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Abstract

DNA methylation is the most widely studied epigenetic mark and is known to be essential to normal development
and frequently disrupted in disease. The Illumina HumanMethylation450 BeadChip assays the methylation status of
CpGs at 485,577 sites across the genome. Here we present Subset-quantile Within Array Normalization (SWAN), a
new method that substantially improves the results from this platform by reducing technical variation within and
between arrays. SWAN is available in the minfi Bioconductor package.

Background
DNA methylation, which is the addition of a methyl
group to the cytosine of a CpG dinucleotide, is one of
the most widely studied epigenetic modifications in
human development and disease. Changes in DNA
methylation are vital for normal development and differ-
entiation [1], whilst aberrant methylation is involved in
diseases such as diabetes, schizophrenia, multiple sclero-
sis and cancer [2-4]. As interest in epigenetics, and par-
ticularly DNA methylation, has increased, analysis
methods have had to evolve in scale and resolution.
Currently, several microarray and next-generation
sequencing technologies are available that allow the
interrogation of DNA methylation on a genome-wide
scale [5-14]. Each of these approaches has inherent
strengths and weaknesses, which have been compared
and discussed in several recent reviews [15-18]. As
sequencing-based DNA methylation assays become
more affordable, it is anticipated that they will be more
widely used in this arena; at present, however, they are
still too costly for most studies, particularly those that
involve large numbers of samples. Consequently, methy-
lation arrays are a popular alternative for high-through-
put DNA methylation analyses.
DNA methylation profiling using Illumina’s Infinium

technology was first utilized on the Infinium

HumanMethylation27 (27k) BeadChip [12,19]. More
recently, the genomic coverage of the array was dramati-
cally increased, leading to the production of the Infi-
nium HumanMethylation450 (450k) BeadChip, which
interrogates the methylation status of 485,577 CpGs in
the human genome. The Infinium assay detects methy-
lation status with single base resolution, without the
need for methylated DNA capture, thereby avoiding
capture-associated biases. The 50 bp Infinium methyla-
tion probes query a [C/T] polymorphism created by
bisulfite conversion of unmethylated cytosines in the
genome. However, the Infinium 450k methylation plat-
form is unique in that it uses a combination of two dis-
tinct probe types, Infinium I and II (Figure 1a,b).
The Infinium I design, which was previously employed

on the 27k arrays, uses fluorescence from two different
probes, unmethylated (converted) and methylated
(unconverted), to assess the level of methylation of a
target CpG. If a target CpG was methylated in the sam-
ple, the DNA fragment will remain unconverted after
bisulfite treatment and will therefore bind to the com-
plementary ‘methylated’ probe, which terminates at the
3’ end with a cytosine. If the target CpG was unmethy-
lated, however, binding will occur to the complementary
‘unmethylated’ probe, which terminates at the 3’ end
with a thymine. Binding at either probe is followed by
single base extension that results in the addition of a
fluorescently labeled nucleotide (Figure 1a). It is
assumed that the methylation status of CpGs underlying
the 50 bp probe body is correlated to that of the target
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Figure 1 Illumina Infinium HumanMethylation450 assay. (a) Infinium I assay. Each individual CpG is interrogated using two bead types:
methylated (M) and unmethylated (U). The probe design assumes that all CpGs underlying the probe body have the same methylation status as the
target CpG. Both bead types will incorporate the same labeled nucleotide for the same target CpG, thereby producing the same color fluorescence.
The nucleotide that is added is determined by the base downstream of the ‘C’ of the target CpG. The proportion of methylation, b, can be calculated
by comparing the intensities from the two different probes in the same color: b= M/(U + M). (b) Infinium II assay. Each target CpG is interrogated
using a single bead type. A probe may have up to three underlying CpG sites, with a degenerate R base corresponding to the ‘C’ of each CpG.
Methylation state is detected by single base extension at the position of the ‘C’ of the target CpG, which always results in the addition of a labeled ‘G’
or ‘A’ nucleotide, complementary to either the ‘methylated’ C or ‘unmethylated’ T, respectively. Each locus is detected in two colors, and methylation
status is determined by comparing the two colors from the one position: b = Green (M)/(Red (U) + Green (M)). (c) The number of CpG dinucleotides
in the body of the probe according to Infinium probe type. Infinium I probes have significantly more CpGs in the probe body.
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CpG such that CpGs in the probe body of an unmethy-
lated (converted) probe are also converted, while CpGs
in the body of a methylated (unconverted) probe will
remain unconverted. By contrast, the Infinium II design
uses only a single probe per target CpG, which incorpo-
rates a ‘degenerate’ R-base at any underlying CpG sites
in the probe body. The 3’ end of each Infinium II probe
is complementary to the base directly upstream of the
‘C’ of the target CpG. Methylation state is detected by
single base extension at the position of the ‘C’ of the
target CpG, which always results in the addition of a
labeled ‘G’ or ‘A’ nucleotide, complementary to either
the ‘methylated’ C or ‘unmethylated’ T, respectively (Fig-
ure 1b).
The Infinium II design is the preferred probe design

