
Opportunities and challenges in forest tree genomics are 

seemingly as diverse and as large as the trees themselves; 

however, here, we have chosen to focus on the potential 

signifi cant impact on all of tree biology research if only 

an open-access culture and comparative-genomics 

infrastructure were developed. In earlier articles [1,2], we 

argued that the great diversity of forest trees found in 

both the undomesticated and domesticated state 

provides an excellent opportunity to understand the 

molecular basis of adaptation in plants and furthermore 

that comparative-genomic approaches will greatly 

facilitate discovery and understanding. We identifi ed 

several priority research areas towards realizing these 

goals (Box  1), such as establishing reference genome 

sequences for important tree species, determining how 

to apply sequencing technologies to understand adap-

tation, and developing resources for storing and accessing 

forestry data. Signifi cant progress has been made in 

many of these priorities, with the exception of invest-

ments in database resources and understanding eco-

logical functions. Here, we briefl y summarize the rapid 

progress in developing genomic resources in a small 

number of species and then off er our view on what we 

believe it will take to realize the fi nal two priorities.

The great diversity found in forest trees

Th ere are an estimated 60,000 tree species on earth, and 

approximately 30 of the 49 plant orders contain tree 

species. Clearly, the tree phenotype has evolved many 

times in plants. Th e diversity of plant structures, 

development, life history, environments occupied and so 

on in trees is nearly as broad as higher plants in general, 

but trees share the common characteristic that all are 

perennial and many are very long lived. Because of the 

sessile nature of plants, each tree must survive and 

reproduce in a specifi c environment over the seasonal 

cycles of its lifetime. Th is tight association between 

individual genotypes and their environment provides a 

powerful research setting, just as it has driven the 

evolution of a plethora of uniquely arboreal adaptations. 

Understanding these evolutionary strategies is a long-

standing area of study of tree biologists, with many 

broader biological implications.

Completed and current genome-sequencing projects in 

forest trees are limited to about 25 species from just 4 of 

more than 100  families: Pinaceae (pines, spruces and 

fi rs), Salicaceae (poplars and willows), Myrtaceae 

(eucalyptus) and Fagaceae (oaks, chestnuts and beeches). 

Large-scale sequencing projects such as the 1000 Human 

Genomes [3], 1000 Plant Genomes (1KP) [4] or the 5000 

Insect Genome (i5k) [5] projects have not yet been 

proposed for forest trees.

Rapidly developing genomic resources in forest 

trees

Genome resources are developing rapidly in forest trees 

in spite of the challenges associated with working with 

large, long-lived organisms and sometimes very large 

genomes [2]. Complete genome sequencing, however, 

has been slow to advance in forest trees owing to funding 

limitations and the large size of conifer genomes. Black 

cottonwood (Populus trichocarpa Torr. & Gray) was the 

fi rst forest tree genome to be sequenced by the US 

Department of Energy Joint Genome Institute (DOE/JGI) 

[6] (Table  1). Black cottonwood has a relatively small 

genome (450  Mb) and is a target feedstock species for 

cellulosic ethanol production, and thus fi ts into the DOE/

JGI priority of sequencing bioenergy feedstock species. 
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Th e genus Populus has 30+ species (aspens and cotton-

woods) with genome sizes of approximately 500  Mb. 

Several species are being sequenced by DOE/JGI, and 

other groups around the world, and it seems likely that all 

members of the genus will soon have a genome sequence 

(Table  1). Th e next forest tree to be sequenced was the 

fl ooded gum (Eucalyptus grandis BRASUZ1, which is a 

member of the Myrtaceae family), again by DOE/JGI. 

Eucalyptus species and their hybrids are important 

commercial species grown in their native Australia and 

many regions throughout the southern hemisphere. 

Several more eucalyptus species are being sequenced 

(Table  1), each with relatively small genomes (500  Mb), 

but it will probably take many years before all 700+ 

members of this genus are completed. Several members 

of the Fagaceae family are now being sequenced (Table 1). 

Members of this group include the oaks, beeches and 

chestnuts, with genome sizes less than 1 Gb.

Th e gymnosperm forest trees (such as the conifers) 

were the last to enter the world of genome sequencing. 

Th is was entirely due to their very large genomes (10 Gb 

and greater) as they are extremely important econo mi-

cally and ecologically, and phylogenetically they represent 

the ancient sister lineage to that of angiosperm species. 

Genome resources needed to support a sequencing 

project were reasonably well developed, but it was not 

until the introduction of next-generation sequencing 

(NGS) technologies that sequencing conifer genomes 

became tractable. Currently, there are at least ten conifer 

(Pinaceae) genome-sequencing projects under way 

(Table 1).

Aside from reference genome sequencing in forest 

trees, there is signifi cant activity in transcriptome 

sequencing and resequencing for polymorphism dis-

covery (Tables  2 and 3). We have only listed the trans-

criptome and resequencing projects in Table 1 that are 

associated with a species that has an active genome-

sequencing project.

