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Abstract

provide possible solutions to them.

We propose a new method that incorporates population re-sequencing data, distribution of reads, and strand bias
in detecting low-level mutations. The method can accurately identify low-level mutations down to a level of 2.3%,
with an average coverage of 500x%, and with a false discovery rate of less than 1%. In addition, we also discuss
other problems in detecting low-level mutations, including chimeric reads and sample cross-contamination, and

Background

Next-generation sequencing (NGS) is now widely used
in biological and medical studies. Most re-sequencing
studies have the goal of identifying homozygous or het-
erozygous mutations in diploid genomes (that is, muta-
tions present at 50% or 100% frequency in sequence
reads), and use this information to study genome evolu-
tion, infer population history, or identify causal genes/
mutations in disease-association studies [1,2]. However,
some applications require the identification of low-level
mutations (LLMs) that are present at frequencies well
below 50% within the population of molecules that is
typically sequenced in an NGS study; examples include
heteroplasmic mutations in mitochondrial DNA
(mtDNA) genomes [3], somatic mutations in tumors [4],
or mutations in pooled DNA samples [5].

Challenges in detecting true LLMs come from sequen-
cing error, library contamination, PCR artifacts, and so
on. Sequencing error is the most common problem; for
instance, the Illumina Genome Analyzer, which is one
of the most popular NGS platforms, has an average
error rate of 0.01 [6]. Moreover, sequencing error is
unevenly distributed along the genome and may be
influenced by the sequence context, position on the
read, and molecule structure, resulting in sequencing
error ‘hot spots’ where the error rate can be ten-fold
greater (or more) than the genome average [3,7-10].
Unfortunately, those features resulting in sequencing
error hot spots have not been fully characterized, thus
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making it difficult to distinguish sequencing errors from
true LLMs [10].

Detecting ‘true’ mutations involves genotype estima-
tion (that is, the mutation frequency is expected to be
0%, 50%, or 100% for diploid data), and methods exist
to provide accurate inference at a coverage of around
20x [2,11]. By contrast, even though much higher
sequencing depth is typically obtained for NGS studies
designed to detect LLMs (often >1,000x), the challenge
remains to distinguish LLMs from sequencing errors
[12]. Recently, several attempts have been made, either
by modifying the sequencing library protocol [13,14], or
using control data or population data to identify the
erroneous base call [15-20]. However, most of these
computational methods require some parameters to be
set, such as the expected haplotype number, one or
more threshold(s) to define the real LLM, and/or which
part of the reads to use; hence, these are subjective and
can be difficult to implement.

We analyzed PhiX 174 and mtDNA sequencing data,
and identified sequencing error hot spots, even under a
stringent quality filter, that cannot be explained by the
sequence context. However, we find that sequencing
error is strand-dependent, position-dependent, and the
same sequencing error hot spot repeatedly showed up
among different individuals. Based on these features, we
have developed a new approach to distinguish LLMs
from sequencing errors, which makes use of population
re-sequencing data to estimate the sequencing error
profile, and gives an understandable Phred-like quality
score to present the reliability of the minor allele at
each position. The workflow for the method is outlined
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in Figure 1. This approach thus provides the investigator
the flexibility of applying different discovery strategies,
that is, a higher false positive rate with a lower false
negative rate, or a lower false positive rate with a higher
false negative rate. We apply our approach to simulated
data, artificial mixtures, and a dataset of complete
mtDNA genome sequences, and we demonstrate the
method can accurately identify LLMs down to a level of
2% (with an average coverage of 500x) with a low false
discovery rate (< 1%). Our method outperformed other
existing software in detecting LLMs, especially at posi-
tions where the error allele count is low.

Results

Sequencing error along the genome

Under the quality filter we used (details in Materials and
methods), the average genome-wide error rate (minor
allele frequency) is 0.0009 for the PhiX174 genome, and
0.00167 for the mtDNA genome. This difference could
be caused by heteroplasmy and/or alignment problems
with mtDNA. Generally, the sequencing error rate fluc-
tuated along the genome with some striking peaks
(drops when converted to Phred quality score; Figure S1
in Additional file 1), with two peaks in the PhiX174
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genome corresponding to true ‘polymorphic’ positions
(mixture of two different alleles) in this PhiX174 strain
(positions 1401,1644). Outliers in the mtDNA genome
are positions 309 to 311, 514, and 3,106 to 3,107, which
are either caused by alignment problems or true length
heteroplasmies.

Normally, positions with the highest sequencing error
rate cause the most problems in distinguishing LLMs;
hence, we retrieved the 30 positions with the highest
error rate on the PhiX174 genome to visualize the dis-
tribution of error rates along reads, as well as 30 posi-
tions with the lowest error rate for comparison (Figure
2). First, an obvious error rate difference was observed
between the two strands: positions with high error rates
were mostly dominated by reads mapped to one specific
strand whereas reads mapped to the other strand
showed a normal error rate. Additionally, the error rate
also varied among different parts of the reads; although
error rate tended to increase when closer to the end,
the trend is much weaker on the reads from the low-
error strand (Figure 2).