for the 450k chip. Bibikova et al. [20] demonstrated that
the Infinium II probes could have up to three CpG sites
underlying their 50 bp probe body without affecting
data quality. However, hybridization kinetics and specifi-
city were often compromised in regions of higher CpG
density and therefore Infinium I probes are still used to
expand the number of CpG sites that can be assayed.
Consequently, many of the Infinium I probes contain
three or more underlying CpGs, whilst most Infinium II
probes have less than three underlying CpGs (Figure
1c).
Technical differences between the Infinium I and Infi-

nium II probe types have been observed. Bibikova et al.
[20] noted a difference in the b value distributions they
produced, where b is defined as the proportion of the
total signal coming from the methylated channel. Speci-
fically, they noticed a compression in the b value distri-
bution of Infinium II probes compared to Infinium I.
Similarly, Dedeurwaerder et al. [21] reported that the b
values obtained from the Infinium II probes displayed a
narrower range than those obtained from Infinium I
probes and suggested that Infinium II probes are less
sensitive for the detection of extreme methylation values
due to the two-color detection method used. They sug-
gested a simple scaling of b values for Infinium II
probes and reported improved results in terms of valida-
tion against bisulfite pyrosequencing data, but also
noted potential difficulties in applying this procedure to
cancer samples.
Here we present a novel method to normalize between

Infinium probe types on the 450k platform. This
method derives from normalization methods that have
been hugely successful for microarray expression plat-
forms [22-24]. Specifically, we introduce a Subset-quan-
tile Within Array Normalization (SWAN) method that
allows the Infinium I and II probes within a single array
to be normalized together. We show that this method
substantially reduces the differences in b value distribu-
tion observed between Infinium I and II probes. We

also demonstrate that this method improves correlation
between technical replicates, whilst increasing the num-
ber of significantly differentially methylated probes that
are detected. SWAN is written in the R programming
language and is available in the minfi package [25] from
Bioconductor.

Results
Subset-quantile Within Array Normalization
Normalization is intended to remove sources of techni-
cal variation between measurements. In this process,
however, it is important that any true biological differ-
ences between samples and probes are maintained. It
has been observed that there are differences between
Infinium I and Infinium II probes that are clearly tech-
nical in nature [21,26]. However, true biological differ-
ences also exist between the probe types due to the
design criteria of the array. Figure 2 shows the differ-
ences in the intensity distributions of the Infinium I and
Infinium II probes. We assume that most of the qualita-
tive differences can be explained by the fact that, on
average, the Infinium I probes contain a higher propor-
tion of CpGs along the body of the probe. Specifically,
probes with a high proportion of CpGs are more likely
to be in CpG dense areas of the genome and therefore
often reside in CpG islands, while probes with few
CpGs are less likely to be in CpG islands. Based on the
Illumina annotation, 57% of Infinium I probes are found
in CpG islands, whilst only 21% of Infinium II probes
are designated as islands. It has been well documented
that CpGs in CpG islands have different methylation
patterns compared to CpGs in the rest of the genome
[27-29]. Therefore, it is not surprising that the distribu-
tions of the intensities of Infinium I and Infinium II
probes are vastly different.
Because the two probe types interrogate different sub-

sets of the genome, established methods for normaliza-
tion, such as quantile normalization, cannot be applied
naively between probe types. Standard quantile normali-
zation makes the distribution of probe intensities for
each array in a set of arrays identical. More recently, a
subset quantile normalization approach was introduced
that uses large sets of control probes on the arrays for
normalization and assumes that only the distributions of
these control probes remain constant [30]. However,
there are no large sets of controls that have probes cor-
responding to both the Infinium I and Infinium II
designs on the 450k platform.
In order to develop a normalization method, we

