
It is a little known fact that Gregor Mendel, remembered 
for his studies of trait inheritance in pea plants, also 
experimented with breeding mice to understand coat 
color traits. Had it not been for the disapproval of Bishop 
Anton Ernst Schaffgotsch, who led the Augustinian 
monastery where Mendel studied, he might well have 
been credited as the father of mouse genetics [1]. Instead, 
CC Little started generating inbred lines of mice half a 
century later, driven by a desire to understand cancer 
biology and recognizing the importance of reproducible 
genetic crosses [1]. From these beginnings more than 300 
strains of laboratory mice have been developed; each line 
has been faithfully replicated and cryo-preserved, making 
them a renewable genetic resource. Most are the result 
of the blending together of Mus musculus sub-species, 
including domesticus and musculus, with some contri-
bu tion of castaneous and molossinus, resulting in a 
distinc tive genetic mosaic of these progenitors in each 
inbred line [2].

Today’s geneticists usually turn to one of these inbred 
mouse strains when attempting to model human disease 
because mice offer advantages that few species can 
match. Importantly, the mouse genome can be easily 
manipulated with greater speed, scale and sophistication 
than that of other mammals, and the efforts of the 
International Mouse Genome Sequencing Consortium 
has resulted in a high quality reference genome sequence 
that is the envy of other model organism users [3]. �e 
future for mouse genetics promises to be even more 
exciting now that high-throughput sequencing of mouse 

strain genomes has started, and efforts are under way to 
systematically disrupt every gene in the mouse genome 
and phenotype the resulting mutant animals [4]. Here, 
we outline the tools and technologies that have emerged 
for using mice to discover and characterize disease genes, 
and the resources that are being developed to accelerate 
these discoveries.

Sequencing mouse genomes
In 2002 the International Mouse Genome Sequencing 
Consortium released the first draft of the genome from 
C57BL/6J, an inbred strain of the laboratory mouse [3], 
and a finished genome was released in 2009 [5]. As one of 
the most globally used lines, C57BL/6J was a wise choice 
for the reference mouse strain, but it is by no means the 
only strain used in research. �erefore, subsequent 
efforts were initiated to generate genomic sequence of 
other inbred strains. Firstly, four different strains of the 
laboratory mouse were included by Celera in a whole-
genomic shotgun sequencing project: A/J, DBA/2J, 
129X1/SvJ and 129S1/SvImJ [6]. �is resulted in 27.4 
million sequencing reads, giving a total of 5.3x coverage 
of the mouse genome. Secondly, more than 150,000 short 
insert clones were sequenced from the 129S5SvEvBrd 
strain covering 4.7% of the reference genome [7]. �irdly, 
Perlegen Sciences used hybridization to re-sequence 15 
inbred mouse strains [8]; this set included 11 classical 
strains and four strains derived from the wild. Unlike the 
other resources, Perlegen’s approach did not generate 
sequence reads, and their hybridization sequencing tech-
nology queried only 1.49 Gigabases of the reference 
genome (equivalent to about 58% of the C57BL/6J 
sequence that is non-repetitive). Furthermore, to 
generate high accuracy calls, high stringency cutoffs 
were used, resulting in a false negative rate estimated to 
be as high as 50% [2]. �erefore, available sequence data 
lacked the coverage and breadth of strains to make it a 
widely used resource.

�e first non-reference mouse chromosomes to be 
sequenced were A/J and CAST/EiJ chromosome 17, 
reveal ing significant variation at the nucleotide level and 
also considerable structural differences [9]. Building on 
that work, we commenced the Mouse Genomes Project, 
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which has sequenced the genomes of 17 key mouse 
strains using next-generation sequencing on the Illumina 
platform (Box 1). At the last data freeze in December 
2009 an average of 25x sequence coverage of each strain 
had been generated, and a deep catalog of variants [10]. 
These data provide a comprehensive insight into the 
genomes of the 17 strains, allowing immediate access 
to background genetic information for most mouse 
models of disease in addition to facilitating the analysis 
of the molecular basis of complex traits with 
unparalleled resolution.