We used WebLogo [21] to identify possible conserved
motifs preceding the sequencing error hot spots (Figure
S2A in Additional file 1). Although ‘GGT” was found to
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Figure 1 Workflow of the pipeline. For each position in the target region, samples having the same consensus nucleotide are used as
reference samples. Reads are categorized into different bins according to their positions and orientation when mapped to the reference
genome; reads mapped to the questioned sample are also assigned to the same set of bins. By comparing the minor allele count and expected
error count, bins are divide into two categories: bins with minor allele count equal or less than the expected error (derived from the reference
panel; denoted by a green check mark), and bins with minor allele count greater than the expected error (red cross). Different methods (Poisson,
Fisher exact, Empirical) were used to calculate the P-value, which represents the deviation of the observation from expectation under the error
model. The P-values are then used to calculate the bias statistic, which is further converted to a Phred-like quality score to represent the
uncertainty concerning the minor allele at this position.
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Figure 2 Sequencing error rate for different parts of the read. Along the y-axis, the first 30 positions have the highest error rate on the
PhiX174 genome, and the last 30 positions have the lowest error rate. The x-axis indicates the strand (F, forward; R, reverse) and read bins
(positions 2 to 11, 12 to 21, 22 to 31, 32 to 41, 42 to 51, 52 to 61, 62 to 71, and 72 to 76).
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be the most abundant motif preceding sequencing error
hot spots on both strands, there is substantial variation
in sequencing error rates at positions following this
motif in the PhiX174 genome (Figure S2B in Additional
file 1). Therefore, this motif alone is insufficient to trig-
ger a higher error rate. This is also true for the ‘AAA’
motif associated with sequencing error cold spots (Fig-
ure S2C, D in Additional file 1) and all the other 3-bp
motifs (Figure S3 in Additional file 1), as the error rate
following the same motif shows ten-fold variation. Thus,
only a small fraction of the variation in sequencing
error variation can be explained by 3-bp motifs consist-
ing of the 2-bp context and the nucleotide itself.

In our previous study, the same error hot spots were
repeatedly observed in different individuals [3], suggest-
ing that the sequencing error rate could be predicted
using population data. To test this hypotheses, PhiX174
data were divided into two subsets according to different

sequencing runs, while the mtDNA data were also
divided into two subsets according to different read
lengths (36 bp versus 76 bp). Since the estimated
sequencing error rate for a position varied among differ-
ent sequencing runs and lanes (Figure S4 in Additional
file 1), the ranked error rate in each subset was used
rather than the absolute rate. For each position we com-
pared the error rate of the read that mapped to the
same strand in different subsets (Figure 3a, b, e, f); for
both PhiX174 and mtDNA, significant positive correla-
tions between the two subsets were observed (P <
0.0001; Figure 3). This is particularly true for the posi-
tions having the highest error rate, as half of the posi-
tions in the rightmost column of Figure 3a, b, e, f
(which includes positions having the highest error rate
in the first subset) were also included in the topmost
row (which includes positions having the highest error
rate in the second subset). In contrast, no specific
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correlations were observed between the error rate of
reads mapped to different strands in the same subsets of
the PhiX174 data (Figure 3c, d). For mtDNA data, a
weak correlation was observed, likely to be caused by
true heteroplasmic positions. When comparing our
PhiX174 data with the PhiX174 data provided by Dr
Ole Skovgaard, which were generated by different
machines and base-calling programs, a positive correla-
tion was observed (p = 0.40, P < 0.0001), which suggests
that the sequencing error profile observed here is plat-
form-specific (that is, Illumina-specific) or genome-spe-
cific rather than machine/chemical/base-caller-specific.
Overall, these results support the interpretation that
sequencing error hotspots are true features of the data,
and not artifacts of particular lanes, runs, or machines.

Using the features of sequencing error described
above, we developed a new method that makes use of
population re-sequencing data to distinguish real muta-
tions from sequencing errors. Since there is uncertainty
regarding the error distribution among different indivi-
duals, we used three different distributions (Poisson dis-
tribution, Fisher exact test, and the empirical
distribution) to calculate the bias statistic and evaluate
the performance of these three methods (referred to as
‘Poisson method’, ‘Fisher exact method’, ‘Empirical
method’; see details in Additional file 2).

Simulations
First, we used simulations to explore the distribution of
the bias statistic under different sequencing depths and

mutation levels. Figure 4 shows the quality score distri-
bution of the minor allele (both real mutations and
sequencing errors) from the Poisson method. Here,
quality score was positively correlated with sequencing
depth and mutation level for the real mutation, but not
for the sequencing error, thereby indicating that more
reads and/or higher frequency of an LLM allow more
accurate distinction of an LLM from sequencing error.
Meanwhile, the quality score became lower for both real
LLMs and sequencing errors by reducing the bin size
from 10 bp to 5 bp (Figure S5 in Additional file 1),
especially when the sequencing depth is low. Smaller
bins exhibit larger variation (because of limited reads in
each bin) and hence weaken the sensitivity of the
method, and therefore are not recommended.

The Fisher exact method gave a similar quality score
distribution (Figure S6 in Additional file 1) to that of
the Poisson method, whereas the Empirical method
showed a different distribution (Figure S7 in Additional
file 1). This is because the Empirical method measures
the rank of the minor allele frequency among all refer-
ence samples rather than the absolute difference
between the observed minor allele frequency and that
expected for an error allele. The expected quality score
for an error allele was 0 for the Poisson and Fisher
exact methods, but was higher and with a larger range
(1 to 7) for the Empirical method. The quality score
upper bound is 60 for the Poisson and Fisher exact
methods, but depends on the reference sample size for
the Empirical method, because the P-value is estimated
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Figure 4 Quality score distribution in simulations. Quality scores are based on the Poisson method (Figures S6 and S7 in Additional file 1 for
the Fisher exact and Empirical methods). Red dots represent the real LLMs, black dots represent the sequencing errors, and the size and color
gradient of each dot is proportional to the frequency of the minor allele. Length of the read bins is 10 bp (see Figure S5 in Additional file 1 for
results based on 5-bp read bins). (a) Coverage = 200x; (b) coverage = 500x; (c) coverage = 1,000x; (d) coverage = 2,000x.