assume that the overall intensity distribution should be
the same when the underlying CpG contents of the
probes are the same. In other words, we assume the
CpG content of the probes reflects the biology by being
a surrogate for the CpG density of the region. Indeed,
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we find that the intensity distributions of probes with
the same number of CpGs in the probe body are similar
(Figure 3). The degree of similarity does vary on a sam-
ple to sample basis; however, we generally find that the
intensity distributions of probes with the same number
of CpGs in the probe body are more similar than the
overall intensity distributions. Q-Q plots (Figure S1 in
Additional file 1) of the sample shown in Figure 4
further support our observation, as they appear to be
more linear when probes are grouped by their underly-
ing CpG content than when all probes are considered
together. Hence, the underlying assumption in our pro-
posed method is that the differences in the intensity dis-
tributions between the probe types, seen in Figure 4,
represent technical differences between the Infinium I
and II probe types.
The SWAN method has two parts. First, an average
quantile distribution is determined using a subset of
probes defined to be biologically similar based on CpG
content. This is achieved by randomly selecting N Infi-
nium I and II probes that have one, two and three
underlying CpGs, where N is the minimum number of
probes in the six sets of Infinium I and II probes with
one, two and three probe body CpGs. If no probes have
been filtered out - for example, sex chromosome probes,
and so on - N = 11,303. This results in a pool of 3N
Infinium I and 3N Infinium II probes. Due to the vast
differences in their distributions (Figure 2), the

subsequent processing is performed independently on
both the methylated and unmethylated channels. The
subset for each probe type, from each channel (methy-
lated or unmethylated), is sorted by increasing intensity.
The value of each of the 3N pairs of observations is
then assigned to be the mean intensity of the two probe
types for that row or ‘quantile’. This is the standard
quantile procedure. The second step is to then adjust
the intensities of the remaining probes, of which there
are many more Infinium II than I, by interpolation onto
the distribution of the subset probes. This is done for
each probe type separately using linear interpolation
between the subset probes to define the new intensities.
Consequently, while the distribution of the subset is
identical, the intensity distribution of Infinium I probes
is still vastly different from the distribution of Infinium
II probes (Figure S2 in Additional file 1).

SWAN makes Infinium I and II b value distributions more
similar
We applied the SWAN method to the fully methylated
(FM), fully unmethylated (FU) and hemi-methylated
(HM) sample analyzed by Bibikova et al. [20]. The raw
data were imported from IDAT files using the minfi
package [25]. SWAN was applied to the raw intensity
data and b values were calculated using the methylated
and unmethylated intensity values for both the raw and
SWAN normalized data. Figure 4a shows the raw and
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Figure 2 Intensity distributions of the Infinium I and II probe types in the methylated and unmethylated channels for normal human
kidney sample TCGA-B0-5092-11. The qualitative differences in the intensity distributions are probably driven by the biological differences
between the regions that the two probe types are interrogating, which is reflected by the difference in density of CpGs in the body of the
probes.
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SWAN normalized b value distributions for Infinium I
and II probes for all three methylation standards. It can
be seen that after SWAN the average b value distribu-
tions from the two probe types are more consistent,

particularly for the FM and FU samples. Furthermore,
the absolute difference in the medians of the Infinium I
and II b value distributions is reduced after using
SWAN for all three standards (Figure 4b; difference in

Figure 3 Intensity distributions of subsets of Infinium I and II probes with the same number of underlying CpGs for normal human
kidney sample TCGA-B0-5092-11. (a) One CpG in the probe body. (b) Two CpGs in the probe body. (c) Three CpGs in the probe body.
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Figure 4 Differences in b value distributions produced by Infinium I and II probes. (a) Density distributions of b values produced by
Infinium I (solid line) and II (dashed line) probes for unmethylated (blue), hemi-methylated (purple) and methylated (red) reference standards
(Std.). The difference in b value distribution between the Infinium I and II probes seen in the raw data can be adjusted for using the SWAN
method. (b) The median and inter-quartile range of b value distributions for Infinium I and II probes is more similar when SWAN is applied to
450k data. (c) The differences in b value distributions produced by the different probe types can result in aberrant overall b value distributions,
as seen in this normal human DNA sample. Applying the SWAN method results in an improvement in the overall b value distribution.
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medians: FM-Raw: 0.032, FM-SWAN: 0.012; HM-Raw:
0.057, HM-SWAN: 0.041; FU-Raw: 0.084, FU-SWAN:
0.017). Figure 4c shows an example of how the differ-
ences in the two probe types can result in an aberrant
overall b value distribution for a normal human DNA
sample. Using SWAN, however, corrects the overall dis-
tribution (Figure 4c). The SWAN procedure reduces the
absolute difference between the peak positions of Infi-
nium I and Infinium II probes at the unmethylated
(ΔPU) and methylated (ΔPM) extremes of the distribu-
tion (see Materials and methods). For the data shown in
Figure 4c, ΔPU is reduced from 0.067 to 0.046, whilst
ΔPM remains relatively unchanged from 0.035 to 0.038,
resulting in an improved overall b value distribution.
Although the changes to the overall b value distribution
appear dramatic for some samples, not all samples have
large differences in probe type distributions. Usually the
changes to the b values of individual CpGs after SWAN
are less than ±0.1 (Figure S3 in Additional file 1).
Next we compared the results of methylation analysis