Genetic manipulation of mice in the post-genomic 
era
Technologies for modifying the mouse genome can be 
split into two broad classes: those for gene-driven 
analyses and those for random mutagenesis.

The collection and propagation of mice harboring 
spontaneous mutations with striking phenotypes, such as 
the obese mouse, served mouse geneticists well for most 
of the 20th century. When it became clear that the rate of 
random germline mutation can be significantly increased 
by exposure to radiation or to chemical mutagens such as 
N-ethyl-N-nitrosourea (ENU) [11], large-scale muta
genesis programs followed, resulting in an explosion in 
the number of mutant lines. Phenotypic screens of these 
lines led to the identification of many hundreds of new 
mutations and candidate disease genes [12,13]. One 
notable example of a successful forward genetic screen, 
reviewed in [14], identified 89 ENU-induced mutants 
that influence the immune system, of which at least 69 
have now been characterized at the molecular level. 
However, mapping random mutations and identifying 
the affected gene can be an arduous process, often taking 
years; therefore, causal mutations for only a fraction of 
mutant lines have been identified thus far. Screening 
DNA from archived mutagenized lines for mutations in a 

specific gene of interest is a parallel ‘gene driven’ strategy 
that has proven successful [15,16]. With the advent of 
new sequencing technologies it is now cost effective to 
sequence mutagenized mouse exomes in their entirety, 
enabling the rapid identification of candidate disease genes 
from existing resources and meaning that mutagenesis-
driven approaches may return as a powerful tool for 
studying disease genes. Other methods of random 
mutagenesis include retroviruses, transposons (reviewed 
in [17]), and ‘gene traps’ [18]. These DNA-based mutagens 
can be easily mapped using approaches such as splinker
ette PCR [19] and are discussed in more detail below.

The genome of the mouse can also be manipulated by 
pronuclear injection of DNA into oocytes or by 
modification of embryonic stem (ES) cells, which can 
then be injected into blastocysts to make chimeras, 
allowing modified alleles to be transmitted through the 
germline. Direct pronuclear injection results in random 
integration of the injected DNA [20]; consequently, 
transgene copy numbers and integration sites differ 
between lines, potentially resulting in very different 
phenotypes. Large genomic fragments such as bacterial 
artificial chromosomes (BACs) may also be injected 
(reviewed in [21]); these have proven particularly useful 
in complementation studies or ‘rescue’ experiments for 
identifying genes contributing to a genetically mapped 
disease trait of interest [22]. By contrast, DNA introduced 
into ES cells in culture can undergo site-specific, 
homology-directed recombination [23], thus enabling the 
generation of targeted gain- and loss-of-function alleles 
as well as the engineering of large-scale rearrangements 
of entire mouse chromosomes (Figure 1) [24,25]. Other 
recently developed techniques include transgenic small 
hairpin RNAs (shRNAs), which are often delivered by 
lentiviral transgenesis [26,27], single-stranded oligo
nucleotides (ssODNs; reviewed in [28]), and zinc-finger 
nucleases (ZFNs) [29], which can be used to generate 
subtle sequence-specific genomic modifications. Here 
we will address in more detail a few of these 
technologies, focusing on recent advances uniquely 
available to mouse geneticists.

ES cell gene-targeting
ES cell technology has been a profound advance in mouse 
genetics (detailed in [30]). Historically, the majority of 
manipulations have been performed in ES cells derived 
from 129 sub-strains (Table 1). Recently, robust and highly 
germline-competent ES cells derived from the popular 
C57BL/6 strains have been developed, such as JM8 and C2 
(Table 1). To assist in tracking the contribution of these ES 
cells to chimerism, and to identify mice that have 
transmitted their genome through the germline, a 
dominant Agouti (yellow) coat color allele was engineered 
in JM8 cells [31]. This now enables the study of mutant 