B Sequencing depth=500x

T T T T T T T
0 10 20 30 40 50 60

Quality score on the forward strand

by the rank of the observed value among all individuals
(see details in Additional file 2).

Based on these results, a minimum quality score of 10
for all reads was used to distinguish LLMs from sequen-
cing errors in our study. Applying these criteria to the
simulation data results in an extremely low false discov-
ery rate (< 1%), and an acceptable false negative rate
(when sequencing depth is 500x, 50% of the rare muta-
tions with minor allele frequency of 5% could be identi-
fied). Further details are shown in Tables S1, S2, and S3
in Additional file 3.

Artificially mixed samples

To evaluate the performance of the new method, we
applied it to three artificially mixed samples, comprising
a total of 78 LLMs distributed along the mtDNA

genome with minor allele frequencies ranging between
3.7% to 50%. The overall coverage ranged from 138x to
4,840x (median = 1,887x), and all LLMs were success-
fully identified by all three methods with no false posi-
tives (Figure 5). Moreover, the minor allele quality score
distributions of the three methods were similar, with the
same position (position 13,708 in the 1:1 mixture, minor
allele frequency of 0.42, coverage of 757x) having the
lowest single strand quality score: (59,10) - with the first
number the quality score for the forward strand, and
the second the quality score for the reverse strand - for
the Poisson method; (60,9.3) for the Fisher exact
method; and (18,4) for the Empirical method. This posi-
tion consistently has the lowest quality score because
the minor allele is under-represented on the reverse
strand: the minor allele was observed in only one bin
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(out of the six bins having reads) on the reverse strand,
whereas it was observed in all eight bins on the forward
strand.

Comparison with other methods
We compared our method with other available methods
for detecting LLMs, using the artificially mixed libraries
to evaluate the performance of the other methods; the
results are described below and summarized in Table 1.
CRISP, which also makes use of the population re-
sequencing data, successfully identified all of the
mixed positions, but also reported five false positives
(when N = 20; four false positives when N = 50),
which were caused by an elevated error rate in one
sample (significantly different from that in other sam-
ples). Moreover, examination of the pileup file indi-
cates that most of the error reads were located in one
read bin and have the same starting coordinate on the

reference genome, indicating that they probably are
caused by duplicate reads.

Following the instructions for SPLINTER, we created
a 2-bp context-dependent error matrix from the
PhiX174 control data in the same run. When N was set
to 20 and only the first 12 bp of the reads were used, 12
(18% of all the true positives) LLMs were missed, and 2
(3% of all the detected LLMs) false positives observed. A
cutoff value of -2.64 removed all of the false positives
but also added three extra false negatives. Increasing N
to 50 did not recover the missed LLMs; examination of
the pileup file revealed that these false negatives were
caused by underrepresented minor alleles at the begin-
ning of reads. We then extended the length to the first
30 bp, but 6 mutations were still missed (even with a
cutoff of 0). Extending the length to 70 bp recovered all
of the expected LLMs (cutoff of -6.6), but at the expense
of 123 false positives.

Table 1 Comparison of the present method with other methods

Method Parts of the read used Thresholds Expected haplotype number False positives  False negatives Reference
CRISP All -4; -1,000; -1,000 20 5 0 [15]
All -4; -1,000; -1,000 50 4 0
SPLINTER First 12 bp -1.301 20 2 12 [17]
First 70 bp -6.6 20 123 0
First 12 bp -1.301 50 2 12
First 70 bp -6.6 50 634 0
MAQ All 60 20 848 3 [31]
All 60 50 1,130 3
All 200 20 0 6
All 200 50 1 8
VarScan All 1e-10 NA 190 0 [30]
Poisson All 10 NA 0 Our method
Fisher exact All 10 NA 0 0 Our method
Empirical All 10 NA 0 0 Our method

NA, not applicable.
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When using VarScan, an extremely low P-value of 1 x
107'° identified all of the expected LLMs, but also iden-
tified 190 (71% of all the detected LLMs) false positives.
When we manually refined the result by requiring dou-
ble strand validation (at least three reads on each strand
to call the LLM), the number of false positives was
reduced to 31 (28% of all the detected LLMs). Increasing
the number of reads on each strand to six left only ten
(11% of all the detected LLMs) false positives.

For MAQ, a reasonable cutoff for the quality score of
60 resulted in three false negatives but thousands of
false positives. Applying a stringent cutoff for the quality
score of 200 removed all of the false positives but left
six false negatives (7.7% of all the true positives).

In summary, none of the above methods could iden-
tify all of the LLMs in the artificial mixtures without
giving false positives. To be sure, additional customized
filtering or preprocessing may improve their perfor-
mance. Furthermore, these methods were intended to
detect non-reference alleles, rather than actually verify-
ing the minor allele; when the reference allele is the
minor allele, the P-value does not reflect the certainty of
the minor allele, which could be problematic if the
reference allele contributes to the trait investigated.