for an MCF7 sample that was assayed on the 450k array
and the older 27k array. The 27k array only includes
probes of the Infinium I design. Of the CpGs interro-
gated on the 27k array, 25,978 are included on the 450k
array but many (91%) of them are now assayed using
the Infinium II design, while the remaining sites are still
assayed using the Infinium I design. We found that
using SWAN made the 450k Infinium I and II b value
distributions more similar to those of 27k by reducing
the absolute difference in the locations of the peaks at
the extremes of the distribution (Figure 6). ΔPU is
reduced for 27k compared to 450k Infinium I from
0.021 to 0.018 and Infinium II from 0.0174 to 0.0167,
whilst ΔPM is also reduced for 27k compared to 450k
Infinium I from 0.085 to 0.067 and Infinium II 0.04 to
0.013.

SWAN reduces technical variability
Next, we used four sets of technical replicates to show
that SWAN reduces overall technical variability between
arrays. The DNA samples, NA17105 and NA17018, and
the MCF7 and A431 cancer cell lines were originally
reported in Bibikova et al. [20] as technical replicates.
We compared the density distributions of b values
between the technical replicates for both the raw and
SWAN normalized data (Figure 5). The similarity
between the b value distributions of each pair of repli-
cates was tested using the Kolmogorov-Smirnov (KS)
test. The null hypothesis of the KS test is that the two
replicates have the same distribution; therefore, a larger
P-value indicates greater similarity between the distribu-
tions. The results of the KS test for each set of replicates
indicate that the b value distributions of the replicates
are more similar after using SWAN. The same result

was obtained when we performed the KS test on the M-
value (log2(Methylated/Unmethylated)) distributions of
the replicate pairs (Figure S4 in Additional file 1).
Furthermore, the correlation between replicates,
although high to begin with, always increased (Figure S5
in Additional file 1). Together, this indicates that
although SWAN is a within array procedure that makes
the Infinium I and Infinium II probes comparable, it
also reduces technical variability when comparing
between arrays by accounting for technical differences
in the comparison of the two probe types between
arrays. In other words, the difference between the distri-
butions of Infinium I and Infinium II probes varies on
an array by array basis regardless of the sample that is
hybridized.

SWAN leads to better detection of differential
methylation
We have shown that SWAN reduces technical variation
between arrays. In order to show that the biological dif-
ferences of interest have been maintained, we performed
a differential methylation analysis between two groups,
as reducing technical variation whilst maintaining biolo-
gical differences should increase the power to detect
truly differentially methylated CpGs. We performed a
differential methylation analysis comparing three normal
human kidney samples to three normal human rectum
samples. To evaluate the impact of SWAN on differen-
tial methylation analysis, unrelated kidney and rectal
mucosa samples analyzed by reduced-representation
bisulfite sequencing (RRBS) were used to define a set of
‘truly’ differentially methylated loci (see Materials and
methods).
All of the processing and analysis of the 450k data

were performed using the minfi Bioconductor package
[25] (see Materials and methods). As there was a mix-
ture of male and female donors, probes on the × and Y
chromosomes were excluded prior to further analysis.
The data were then normalized using SWAN. Probes
with a detection P-value >0.01 in at least one sample
were removed at this stage from both the raw and
SWAN treated data. A subset of 18,678 CpGs that over-
lapped with the RRBS methylation data was selected for
differential analysis. This subset contained approxi-
mately equal numbers of Infinium I (44.6%) and Infi-
nium II (55.4%) probes. An identical differential
methylation analysis was performed using the testing
available in minfi on both the raw and SWAN treated
data. Figure 7a shows that a higher percentage of true
positives was identified using SWAN at a range of q-
value thresholds. Furthermore, the receiver operating
characteristic (ROC) curve [31], seen in Figure 7b,
demonstrates that the analysis using SWAN consistently
outperformed the analysis of the raw data. These results