Box 1: A genome for all reasons

The 17 strains being sequenced as part of the Mouse Genomes 
Project were carefully selected to support other major mouse 
genetics resources. Three 129 strains were chosen because they 
serve as the background for thousands of existing gene knock-
outs. The C57BL/6N strain is the origin of the highly germline-
competent JM8 ES cells that are being used in large-scale gene 
targeting programs [31]. Nine common lab strains were chosen 
because of their historical utility, and also because they include 
the progenitors of the heterogeneous stock and Collaborative 
Cross mice that are used in dissecting complex traits [88,89]. 
Finally, four wild-derived strains have been sequenced because 
they represent some of the founder sub-species of many inbred 
laboratory lines, and are also important models of cancer and 
infection resistance [2].
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alleles on a common, controlled genetic background 
without the need for generations of backcrossing.

Gene targeting in mouse ES cells can be achieved by 
homologous recombination, using replacement, insertion 
or knock-in vectors, all of which contain a region of 
homology with the locus to be targeted. In replacement 
vectors, crucial exons (or entire genes) are replaced by a 
selection cassette to generate a null knockout allele 
(Figure  1a). Knock-in vectors are designed such that a 
trans gene or reporter is transcriptionally regulated by the 
endogenous promoter of the locus (Figure 1b; reviewed 
in [32]). By contrast, insertion vectors rely on gene 
rearrange ment by interfering with splicing to disrupt a 
target gene (Figure 1c). Significant resources are available 
for obtaining suitable genomic DNA for targeting vector 
construction, including genome-wide end-sequenced 
BAC libraries for C57BL/6J-derived [33] and 129-derived 
strains [7]. Homology arms (the part of the vector that 
aligns with the genome to facilitate recombination) were 

typically generated by restriction digest of large DNA 
fragments or by PCR amplification, but increasingly 
‘recombineering’ technologies are being used [34], which 
make it possible to engineer virtually any mutation into 
the mouse genome with base pair resolution. In addition, 
customized targeting vectors can be generated on a 
contract basis by several companies.

Gene modi�cation with conditions
Conditional gene modification is used to enable spatial 
and/or temporal control over the modification of the 
gene of interest. To this end, site-specific recombinase 
(SSR) systems are used, including Cre-LoxP, Flp-FRT, 
φC31 integrase-attB/attP and most recently Dre-rox [35]. 
For a comprehensive review of the use of site-specific 
recombinases for manipulation of the mouse genome, see 
[36]. �e DNA sequences that the SSRs recognize are 
typically directional and can either flank the target DNA 
for excision from the genome or be used to invert 

Figure 1. Gene targeting strategies used in mouse ES cells. Targeting is achieved by recombination (black crosses) between homology arms 
(red lines). (a) A knockout vector replaces an entire gene with a selection cassette containing drug resistance (DR), enabling the selection of 
successfully targeted ES cell clones. (b) A knock-in vector allows the expression of a transgene, such as LacZ or Cre, by the promoter (gray arrow) 
of the targeted gene. (c) Insertion vectors can interfere with splicing by disrupting a target gene by the introduction of an exon with an early 
termination codon or a 5’ splice acceptor site (SA). They typically target the genome with a single crossover event. (d) A conditional allele with 
directional DNA sequences (LoxP, green triangles) either side of a critical exon. Recombination between the sites will result in a null allele. (e) LoxP 
sites can also be targeted megabases apart, either side of a larger cluster of genes, enabling chromosome engineering. (f) Heterospeci�c Lox sites, 
such as LoxP and Lox511, are targeted by the site-speci�c recombinase Cre. Recombinase-mediated cassette exchange (RMCE) enables the e�cient 
swapping of one targeted cassette containing incompatible target sites for another cassette �anked by an identical pair of sites. This enables the 
rapid generation of new alleles, such as introducing a point mutation in a critical exon.
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segments of DNA. SSRs can be used for the generation of 
single gene knockouts or rearrangements, and for 
chromosome engineering on a megabase scale 
(Figure 1d,e) [37,38].