Chimeric reads
The use of double indexes (that is, indexes located at
both ends of the adaptors [22]) allows chimeric reads
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(with mismatched indexes) to be detected. Such chi-
meric reads can reflect jumping PCR, index contamina-
tion, or cluster misidentification. By investigating data
from four double indexed libraries, we found chimeric
reads occurred at a rate of 10 to 15% when 40 to 90
samples were multiplexed and enriched for mtDNA
(Figure 6). Chimeric reads could potentially result in a
large number of false positive LLMs when samples with
different sequences are multiplexed in one sequencing
library. Here, by assuming that 15% of the reads were
derived evenly from other samples in the same library,
for the four libraries prepared with single indexes we
found that 65 to 79% of the minor allele could be
explained by chimeric reads (P < 107, Chi-square test),
and most of them have a minor allele frequency lower
than 5%. However, not all of these LLMs are necessarily
caused by chimeric reads, as heteroplasmies are also
prone to happen at polymorphic sites [3]. Nonetheless,
these mutations were excluded from further analysis.

Sample cross-contamination

Cross-contamination between samples is a potential
problem when many samples are multiplexed in one
sequencing library, or when many sequencing libraries
are prepared at the same time. Although such low-level
mixtures may not influence calling the consensus
sequence, they may generate artificial LLMs. Our
method can help to detect such cross-contamination,

~ Q
o 7 g =
o
o
("]
& 2 - .3
4 v | °
=S~
n *
o +¥ 4 g
o
2 < B + *+® 4 £y i
2 i o . YR " Y o
@ - ¢ @ AL od oy oo,
£ S . Tt e 0
= CAMF I ”
2 o o *
5 o | .
_E = - .0 5
=
g *
w0
g o - S
o . (3 L=
* *
-
o -
e, |* .,
,. O o ACE DRI P AN g . *
— | * | p A
S -
8
o
I
0 40 60 80 0 50 100 150 200
P7 indexes P7 indexes
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since the minor alleles would be identical to the major
alleles in another sample.

Therefore, for all samples having more than five veri-
fied minor alleles, we examined the entire mtDNA gen-
ome dataset to see if any single sample could explain a
significant fraction (>3) of the minor alleles. Strong mix-
ture signals were observed in two samples (Az46, 1r28)
by all three methods, where all verified minor alleles (>
17) were identical to the consensus nucleotides of
another sample in the same sequencing library, and
represent more than 60% of the differences between the
two samples (Figure 7). By averaging the minor allele
frequencies at all expected variable positions, the pro-
portions of the minor component were estimated to be
4.2 + 0.8% for Az46 and 4.5 + 2% for Ir28 (mean * stan-
dard deviation).

Lower levels of contamination were detected in
another four samples (Ir37, G29, Ir36, Ir40), where the
mixture proportions were between 2.3% and 2.9% (Fig-
ure 7); this low mixture level makes it more difficult to
recover all of the resulting LLMs. Only 37 to 53% of the
expected minor alleles were identified by the Empirical
method, while 23 to 43% of the expected minor alleles
were identified by the Poisson and Fisher exact methods.
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From the putative mixtures involving Az46 and Ir48,
we could infer a false negative rate of 0.16 (11 out of
68) by the Empirical method when the minor allele fre-
quency is around 4%. Meanwhile, from the mixtures
involving Ir37, G29, Ir36, and Ir40, the false negative
rate was 0.52 (79 out of 151) when the minor allele fre-
quency is around 2.5%. The overall false discovery rate
is 0.8% (1 out of 130) inferred from the 6 mixed sam-
ples, and the method could successfully detect hetero-
plasmy down to a level of 2.3% (Figure 7). The Poisson
and Fisher exact methods both showed less sensitivity
compared with the Empirical method (Figure 7). Con-
sidering the average sequencing depth of 495x, our
methods showed a better performance on real data than
in the simulation (Tables S1, S2, and S3 in Additional
file 3). This is most likely because the empirical error
rate is lower than that used in the simulations (0.0017
versus 0.01), thereby making it easier to distinguish real
LLMs from sequencing errors.

In addition to these six mixtures that could be per-
fectly explained by contamination from one specific
sample, eight samples (Arm20, Az17, Ir26, 1r29, Ir33,
Ir55, Az4, Ir10) had more than five verified mutations
but could only be partially explained by contamination
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from another sample. Therefore, they could be caused
by contamination from multiple samples or by contami-
nation from one sample as well as having true LLMs.
Because of this uncertainty, we removed these samples
from further analysis.

Application to mtDNA LLM detection

By analyzing the mtDNA genome sequencing reads
from 117 individuals with an average coverage of 638x,
99 LLMs were identified by the Empirical method, 63
by the Poisson method, and 60 by the Fisher exact
method, with minor allele frequencies ranging from 0.5
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to 49.5%. To avoid potential low-level cross-contamina-
tion from similar mtDNA genomes, we limited the ana-
lysis to mutations with a minor allele frequency of at
least 5%, which then leads to the same 33 LLMs
detected by all 3 methods among 30 samples (Table S4
in Additional file 4).