The opportunity for comparative-genomic 

approaches in forest trees

Th e power of comparative-genomic approaches for 

under standing function in an evolutionary framework is 

well established [7-13]. Comparative genomics can be 

applied to sequence data (nucleotide and protein) at the 

level of individual genes or genome-wide. Genome-wide 

approaches provide insight into both chromosome 

evolution and the diversifi cation of biological functions 

and interactions.

Understanding of gene function in forest tree species is 

challenged by the lack of standard reverse-genetic tools 

routinely used in other systems  - for example, standard 

marker stocks, facile transformation and regeneration  - 

and by the long generation times. Th us, comparative 

genomics becomes the more powerful approach to 

under standing gene function in trees.

Comparative genomics requires not only data availa-

bility but also cyber-infrastructure to support exchange 

and analysis. Th e TreeGenes database is the most com-

pre hensive resource for comparative-genomic analyses in 

forest trees [14]. Several smaller databases have been 

created to facilitate collaborations, including: Fagaceae 

genomics web, hardwoodgenomics.org, Quercus portal, 

PineDB, ConiferGDB, EuroPineDB, PopulusDB, PoplarDB, 

EucalyptusDB and Eucanext (Tables  1, 2, and 3). Th ese 

resources vary greatly in their scope, relevance and 

integration. Some are static and archival, whereas others 

focus on current sequence content for a specifi c species 

or a small number of related species. Th is results in 

overlapping and confl icting data among repositories. In 

addition, each database uses its own custom interfaces 

and back-end database technology to serve sequence to 

the user. Th e US National Science Foundation funding 

for large-scale infrastructure projects, such as iPlant, is 

leading eff orts aimed towards centralizing resources for 

research communities [15]. Without centralized resour-

ces, researchers are forced to employ ineffi  cient data-

mining methods through queries of independently main-

tained databases or inconsistently formatted supple men-

tal fi les on journal websites. Specifi c areas of interest for 

the forest tree genomic community include the ability to 

connect sequence, genotype and phenotype to individual, 

geo-referenced trees. Th is type of integration can only be 

achieved through web services that allow disparate 

resources to communicate in ways that are transparent to 

the user [16]. With the recent increase of genome 

sequences available for many of these species, there is a 

Box 1. Research priorities in f orest tree genomics 

identifi ed in earlier Opinion papers

From Neale and Ingvarsson [1]:

• Deep expressed-sequence tag (EST) sequencing in many 

species

• Comparative resequencing in many species

• Reference genome sequence for pine

From Neale and Kremer [2]:

• Reference genome sequences for several important species

• Greater investment in diverse species towards understanding 

ecological function

• Application of next-generation sequencing technologies 

to understand adaptation using landscape genomic 

approaches

• Greater investment in database resources and cyber-

infrastructure development

• Development of new and high-throughput phenotyping 

technologies

Neale et al. Genome Biology 2013, 14:120 
http://genomebiology.com/2013/14/6/120

Page 2 of 8



Table 1. Genome resources in forest trees

   Sequence  Related
Family Genus Species access Genome publications

Pinaceae Pinus taeda (loblolly pine) [14,19] Resequenced amplicons  

 [20] BACs [21,22]

 [14,19] Fosmids  

   [23] Draft genome complete  

 Pinus lambertiana (sugar pine) [14,19] Resequenced amplicons [24]

   [23] Draft genome (in progress)  

 Pseudotsuga menziesii (Douglas-fi r) [14,19] Resequenced amplicons [25]

   [23] Draft genome (in progress)  

 Pinus sylvestris (Scots pine) [26] Draft genome (in progress)  

 Pinus pinsater (maritime pine) [26] Draft genome (in progress)  

   [14,19] Resequenced amplicons [27]

 Pinus sibirica (Siberian pine) [28] Draft genome (in progress)  

 Pinus radiata (Monterey pine) Draft genome (in progress)  

   [14,19] Resequenced amplicons [29]

 Picea abies (Norway spruce) [14,19] Resequenced amplicons [30]

   [31] Draft genome complete (restricted)  

 Picea glauca (white spruce) [32] Draft genome complete  

 [14,19] BACs [33]

 Larix sibirica (Siberian larch) [28] Draft genome (in progress)  

Salicaceae Populus trichocarpa (black cottonwood) [34] Genome complete [6]

 [19] BACs [35]

 Genome resequencing (restricted) [36]

 Populus tremula (European aspen) [37] Draft genome complete  

 Populus tremula x tremuloides [37] Draft genome complete  

 Populus tremuloides (quaking aspen) [37] Draft genome complete  

   [19] BACs [38]

 Populus grandidentata (bigtooth aspen) [37] Draft genome complete  

 Populus nigra (black poplar) [39] Draft genome complete (restricted)  

 Salix purpurea (purpleosier willow) [40] Draft genome complete (restricted)  

Myrtaceae Eucalytpus grandis (rose gum) [19] BACs [41]

   [34] Draft genome complete  

 Eucalyptus globulus (blue gum) [42] Draft genome (in progress)  

 Eucalyptus camaldulensis (river red gum) [43] Draft genome complete [44]

 Corymbia citriodora (lemon-scented gum) [45] Draft genome complete (restricted)  

Fagaceae Quercus robur (English oak) [19] BACs [46,47]

 [48] Draft genome (in progress)  

 Castanea mollissima (Chinese chestnut) [49] Draft genome (in progress)  

   [50] BACs [51]

Betulaceae Betula nana (dwarf birch) [52] Draft genome complete [53]

Oleaceae Fraxinus excelsior (European ash) [54] Draft genome complete  

Details current genome sequencing projects in forest trees with sequence access information and relevant publications.
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need to facilitate community-level annotation and 

research support.