SSRs can be expressed from endogenous promoters (as 
shown in Figure 1b) and in a tissue- or cell-specific 
manner. This is particularly useful when studying the 
organ-specific function of genes that are widely expressed 
and essential for embryonic development. For example, a 
conditional allele of Sox9, a gene implicated in campo
melic dysplasia in humans, is necessary to study its 
function in cartilage in mice because germline deletion of 
Sox9 results in perinatal lethality [39]. For somatic 
mutagenesis, inducible gene-modification systems may 
be used. These systems allow temporal ‘inducible’ control 
of SSR expression. There are several inducible expression 
systems available, including tetracycline [40], LacZ [41], 
and the tamoxifen-inducible systems [42]. These systems 
have been invaluable in studying genes and neural 
circuits involved in learning and memory, by turning 
genes and cellular markers ‘on’ or ‘off’ during controlled 
time periods (reviewed in [43]), and in a range of other 
biological systems.

There are now over 500 tissue- or cell-specific Cre 
recombinase mice (some of which are inducible) docu
mented in databases such as Cre-Zoo and Cre-X-mice 
(Table  2) [44]. However, as conditional modification 
technologies become increasingly sophisticated, the 
potential for non-specific effects, from mis-regulation of 
the targeted gene to incomplete recombination by the 
SSR, must remain a consideration [45,46]. For example, a 
recent study highlighted the potential for protein expres
sion from episomal products of Cre recombinase-excised 

genes, particularly when deletion occurs in cells that have 
a low population turnover [47].

Recombinase-mediated cassette exchange
Using homologous recombination to introduce genetic 
material into a desired genetic location in the mouse 
genome is not always straightforward. The efficiency is 
often dependent on the nature of the genomic target site 
and on the design of the targeting vector. Therefore, the 
ability to efficiently introduce secondary modifications to 
already successfully targeted cassettes is advantageous. 
Recombinase-mediated cassette exchange (RMCE) is a 
process in which site-specific recombinases exchange 
one gene cassette, flanked by a pair of incompatible target 
sites, for another cassette flanked by an identical pair of 
sites (Figure 1f ) [48]. Apart from the naturally occurring 
heterotypic SSR sites (attB and attP for φC31), several 
variant sites have been developed for Cre and Flp, provid
ing the required heterospecificity crucial for RMCE (for 
example, LoxP/Lox511 and FRT/FRT3; see [49] for a 
complete list). In RMCE, typically one cassette is present 
in the host genome, whereas the other cassette (and the 
recombinase) is introduced into the host ES cell by 
electroporation, chemical-mediated or adenoviral-mediated 
gene transfer [50]. Transient expression of the recombi
nase will direct integration of the SSR site-flanked 
cassette, which can then be selected by drug resistance. 
RMCE-based techniques are proving to be useful in the 
rapid production of custom allelic series [51]: they have 
recently been used to compare the impact of different 
tumor-associated mutations in p53 [52], and to study the 
effect of multiple enhancer elements on the expression of 
a targeted cassette [53].

Table 1. Commonly used ES cell lines for generating genetically modified mice

ES cell line	 Genetic background	 Comments	 Reference

E14TG2a	 129P2OlaHsd	 Feeder-independent; suitable for injections into C57BL/6 blastocysts	 [104]

AB2.2	 129S7/SvEvBrd-Hprtb-m2	 Feeder-dependent	 [105]

J1	 129SvJae	 Feeder-dependent	 [106]

Bruce4	 C57BL/6J-Thy1.1	 Have a tendency to aneuploidy	 [107]

B6/Blu-1	 C57BL/6N	 Generated by Tim Ley (Washington University, St Louis, USA)	 Personal  
			   communication 

JM8.parental	 C57BL/6N	 76% GLT rate	 [31]

JM8.F6	 C57BL/6N	 Feeder-dependent JM8 subline. Suitable for injections in BALB/c or C57BL/6J-Tyrc/c blastocysts	 [31]

JM8.N4	 C57BL/6N	 Feeder-independent JM8 subline. Suitable for injections in BALB/c or C57BL/6J-Tyrc/c blastocysts	 [31]

JM8A1.N3	 C57BL/6N	 JM8.F6-derived line with a repaired Agouti locus. Feeder independent	 [31]