Of the 30 LLMs detected in the same individuals in
our previous study, 19 were also identified by our new
method (Table S4 in Additional file 4). Another seven
positions had quality scores satisfying our requirement
of calling LLMs but were suspected to be caused by chi-
meric reads (Figure 8). One position was detected in
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Figure 8 LLMs in mtDNA detected by the new method. Circles represent the heteroplasmies detected in our previous study [3]; squares
represent the LLMs only found by our new method; circles in red color represent the LLMs that could also be explained by chimeric reads.
SnaPshot validated heteroplasmies are represented by filled symbols; the size of each symbol is proportional to the minor allele frequency.
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both studies but excluded here because of its lower
minor allele frequency (4.6%); the frequency difference
could be due to the more stringent quality control
applied here or different mapping strategies (Mia versus
BWA (Burrow-Wheeler Aligner)). An additional three
LLMs were excluded due to low quality scores; two of
these were located at position 3,492, for which all but
one of the minor allele reads were mapped to the
reverse strand.

All of the LLMs validated by SnaPshot assays in our
previous study were recovered by our new method (Fig-
ure 8), including one position (16,223 in sample G73)
that could reflect chimeric reads. If so, the mixture
must have occurred during the DNA purification from
the samples, as the original sample DNA was used for
the SnaPshot assay. Alternatively, this may be a true
LLM that happened to occur at a known polymorphic
position, which in turn suggests that the LLM number
reported here (33 LLMs in 117 samples) is a lower
bound, as some of the LLMs excluded because they may
have been caused by chimeric reads could be true
LLMs.

All of the 33 LLMs involve single-base substitutions.
The ratio of transitions to transversions is 10, which is
not significantly different from the ratio of 8.09 for poly-
morphic positions in the same individuals (P = 0.370,
Fisher exact test). The ratio of non-synonymous to
synonymous LLMs in the coding region is also not sig-
nificantly different from that reported in our previous
study (0.5 versus 1, P = 0.492, Fisher exact test).

Discussion
Sequencing error in NGS
The development of NGS has greatly accelerated the
discovery of genetic variation while significantly redu-
cing the time and cost. However, the higher sequencing
error rate of NGS also presents a computational chal-
lenge for biologists [23]. Generally, sequencing error can
be categorized into two types: machine error, caused by
mixed clusters, signal intensity decay, or phasing pro-
blem (for Illumina Genome Analyzer (GA)), and hence
should be randomly distributed on the target sequence;
and systematic error, caused by imperfect chemical/sen-
sor/technology, which results in error rate hot spots at
specific genomic locations [7,10,24].

Most of the machine error could be removed through
a series of filters for quality score and/or mismatch
numbers [24]. By contrast, distinguishing systematic
error is much more difficult, as the quality score does
not reflect the true error rate at error hotspots [7,9].
Recently, some characteristics of systematic errors have
been proposed that can aid in their identification. For
example, the positions G-error-G and G-error-A have
the highest error rate [8], while sequencing error hot
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spots tend to be located after inverted repeats and GGC
or GGT sequences [7,9,10]. Although we also found that
these features are correlated with systematic errors sta-
tistically, they can only explain a limited portion of the
error rate variance, as the position following these
motifs showed an error rate with up to ten-fold varia-
tion (Figure S3 in Additional file 1), as also noted
recently elsewhere [10].

In our study, we found that sequencing errors often
occur at the same position in different individuals, espe-
cially for positions with the highest error rate (Figure 3).
This tendency is unlikely to be caused by the particular
sequencing machine because the correlation could also
be observed between the data generated by difference
machines. This observation suggests that the error rate
for a sequence of interest could be estimated from a
reference panel having the same sequence. Moreover, by
examining the error rate for different parts of the reads
and for reads from different strands, after our quality fil-
ter we found that: 1) sequencing error varies across dif-
ferent parts of the read and at different positions (Figure
2; Tables S5 and S6 in Additional file 3); and 2) the
error rate is strand-specific (Figure 2), as sequencing
contexts on the two strands are different most of the
time. Therefore, the position and orientation of the
reads mapped to the questioned position should be con-
sidered when estimating the sequencing error rate.

Another issue is whether or not to remove duplicate
reads, as these may reflect the same starting template
molecule. On the one hand, including duplicate reads
could amplify the error signal arising from PCR errors,
but on the other hand, removing duplicate reads based
only on the starting coordinate on the genome leads to
a significant reduction of coverage (for single-end
reads). By analyzing the paired-end data from two
mtDNA sequencing libraries with equivalent sequencing
depths, we found each segment in the library was dupli-
cated an average of 1.19 times, with 454 segments
(0.01%) duplicated more than 10 times, and the most
duplicated segment present in 247 copies. For the artifi-
cially mixed samples, by removing the duplicate reads,
we lost more than 90% of the reads and 4 LLM posi-
tions were missed by our method. Therefore, it would
be reasonable to keep all the reads in the analysis while
taking duplicate reads into consideration when identify-
ing the LLM.

Features of our method

Understanding the sequencing error makes it possible to
distinguish errors from real LLMs. While various meth-
ods are available that utilize different features of sequen-
cing errors, we have developed a method that performs
better than other methods in detecting LLMs (based on
artificially mixed samples, where the sequencing depth/
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minor allele count is much lower than that used/sug-
gested in other studies [14,17]). Moreover, the available
standard genotyping methods are not designed for LLM
detection. For example, for the widely used GATK
toolkit [11] there are only three possible allele frequen-
cies (0%, 50%, 100%), whereas there is a much wider
range of frequencies for LLMs. Moreover, GATK
requires a reliable SNP database, which does not exist
for LLMs, and GATK makes use of metrics to assess/
refine the new SNP calls (such as the ratio of transitions
to transversions) that do not exist for LLMs.