Maksimovic et al. Genome Biology 2012, 13:R44
http://genomebiology.com/2012/13/6/R44

Page 7 of 12



Figure 5 b value density distributions for four pairs of technical replicates before and after applying SWAN. (a-d) b value density
distributions for each pair of technical replicates. The Kolmogorov-Smirnov (KS) test P-value reflects the similarity of the b value distributions
between each pair of replicates; a larger P-value indicates that the distributions of the replicates are more similar.
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indicate that whilst SWAN reduces technical variation,
it does not reduce sensitivity.
We performed a second differential methylation analy-

sis comparing three male arrays with two female arrays
where each array is a pool of two individuals. The data
were processed using three different methods: no nor-
malization (raw), Illumina’s control normalization as
implemented in minfi and SWAN. Probes on the Y
chromosome and probes with a detection P-value >0.01
in one or more samples were excluded, leaving a total
of 482,704 probes for differential methylation analysis.
Differential methylation analysis was performed using
the testing available in minfi on each of the three differ-
ent versions of the data. Using SWAN consistently
resulted in a higher number of significantly differentially
methylated probes (DMPs) across a range of q-value
thresholds (Figure S6a in Additional file 1). Further-
more, using SWAN facilitated the detection of more
unique DMPs (170) than using the other methods (118)
(Figures S6b and S7 in Additional file 1). We also found
that, as expected, a larger proportion (77.6%) of the
unique DMPs detected when using SWAN was from
the × chromosome, when compared with the combined
set of unique DMPs detected using the other methods
(63.6%).

Discussion
The HumanMethylation450 BeadChip includes a combi-
nation of two different probe designs for assaying the

methylation status of 485,577 CpG sites across the
human genome. This unique design clearly produces
technical differences between probe types within a single
array. Here we present a new within array normalization
method that substantially reduces the technical variabil-
ity between the probe types whilst maintaining the
important biological differences.
The SWAN method makes the assumption that the

number of CpGs within the 50 bp probe sequence
reflects the underlying biology of the region being inter-
rogated. Hence, the overall distribution of intensities of
probes with the same number of CpGs in the probe
body should be the same. The method then uses a sub-
set quantile normalization approach to adjust the inten-
sities of the probes on the arrays.
SWAN clearly improves the results obtained from the

450k array. We show that technical variability is
reduced, whilst increasing the ability to detect differen-
tial methylation between samples. We also report better
correlation between the 450k arrays and the 27k arrays,
which will be important for studies that aim to combine
data from both platforms.
Although further investigations into other aspects of the

analysis of these arrays, such as color normalization,
between array normalization and statistical testing proce-
dures for differential methylation may prove beneficial, we
feel that SWAN is an essential step in the analysis of the
Illumina Infinium HumanMethylation450 BeadChip.
SWAN is available in the Bioconductor package minfi [25].
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Figure 6 Comparison of b value density distributions between HumanMethylation450 and HumanMethylation27 arrays before and
after SWAN in an MCF7 cell line. This plot illustrates the b value density distributions for 25,978 CpGs that are present on both 450k and 27k
platforms. The peaks of the 450k Infinium I and II probe types show better alignment with the 27k peaks when SWAN is used.
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Materials and methods
Data
The HumanMethylation450 data for the unmethylated,
methylated and hemi-methylated reference standards, as
well as the NA17105 and NA17018 DNA samples, and
the MCF7 and A431 cancer cell lines were obtained
from the Illumina website in the raw IDAT format. The
HumanMethylation27 MCF7 data were kindly provided
by Dr Marina Bibikova (Illumina).
The normal human kidney and rectum methylation

data were sourced from The Cancer Genome Atlas
(TCGA) Data Portal [32]. Specifically, the normal kidney
samples (TCGA-B0-5121-11, TCGA-BP-4177-11 and
TCGA-B0-5092-11) were part of the kidney renal clear
cell carcinoma cohort, whilst the normal rectum sam-
ples (TCGA-AG-3731-11, TCGA-AG-3725-11 and
TCGA-B0-5121-11) were from the rectal adenocarci-
noma cohort. All the data were in the raw IDAT format.
The RRBS data were obtained from the Epigenomics

Roadmap at NCBI [33]. The normal human kidney
(NA000003582.1) and normal human primary rectal
mucosal tissue (NA000003579.1) samples were both
obtained in WIG format, which is a series of base pair posi-
tions with corresponding b values for each chromosome.
The data for the male versus female differential

methylation comparison comprise a subset of data gen-
erated for an unrelated study by Martino et al. [34].