C2	 C57BL/6NTac	 Efficient GLT using a combination of ICR morula aggregation with outbred host embryos	 [108]

R1	 129X1/SvJ x 129S1 (hybrid)	 Feeder-dependent	 [109]

G4	 129S6/SvEvTac x C57BL/	 Feeder-dependent; typically used for tetraploid complementation assays	 [75] 
	 6Ncr F1 hybrid

Abbreviations: GLT, germ line transmission; ICR, Institute for Cancer Research.
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Table 2. Resources generated from large-scale mouse genetics projects

Resource	 Web site	 Description	 Reference

Australian Phenomics Network http://www.australianphenomics. 
org.au

Provides resources and services for producing, screening and 
archiving mutant mice

Canadian Mouse Mutant Repository http://www.cmmr.ca/ Archived ES cells, sperm, ova, embryos, and DNA

Cancer Models Database http://cancermodels.nci.nih.gov A database of mouse lines that model the genesis, progression 
or clinical course of human cancers

Center for Animal Resources and 
Development

http://cardb.cc.kumamoto-u.ac.jp/
transgenic

A repository of over 1,300 mutant lines

Centre for Modeling Human Disease http://www.cmhd.ca/databases ENU mutagenesis and gene trap databases

Collaborative Cross http://mouse.ornl.gov/projects/
collabcross.html

A resource for the genetic analysis of complex traits [110]

Cre-X-mice http://nagy.mshri.on.ca A Cre-expressing transgenic mouse line database [44]

CreZoo http://bioit.fleming.gr/crezoo A Cre-expressing transgenic mouse line database

Ensembl http://www.ensembl.org A genome database for mouse and other eukaryotes [111]

European Conditional Mouse 
Mutagenesis Program

http://www.eucomm.org Aims to generate and distribute a collection of 13,000 mutated 
ES cell lines using conditional approaches

[112]

European Mouse Disease Clinic http://www.eumodic.org Aims to generate phenome data on 650 knockout mice 
generated by the EUCOMM project

[82]

European Mouse Mutant Archive http://www.emmanet.org A European repository with over 1,700 mutant strains [113]

European Mouse Phenotyping 
Resource for Standardized Screens 
(EMPReSS)

http://empress.har.mrc.ac.uk A primary screening platform with over 100 standard operating 
procedures validated on inbred strains

[81]

European Union Mouse Research 
for Public Health and Industrial 
Applications

http://www.eumorphia.org Novel approaches in phenotyping, mutagenesis and informatics 
to improve the characterization of mouse models

[114]

EuroPhenome http://www.europhenome.org A database to hold phenome data from EMPReSS [115]

Federation of International Mouse 
Resources

http://www.fimre.org Coordinates repositories and resource centers globally [116]

GenomeSpace http://www.genomespace.org A central workspace for genomics tools, including Galaxy, 
Integrative Genomics Viewer and UCSC Browser

Heterogeneous Stock Phenotyping 
Project

http://mus.well.ox.ac.uk/mouse/HS A searchable map of QTLs that contribute to variation in over 
100 complex traits, using Heterogeneous Stock mice

[88]

International Gene Trap Consortium http://www.genetrap.org Information on >380,000 gene-trapped ES cell lines [117]

International Knockout Mouse 
Consortium

http://www.komp.org/ikmc Aims to minimize overlap, share resources, and improve services 
among the three major knockout projects

[79]

Knockout Mouse Project http://www.knockoutmouse.org Aims to target 8,500 genes and make mice available to the 
community

[4]

MouseBook http://www.mousebook.org MRC Harwell’s mouse resources; includes a frozen embryo 
and sperm archive, an ENU screen and DNA archive, and 
standardized phenotyping procedures

[118]

Mouse Genome Database http://www.informatics.jax.org Provides integrated genetic, genomic, and biological data on 
laboratory mouse strains

[119]

Mouse Genomes Project http://www.sanger.ac.uk/resources Raw sequence data, SNPs and assemblies of 17 mouse genomes 