The method introduced here is based on several fea-
tures. First, our method estimates the error rate from
population re-sequencing data. For each position in the
target region, the empirical error rate is estimated from
all reads mapped to the reference samples that have the
same consensus nucleotide. Therefore, we use the com-
plete sequencing context, rather than a more limited or
entirely different context, to estimate the sequence error.
Moreover, since all samples are analyzed following the
same pipeline, any errors introduced during the analysis
(such as mapping error) are also taken into consideration.

Second, the distribution of the reads is taken into
account. As shown above, not all reads mapped to the
same position have the same error rate; thus, we cate-
gorize the reads into bins according to their position
and orientation mapped to the target sequence. As the
error rate in each bin is estimated separately, reads in
different bins give different weights in calling LLMs. In
addition, the contribution of each bin to the final quality
score has an upper limit, to prevent false positives
caused by duplicate reads.

Third, an absolute frequency or coverage cutoff is not
required. A frequency threshold is widely used to distin-
guish LLMs from sequencing errors, but such a frequency
threshold should be coverage-dependent, that is, the fre-
quency threshold becomes smaller with higher coverage.
Since the sequencing depth is unevenly distributed along
the genome, a single frequency threshold would either
overestimate or underestimate the true number of LLMs.
Instead, in our method a P-value is calculated to represent
the likelihood of the observation under the null hypothesis
(minor allele is caused by sequencing error).

Fourth, our method gives an understandable Phred-
like quality score, which reflects the reliability of the
minor allele for each position. This makes it easier to
apply different discovery strategies, depending on the
wishes of the investigator, that is, a higher false positive
rate with a lower false negative rate, or a lower false
positive rate with a higher false negative rate.

Flexibility of our method
Ideally, the reference samples used to estimate the error
rate should not have any LLMs, or only a small number
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of LLMs at the same position. In practice, this assump-
tion holds at most LLM positions; however, for common
variation where a significantly higher error rate would
be observed in most bins, a fixed error rate could be
used (as implemented in the Poisson method). For
example, by using an error rate of 0.01 when the refer-
ence error rate is significantly higher than 0.01, we suc-
cessfully detected all of the common variations in the
PhiX174 dataset without any false positives (Figure S8
in Additional file 1). However, if reference samples are
lacking for the region of interest, an error rate estimated
from control data, quality score, or some other dataset
for all the positions and all bins could be used. In the
present study, we did not observe any error hotspot hav-
ing an error rate significantly higher than the overall
error rate in our method (that is, that passed our
threshold to call a LLM). However, using an averaged
error rate may result in a higher false negative rate.

Due to the uncertainty of the underlying distribution
of sequencing error across the target sequence, we
introduced three methods to calculate the P-value of the
deviation of the observation from expectation. The Pois-
son method assumes the sequencing error rate follows a
Poisson or binomial distribution, whereas the Fisher
exact and Empirical methods do not assume any specific
distribution for sequencing errors. The Poisson and
Fisher exact methods measure the absolute difference
between the observed minor allele frequency and the
error rate, whereas the Empirical method measures the
ranking of the minor allele frequency among all refer-
ence error rates. In our study, all three methods showed
good specificity (false discovery rate < 1%). The Empiri-
cal method has a higher sensitivity when the minor
allele frequency is low (< 5%), in which case the differ-
ence between the minor allele frequency and error rates
tends to be amplified by ranking the minor allele fre-
quency (for example, the minor allele frequency that
ranked first could still be very close to the remaining
observations). However, the Empirical method should be
used with caution when processing the data from differ-
ent sequencing lanes/runs, as an intrinsic sequencing
error difference could exist between reference samples
and test samples due to the variation among lanes/runs
(Figure S4 in Additional file 1), and such a spurious dif-
ference may be captured as a signal of LLM.

Although the data for this study came solely from the
[lumina platform, the input to our pipeline is a SAM
file [25], thus making it feasible to process the data
from any platform for which the data can be converted
to SAM format. It is also straightforward to implement
other customized processes (for example, base quality
score recalibration or re-alignment) before applying our
method. Although the sequencing error profile varies
substantially among different technologies/base-callers,
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our method does not require any prior knowledge of the
error profile, as all relevant information is extracted
from the entire re-sequencing dataset.

A further application of the method could include
standard genotyping estimation for diploid sequences.
However, several issues would need to be addressed,
including: how to estimate the error rate when heterozy-
gotes are considered; how to bin the reads when the
coverage is low; and how to calculate the quality score
for heterozygotes.