Briefly, the five HumanMethylation450 arrays used in
this study were hybridized with bisulfite converted DNA
pooled from three samples from two male individuals
and two samples from two female individuals extracted
from mononuclear cells collected at birth. These data
were also in the raw IDAT format.

Normalization
As described in the results, the SWAN method has two
parts. An average quantile distribution is firstly determined
using a randomly selected subset of probes defined to be
biologically similar based on CpG content. The subset for
each probe type, from the methylated and unmethylated
channels separately, is then sorted by increasing intensity
and the value of each observation is assigned to be the
mean intensity of the two probe types for that row or
‘quantile’. Subsequently, the intensities of the remaining
probes are adjusted for each probe type separately using
linear interpolation between the subset probes to define
the new intensities. However, if probe i has an intensity
greater than the maximum intensity of the subset probes,
then it is given an intensity using the following rule:

xi > max(xsub)

di = xi − max(xsub)

x′
i = max(x′

sub) + di

Figure 7 Results of differential methylation analysis of three kidney samples compared to three rectum samples, with and without
using SWAN. (a) Percentage of RRBS true positives identified at various q-value significance thresholds. Using the SWAN method (magenta)
consistently detects more RRBS true positives than analyzing raw data (black). (b) Receiver operating characteristic (ROC) curve of an analysis
using SWAN compared to an analysis of the raw data. Using SWAN (magenta) prior to differential methylation analysis results in performance
gains.
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where x are the measured intensities and x’ are the
normalized intensities for probe i, and the normalization
subset is denoted by sub. Similarly, for probes with
intensities less than the minimum intensity in the sub-
set, the rule is:

xi < min(xsub)

di = min(xsub) − xi
x′
i = min(x′

sub) − di

If the normalized intensity of any probe is less than or
equal to zero, its intensity is set to the median intensity
of the negative control probes.

Calculating ΔP
In order to assess the performance of the method, we
calculated the difference in the peak positions of the
Infinium I and Infinium II probes [21]. We define PU to
be the position of the maximum of the b distribution
with b < 0.5 (unmethylated peak) and PM to be the posi-
tion of the maximum with b > 0.5 (methylated peak).
We define the absolute difference in peak positions
between Infinium I and Infinium II probes as |ΔP = PI -
PII| for both the methylated and unmethylated peaks.

Selecting RRBS validation data
To identify CpG loci that were interrogated in both the
RRBS and HumanMethylation450 data, we firstly identi-
fied a set of CpGs that were assayed in both the kidney
and rectum RRBS samples. The resulting list was then
intersected with the probe locations of the Human-
Methylation450 data. This produced a subset of 18,678
CpG loci.

Differential methylation analysis: tissue comparison
IDAT files were loaded into the R (2.14) environment
using the Bioconductor (2.9) minfi package (1.0.0) [25].
The detection P-values for all probes were then calcu-
lated for the data using functionality provided in minfi.
Probes on the × and Y chromosomes were removed at
this stage. Two versions of the data were used in subse-
quent analyses: the raw data and SWAN data. Probes
with a detection P-value >0.01 in one or more samples
were then excluded. The differential methylation analy-
sis was performed for both datasets on the subset of
18,678 probes that overlapped with the RRBS data using
the ‘dmpFinder’ minfi function. The ‘dmpFinder’ func-
tion uses an F-test to identify positions that are differen-
tially methylated between two groups. The tests are
performed on M-values (log2(Methylated/Unmethy-
lated)) as recommended in Du et al. [35]. Variance
shrinkage was used due to the small sample size. In
‘dmpFinder’, the sample variances are squeezed by com-
puting empirical Bayes posterior means using the limma

package [36]. Example R code for performing a differen-
tial methylation analysis using minfi can be found in
Additional file 2.
True positives were defined to be CpGs that had an

absolute difference in b value >0.25 between the kidney
and rectum RRBS samples. Additionally, for the ROC
analysis, which was performed using the ROCR package
[31], true negatives were defined as those CpGs found
to have an absolute difference in b value <0.05 between
the RRBS samples.

Additional material

Additional file 1: Supplementary Figures S1 to S7.

Additional file 2: Example differential methylation analysis using
minfi and SWAN in R.
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