Mouse Phenome Project http://phenome.jax.org A collection of baseline phenotypic data on commonly used 
inbred mouse strains

[83]

Mouse Resources Portal http://www.sanger.ac.uk/mouseportal The Sanger Institute’s resources; includes available BACs, 
gene targeting vectors, ES cells and mutant mouse lines with 
associated phenotypic data

[10]

Mutant Mouse Regional Resource 
Centers

http://www.mmrrc.org A repository of mouse stocks and ES cell lines

North American Conditional Mouse 
Mutagenesis project

http://www.norcomm.org Aims to target >2,000 genes that have not been previously 
targeted or trapped

[4]

PB Mutagenesis Information Center http://www.idmshanghai.cn/PBmice A database for storing, retrieving and displaying information 
derived from PB transposon insertions

[120]

RIKEN Bioresource Center http://www.brc.riken.jp/lab/animal/en A Japanese repository of live and archived lines
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Transposons for mutagenesis
Unlike most of the methods described so far, which allow 
manipulation of the genome with base pair precision, 
transposable elements provide the power to molecularly 
tag, and therefore rapidly map, random mutagenic events. 
The application of transposons to the field of mouse 
genetics has become possible only in the past decade. So 
far, four distinct DNA transposons have been shown to 
function in mice: Tol2, Minos, Sleeping Beauty (SB) and 
PiggyBac (PB) (reviewed in [17]), with the latter two 
being the most widely used. DNA transposons use a ‘cut-
and-paste’ transposition mechanism. When both the 
transposase enzyme and a transposon vector are present 
in the same nucleus, the transposase can mediate 
excision of the transposon from the donor site and 
integration into another target site in the host cell 
genome. RNA-mediated transposition, driven by a ‘copy-
and-paste’ mechanism, has also been introduced into 
mice for mutagenesis [54].

Transposons can be used for germline mutagenesis in 
mice (reviewed in [55]). However, this technique is 
inefficient for genome-wide forward genetic screens, 
owing to the low rate of transposition (one to three de 
novo insertions per gamete) and the tendency for local 
hopping exhibited by most of the transposons; though 
some researchers have taken advantage of this obser
vation to saturate smaller genomic regions [56,57]. So far, 
the most common use for transposons has been in the 
field of cancer genetics [17]. Retroviral insertional 
mutagenesis has traditionally been used to study the 
genetics of hematopoietic and mammary cancers (Box 2), 
but the study of other tumor types has been limited by 
viral tropism. Initial studies demonstrating the validity of 
transposon-mediated insertional mutagenesis (using SB) 
identified both known and novel cancer genes involved in 
sarcoma and lymphoma [58,59]. Since then, transposons 
have been engineered to produce gain-of-function muta
tions in epithelial cells resulting in the development of a 
wide variety of carcinomas [60]. In addition, Cre-
inducible SB transposase alleles can restrict mutagenesis 
to specific tissues, permitting studies into colorectal 
cancer and hepatocellular carcinoma [61,62]. More 
recently, PB has been used for somatic mutagenesis, 
representing another tool for cancer gene discovery in 
the mouse [63].

Transposons can also be used to generate transgenic 
mice by loading them with genetic cargo. SB, PB and Tol2 
are all efficient in delivering large transgenes, up to 70 kb 
in size [64]. PB has also been used together with SSR 
technology to generate large-scale rearrangements of the 
mouse genome, including duplications, deletions, and 
translocations [65]. Recently, transposons have been used 
to deliver the reprogramming factors required for 
generating induced pluripotent stem (iPS) cells [66,67].

Gene trap mutagenesis
Gene trapping in mouse ES cells is an efficient method 
for mutagenesis of the mammalian genome. Insertion of 
a gene trap vector can disrupt gene function and/or 
report gene expression, and because these vectors inte
grate into the genome they provide a convenient tag that 
facilitates the identification of their insertion site. A 
typical strategy involves electroporating into ES cells a 
vector containing a 5’ splice acceptor that splices to the 
upstream exon of the trapped gene, and thus the endoge
nous promoter of the trapped gene is used to drive the 
expression of the reporter gene [18]. However, the vector 
can also be delivered by retroviral infection, or transposon-
mediated insertion and identification of the trap insertion 
sites in the resultant ES cell clones performed by 
splinkerette PCR (detailed in [68]).