Other problems in detecting LLMs

Sequencing error is not the only issue in detecting
LLMs. Cross-contamination is another major issue,
especially when handling large numbers of samples
simultaneously. Although normally the contamination
fraction is very small, the nucleotide derived from the
minor contamination component behaves exactly the
same as an LLM. Hence, it is impossible to distinguish a
contamination allele from a true LLM. Here, we provide
a straightforward way to identify contamination: after
producing the list of potential LLMs we can infer the
contamination based either on the total number of
minor alleles (if these exceed some expected value), or
similarity to other samples in the same library, or in
other libraries, or in databases. For example, with the
mtDNA genome sequencing data, if more than five
LLMs are detected in a sample, it would be suspected to
be a mixture, because it is unlikely for a single indivi-
dual to harbor more than five heteroplasmic positions
[1,3,12]. For such suspected mixtures, we then examine
other sequences from the same library (as well as from
other libraries prepared at the same time) to determine
if the LLM component could be explained by mixture
from a specific sample. We also use databases such as
Phylotree [26] to determine if the minor alleles are likely
to come from one specific haplogroup. In our study, we
could detect contamination down to 2 to 3%, and
almost half of the expected minor alleles are accurately
recovered at that level with an average coverage of
approximately 500x. This suggests it would be possible
to find contamination at a lower level with higher cover-
age. However, the ability to detect contamination relies
on the number of variable positions between the sam-
ples that contribute to the mixture: if they are very simi-
lar, then it would be very difficult to tell whether it is
real LLM or contamination. Examination of other geno-
mic regions would be needed.

Chimeric reads are also a potential problem with mul-
tiplex sequencing, as then reads not only come from the
target sample, but also from other samples in the same
sequencing library. Double indexes allow chimeric reads
to be detected, and by applying double indexes in four
libraries, we found 10 to 15% of the reads to have mis-
matched indexes (Figure 6). This is much higher than
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the 0.3% reported previously [22], possibly because the
cluster density in our study was 1.5-fold higher than in
theirs and more (heterogeneous) samples were multi-
plexed in our libraries. Index contamination is another
potential source of chimeric reads, but unlikely to be a
contributing factor in our study because the unmatched
P5 indexes seem to be randomly derived from other
indexes (Figure 6). By considering the library composi-
tion at each position, we found up to approximately
70% of the minor allele could be explained by chimeric
reads. Although not all of the LLMs are false positives,
chimeric reads remain a serious concern, and double
indexes are advised.

Conclusions

Due to the higher sequencing capacity and reduced cost,
NGS is now used widely, especially in discovering
genetic variation in populations. There is great interest
in using NGS to detect LLMs, especially in such applica-
tions as mtDNA heteroplasmy, characterizing tumors,
and pooled samples. However, distinguishing sequencing
error from LLM remains a major challenge. Here, we
provide a novel computational method to distinguish
LLM from sequencing error and apply this to mtDNA
genome sequence data. Although the method is highly
efficient at detecting LLMs, not all of these are necessa-
rily real LLMs, because they may also be caused by con-
tamination or chimeric reads. To exclude these other
possibilities, not only efficient algorithms but also more
refined experiment protocols are needed.

Materials and methods
Data
A PhiX174 bacteriophage shotgun library with a specific
index is routinely spiked in and sequenced in each lane
of our in-house runs of the Illumina GAIIx and then
used as the training dataset for the IBIS base-caller [27].
Here, we retrieved 17 million PhiX174 reads from 35
lanes (76-bp single-end reads), with an average sequen-
cing depth of 193,874x. Another PhiX174 dataset (34-bp
single-end reads, 32,473x) was kindly shared by Dr Ole
Skovgaard, and was used to compare the sequencing
error profile between different sequencing machines
based on the same platform. A third PhiX174 dataset of
26 million reads was obtained from a control lane
accompanying the 76-bp mtDNA data; this dataset was
used to estimate the error matrix needed by SPLINTER.
Although the PhiX174 data are thought to come from a
single strain, we and others have previously observed
two LLMs located at positions 1,401 and 1,644, both
with minor allele frequencies of around 30% [3].

The mtDNA genome sequence data from our previous
study [3], which includes 131 individuals, was obtained
by sequencing long-range PCR products in 4 Illumina
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GAIlIx lanes following a multiplex protocol. The average
sequencing depth varied from 457x (36-bp read) to
1,879x (76-bp read) per individual. Sequencing data
from another two mtDNA paired end libraries were
used to estimate the fraction of duplicate reads in our
study, and data from four mtDNA libraries prepared
with double indexes were used to estimate the propor-
tion of reads coming from two different templates.

The data for artificially mixed samples also came from
our previous study [3], where we mixed template DNAs
from two individuals differing at 25 positions (the indi-
vidual whose DNA was used as the major component
has a heteroplasmy at position 13,604, with a minor
allele frequency of around 15%). The two DNA samples
were mixed at ratios of 1:1, 1:3, and 1:9.

Raw sequencing data are publicly available from the
European Nucleotide Archive’s Sequence Read Archive
through accession numbers ERP000879 (mtDNA reads)
and ERP001254 (PhiX174 reads).

Quality control

IBIS was used to recalibrate the quality score generated
by the Illumina base-caller, Bustard [27]. Raw reads hav-
ing more than 5 bases (2 bases for 36-bp reads) with
quality scores of 15 or less were removed from the ana-
lysis, and the adaptor sequences were trimmed. PhiX174
and mtDNA reads were then mapped to [GenBank:
NC_001422] and [GenBank: NC_012920], respectively,
using BWA (Burrow-Wheeler Aligner) [28]. Reads with
mapping scores < 20 or mismatch numbers > 2 were
removed and output files were further converted to
pileup format using Samtools [25]. For calling LLMs,
only bases with quality scores of 20 or more were used.