The need for a better-developed open-access 

culture in forest tree genomics research

Th e Human Genome Project established a culture of 

open access and data sharing in genomics research for 

both humans and animal models that has been extended 

to many other species, including Arabidopsis, rat, cow, 

dog, rice, maize and more than 500 other eukaryotes. 

Beginning in the late 1990s, these large-scale projects 

released data very rapidly to the scientifi c community, 

often years before publication. Th is rapid release of data 

with few restrictions has allowed thousands of scientists 

to begin work on specifi c genes and gene families, and on 

functional studies, long before the genome papers have 

appeared. One of the driving motivations for this culture, 

and the reason that many scientists support it, is that 

large-scale sequencing can be done most effi  ciently when 

centers that have expertise in sequencing technology take 

the lead. With all the sequencing concentrated, the body 

of data needs to be shared freely in order to get it in the 

Table 2. Transcriptome resources in forest trees

   Sequence  Related
Family Genus Species access Transcriptome publications

Pinaceae Pinus taeda (loblolly pine) [14,19,55] EST sequencing (Sanger) [56-59]

 [14,19,60] EST sequencing (454) [60]

 [19] Exome resequencing [61]

 Pinus lambertiana (sugar pine) [14,19,60] EST sequencing (454) [60]

 Pseudotsuga menziesii (Douglas-fi r) [14,19] EST sequencing (Sanger)  

   [14,19,62] EST sequencing (454) [60,63,64]

 Pinus sylvestris (Scots pine) [14,19,55] EST sequencing (Sanger)  

 Pinus pinsater (maritime pine) [14,19,65] EST sequencing (Sanger/454) [65,66]

 Pinus radiata (Monterey pine) [14,19,55] EST sequencing (Sanger) [67-72]

 Picea abies (Norway spruce) [14,19,60] EST sequencing (454) [60]

   [19] EST sequencing (Next-Gen) [73]

 Picea glauca (white spruce) [19] UniGenes (Sanger/454) [74]

Salicaceae Populus trichocarpa (black cottonwood) [14,19,75] EST sequencing (Sanger) [75-78]

 [19] Exon capture [79]

 [14, 19] UniGenes (Sanger) [80]

 Populus tremula (European aspen) [14,19,75] EST sequencing (Sanger) [75,81]

 Populus tremula x tremuloides [14,19,75] EST sequencing (Sanger) [75,76]

 Populus tremuloides (quaking aspen) [14,19] EST sequencing (Next-Gen) [82]

 Populus nigra (black poplar) [14,19] UniGenes (Sanger) [83]

Myrtaceae Eucalytpus grandis (rose gum) [14,19] EST sequencing (Sanger) [84-86]

   [14,19] EST sequencing (NextGen) [87]

 Eucalyptus globulus (blue gum) [14,19] EST sequencing (Next-Gen) [41,88]

 Eucalyptus camaldulensis (river red gum) [14,19] EST sequencing (RNA-Seq) [89]

Fagaceae Quercus robur (English oak) [19,90] EST sequencing (454) [91]

 Castanea mollissima (Chinese chestnut) [50] EST sequencing (454) [92,93]

Oleaceae Fraxinus excelsior (European ash) [19] EST sequencing (454) [94]

Details current transcriptome sequencing projects in forest trees with sequence access information and relevant publications.
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hands of the widely distributed experts. Th is open-access 

culture has dramatically accelerated scientifi c progress in 

biological research.

The path to success avoids delays

Careful inspection of Table  1 reveals that forest tree 

genome projects are very slow to release sequence data 

into the public domain. Once a project is fi nished and 

submitted for publication, a draft genome becomes 

available - for example, the poplar genome was released 

and published in 2006. However, pre-publication releases 

are infrequent, exceptions being the PineRefSeq project 

that has made three releases and the SMarTForest 

project that has made one (Table 1). Th is is unfortunate 

because good-quality sequence contigs and scaff olds 

could be made available years before publication, deliver-

ing an extremely important resource to the community. 

Th is delay can be understood from privately fi nanced 

projects seeking commercial advantages, but nearly all 

the projects listed in Table 1 are fi nanced by public funds 

whose stated mission is advancing science and 

development of community resources. Publication rights 

are easily protected by data-use policy statements such as 

the Ft Lauderdale [17] and Toronto agreements [18], but 

unfortunately these conventions are not often used and 

data access is restricted by password-protected websites 

(Tables 1, 2, and 3). We hope the opinion off ered here will 

lead to a discussion in the forest tree community, to a 

more open-access culture and thus to a more vibrant and 

rapidly advancing research area.
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