Recent developments in trapping technology involve 
the use of ‘conditional traps’, which enable the induced 
modification of trap alleles, in vitro or in vivo, using SSRs, 

Box 2: Exploiting viruses in mouse genetics

The first transgenic mice were generated by infecting embryos 
with viruses [97], and today viral vectors remain an integral 
part of the mouse genetics toolkit. Lentiviruses integrate 
their genome into the host’s DNA, making them an effective 
transgene delivery vector. The lentiviral genome, derived 
from immunodeficiency viruses, has been deconstructed 
and distributed across multiple plasmids to minimize the 
potential formation of replication-competent viruses [98]. 
A transgene of interest may be included in a plasmid containing 
a viral packaging signal. This is co-transfected into a cell line 
(typically human embryonic kidney HEK293T cells) with other 
plasmids expressing proteins required for viral production, 
such as envelope proteins. Viruses produced in this way can be 
introduced into oocytes for transgenesis (reviewed in [99]). In 
its simplest form, this method necessitates only a few weeks 
between target selection and phenotypic analysis, offering a 
distinct advantage over other approaches. To enable pooled 
loss-of-function screens to identify complex genetic interactions, 
lentiviral short hairpin RNA (shRNA) libraries targeting most 
mouse genes have been generated [27]. Some groups have 
recently used ultrasound-guided microinjections of lentiviruses 
to deliver genes to organs and tissues of early mammalian 
embryos in utero [100].

Slow transforming retroviruses have been widely used to 
generate mouse models of cancer [101]. They can re-infect the 
same cell, randomly inserting their genome into the host DNA 
multiple times, resulting in an accumulation of mutations. This 
process of progressive mutagenesis recapitulates the multi-
step progression of human tumorigenesis (reviewed in [102]). 
The development of next-generation sequencing technologies 
has dramatically enhanced the process of identifying retroviral 
insertion sites, and databases, such as the Retroviral Tagged 
Cancer Gene Database, have been developed to map insertion 
sites to the reference genome [103].
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and using RMCE to exchange trapped vectors with other 
functional cassettes [69]. Gene trapping strategies have 
also been successfully developed to screen for genes that 
have specific expression patterns (‘enhancer traps’ [70]) 
or are acting in specific biological pathways (‘induction 
trapping’ [71,72]). Another approach to direct gene trap
ping toward genes in a specific pathway is to perform a 
phenotypic screen in ES cells. However, most insertions 
will cause heterozygous mutations (which will generate 
detectable phenotypes only for haploinsufficient genes). 
One strategy to overcome this has been to use ES cells 
that have a deficiency in the Bloom (Blm) DNA helicase. 
These cells show high levels of mitotic recombination, 
which facilitates the generation of homozygosity in cell 
lines from colonies carrying heterozygous mutations [73].

‘ES cell-driven’ mouse production
Another advantage that the mouse has over other model 
organisms is in the rapid generation of mutant mice using 
ES cell-driven approaches. These enable the production 
of mice that are entirely, or almost entirely, derived from 
ES cells without the requirement for germline transmis
sion. These approaches involve the injection of ES cells 
into eight cell embryos or a process called tetraploid 
complementation and allow the generation of mutant 
mice in weeks rather than months [74,75]. By combining 
these approaches with shRNA-mediated knockdown, 
several groups have shown that it is possible to rapidly 
generate knockdown mice for the analysis of somatic 
gene function [76,77]. Mice somatically overexpressing 
genes in an inducible and regulated way have also been 
developed using these approaches [78].