Algorithm to call LLMs

We refer to the nucleotide position to be investigated
for LLMs as the target position. For each individual,
reads that included the target position were assigned
into different read bins according to the strand they
mapped to and the mapped position within the reads.
For the latter, reads were divided into 10-bp segments;
thus, with a dataset of 76-bp reads, there are 16 read
bins (8 segments x 2 strands). To call an LLM at the
target position in any individual, all other individuals
with reads that include the target position are used as
the reference. The sequencing error profile in each
read bin for the target position was estimated from
reference individuals with the same consensus nucleo-
tide at the target position (this step was omitted if the
same nucleotide was observed in 50 or fewer reference
individuals). A P-value was calculated by comparing
the observed and the reference error profile in each
read bin (null hypothesis: there is no difference
between the questioned individual and reference
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individuals). This P-value was used to calculate the
bias statistic, which measures the deviation of the
observed minor allele count from the expected error
count. Since the underlying distribution of the sequen-
cing error among different individuals is unknown, the
P-value was estimated in three different ways and their
performance was evaluated: (1) Poisson P-value; (2)
Fisher exact P-value; (3) Empirical P-value. Details as
to how these are calculated are described in Additional
file 2.

The bias statistic can be easily converted to a Phred-
scaled quality score, which reflects the uncertainty in
calling the LLM: a higher value demonstrates support
from more read bins and a larger deviation from the
reference panel, while lower values reflect smaller devia-
tions from the reference panel.

Scripts can be freely obtained from the DREEP web-
site [29].

Simulation framework

To evaluate the sensitivity and specificity of our method
for the detection of LLMs, we performed simulations
representing different mutation levels and different
sequencing depths. Additionally, to investigate the effect
of the length of the read bin, two lengths were used: 5
bp and 10 bp. For each simulation, the target region
was 16,569 bp, the sequencing error rate was set to 1%
and the length of the reads was 76 bp. The LLM level
(minor allele frequency) was set to 2%, 3%, 4%, 5%, 6%,
7%, 8%, 9%, 10%, or 20%, the position of the LLM was
assigned randomly on the sequence by generating a ran-
dom number among all possible positions. Reads were
generated using Wgsim (0.1.18) [25]. For each condition,
the number of reads was varied (40 k, 100 k, 200 k, 400
k) in order to simulate different sequencing depths
(200x, 500x%, 1,000x, 2,000x), and for each setting, the
simulation was repeated 100 times.

Sequencing error hot spots and cold spots

We used the following criteria to define sequencing
error hot spots in the PhiX174 sequences: the sequen-
cing depth was at least 10,000x and the probability of
observing a count equal to or greater than the observa-
tion should be less than 1/Length of target genome/
1,000,000 under a Poisson distribution (with mean equal
to the average error rate estimated from all positions
and reads). Also, error hot spots are defined to be
strand-specific (to avoid possible common variation
positions), with the error rate at least ten times higher
on one strand than on the other strand. We also defined
sequencing error ‘cold spots’ as positions where the
error rate on one strand was less than half of that on
the other strand and the probability of observing a
count equal to or less than the observation should be
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less than 1/Length of target genome/1,000,000 under a
Poisson distribution.

Comparison with other methods

In order to compare the performance of the method
described here with other available methods, the follow-
ing software were applied to detect LLMs in the artifi-
cial mixture dataset: CRISP (v5) [15], SPLINTER (60)
[17], VarScan (2.2.5) [30], and MAQ (0.7.1) [31]. For
software that requires the expected haplotype number
(CRISP, SPLINTER, MAQ), 20 and 50 haplotypes were
both used. Different P-values or quality score cutoffs
were tried, and the one giving the best result (that is,
lowest false positive and false negative rates) was cho-
sen. For CRISP, the first P-value was set to be -4.0, the
other two P-values were less than -1,000, the minimum
quality score was 20, the minimum mapping score was
20, the maximum mismatch number was 2; all of these
were identical to the parameters used in our method.
For SPLINTER, the P-value cutoff was set to be 0.05
(-1.301) when the first 12 bp was used and the error
matrix was estimated from the PhiX174 data generated
in the same run. For VarScan, the minimum number of
reads to call a SNP was 30 (1.5% of the sequencing
depth), the minimum variant frequency was 2%, the
minimum quality score was 20, and the P-value cutoff
was set to be 1 x 10%. For MAQ, the quality threshold
for the final SNP was set to be 60 and 200, and -E = 0
was set to call a LLM, and -D was changed to 5,000 in
order to avoid any false negatives due to the high
sequencing depth. Since all of these programs are
designed to detect the non-reference allele, we changed
the reference sequence to the consensus sequence of the
individual who contributed the most reads to the mixed
pool; thus, all of the LLMs detected should be derived
from the minor component.

Additional material

Additional file 1: Supplemental figures. This file contains Figures S1,
S2, 53, 54, S5, 56, S7, and S8.

Additional file 2: Supplemental materials and methods.
Supplemental materials and methods include the following sections:
Calculation of bias assuming a Poisson distribution; Calculation of bias
using the Fisher exact test; Calculation of bias using the empirical
distribution; Refinement of the method.

Additional file 3: Supplemental tables. This file contains Tables S1, S2,
S3, S5, and Sé.

Additional file 4: Table S4 - LLMs detected in the mtDNA dataset.
An EXCEL table listing all the LLMs detected in the mtDNA dataset.
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bp: base pair; GA: Genome Analyzer; LLM: low level mutation; mtDNA:
mitochondrial DNA; NGS: next-generation sequencing; PCR: polymerase
chain reaction; SNP: single-nucleotide polymorphism.
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