more dimensions 

through the analysis of hundreds or thousands of candi-

date genes and co-adapted gene complexes. Floral pheno-

types are sometimes characterized by phylogenetically 

Box 1. DNA barcoding

DNA (or molecular) barcoding can broadly refer to any system 

whereby genomic data are used to assist in, or as a surrogate 

for, systematic identifi cation of living organisms. Such methods 

were fi rst applied in organismal groups that present great 

diffi  culties for traditional taxonomic approaches because of 

their microscopic size, such as Plasmodium parasites [113] or soil 

nematodes [114]. These cases showed the possibility of using 

short DNA sequences to essentially substitute for morphological 

identifi cation, as sequences may be clustered into molecular 

operational taxonomic units (MOTUs) and used as a fast and 

practical means to identify strains or assess diversity. DNA 

barcoding was later proposed as a more formalized system 

[90] for linking sequence data to species identifi cations using 

standardized protocols. Barcoding in this strict sense uses a small 

number of universal marker genes (mitochondrial cytochrome 

c oxidase subunit I (COI) for animals, ITS for fungi, rbcL, matK 

and trnH-psbA or ITS for plants) and a single reference data 

repository, BOLD [111], in which sequence data are associated 

with validated taxonomic identifi cations. Among the advantages 

of this system are that a DNA sequence from any unknown 

(obtainable from fragmentary tissue samples, pollen grains, seed 

fragments, hair, feces, and so on) can be readily assigned to a 

species or other level of identifi cation by matching against this 

database.
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convergent adaptations to the requirements and prefer-

ences of certain groups of pollinators (pollination 

syndromes); for example, bat-pollinated fl owers from 

multiple lineages often contain certain sulfuric compo-

nents in their scent, to which bats seem to be innately 

attracted [98]. Th ere are also diff erences in the color 

perception of diff erent classes of pollinators, such as with 

respect to diff erences in red sensitivity between bees and 

hummingbirds (see above) [61,107]. Convergence in 

regulatory mechanisms was discovered for switches in 

fl oral color from blue pigmentation in bee-pollinated 

fl owers to red pigmentation in principally hummingbird-

visited fl owers [108].

Conclusions

We expect further genomics studies to yield insights into 

timing and sequence of convergent evolutionary 

processes, allowing us to address the long-standing 

question as to whether some species act as ‘models’ that 

drive selection for phenotypic similarities in other 

(mimic) species [6]. As in the honeybee phylogenetic 

example [71], thousands of loci increase the chance that 

true phylogenetic signal will overcome stochastic noise 

from loci with complicated selective histories. Th e 

exploration of convergence will provide novel insights 

into phylogenetic tracking as pollinators and plants co-

diversify. Th is is particularly powerful when comparisons 

are made with a close relative that does not share the trait 

of interest (an outgroup) that can provide a basis to study 

adaptive evolution. Better phylogenetic resolution of 

deep branching structure in combination with an 

understanding of the genetic architecture of phenotypic 

plasticity and diverg ence will be a powerful tool.

Th e existence of convergent solutions in fl oral evolu-

tion can involve considerable underlying genetic 

architectural variation (many routes to a solution), as 

suggested for replicate adaptive radiations [27]. Th ere can 

be a surprising amount of genomic variation in natural 

populations on which natural selection may act [109], 

and one principal goal must be to quantify such variation 

for more species and populations. Plant-pollinator inter-

actions are a perfect example of cases in which rapid 

adaptive radiations in both plant phenotype and polli-

nator choice set up parallel selective regimes. Th ese are 

fundamental questions that can be addressed only by the 

comparison of genomes from parallel radiations of 

interacting species, which represent evolutionary 

replicates.
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