Mouse genetics on a grand scale
The success of the genome sequencing consortia over the 
past two decades established a model for further large-
scale, collaborative projects aimed at functionally charac
terizing genomes (Table 2). Examples include the Inter
national Knockout Mouse Consortium (IKMC), and its 
constituent regional projects, which collectively aim to 
generate mutant alleles for every protein-coding gene in 
the mouse genome and to make the resources available to 
the scientific community [4]. Researchers can now search 
the IKMC website and acquire, at minimal cost, mice or 
ES cells that lack a gene of interest [79], thereby 
accelerating the path from a gene of interest to mutant 
mouse line. By May 2011, IKMC had over 16,000 ES cell 
lines with mutations in protein coding genes. Many of 
these alleles are ‘knockout first’ alleles, which are designed 
to introduce a LacZ expression marker into a target gene, 
and the allele can be tailored by using Cre and Flp to 
generate null and conditional alleles, respectively [80].

In parallel, a number of past and ongoing standardized 
phenotyping projects have documented traits in inbred 

strains and mutant lines for phenotypes relevant to 
human disease, including the Mouse Phenome Project, 
the European Mouse Disease Clinic (EUMODIC) and the 
Mouse Genetics Project (MGP; based at the Wellcome 
Trust Sanger Institute); see also Table 2 [81-84]. The 
results from many screens are made available online, 
enabling researchers to identify potentially interesting 
phenotypes for detailed analysis (Figure 2). For example, 
primary MGP analysis of mice lacking the gene Slx4 
identified a number of developmental and DNA instability 
phenotypes. Detailed secondary analysis revealed the 
mouse to phenocopy a new sub-type of the human 
genetic illness, Fanconi anemia [85-87].

In an effort to identify quantitative trait loci (QTLs), 
large stocks of genetically heterogeneous (HS) mice have 
been generated [88,89]. Individual mice have been 
phenotyped and genotyped to facilitate high-precision 
QTL mapping. The Collaborative Cross (CC) is a 
resource that is using a similar strategy by interbreeding 
eight strains of mice to generate around 300 new inbred 
lines [90], which, unlike HS mice, are being cryopreserved 
for posterity. It is estimated that the CC will capture 
approximately 90% of the genetic variability in laboratory 
mice and will allow the mapping of genetic networks that 
underlie complex diseases. Moreover, the progenitor 
strains of the CC were selected for sequencing in the 
Mouse Genomes Project (Box 1), which should allow the 
QTLs identified by phenotyping CC mice to be rapidly 
resolved into a list of candidate variants. When complete, 
the CC will mark a new era in the discovery of the mole
cular basis of complex traits in the mouse. Meanwhile, 
large-scale phenotyping of the strains developed so far is 
well under way. Finally, EuTRACC is a project to generate 
ES cells that carry a targeted tandem affinity purification 
tag (TAP-tag). Initially this will be several hundred 
transcription factor genes, but this is an effort that is 
likely to extend genome-wide. This resource will facilitate 
mass spectrometry of native protein complexes to better 
understand the mouse ‘interactome’ [91].

Towards the future
Mouse genetics has a bright future. Genome-wide asso
ciation studies have identified hundreds of alleles 
statistically associated with human disease, which now 
demand detailed functional analysis. Early examples 
suggest the mouse will be the ideal model in moving from 
genetic association studies to understanding molecular 
mechanisms leading to complex disease [92]. The abla
tion of a large proportion of the coding mouse genome 
within the next 5 years, at least in ES cells, should rapidly 
accelerate these studies.

The modular design of modern gene targeting 
cassettes, together with SSRs and RMCE, makes for an 
incredibly flexible system of genetic engineering in mice. 
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�is is establishing the mouse as a leading model in 
scientific disciplines previously dominated by work in 
simpler organisms. For example, gene targeting com-
bined with channelrhodopsin, which allows the control 
of neural activation using light [93], allows the visuali-
zation, and fine manipulation, of precise neural circuits 
in the mammalian brain that was until recently only 
possible in Drosophila and C. elegans [94,95].

However, there are also challenges ahead. A significant 
number of regions across the mouse genome, typically 
those containing clusters of highly homologous, tightly 
arrayed genes, are not amenable to efficient gene 
targeting. Moreover, the same loci are often difficult to 
sequence, with some lacking complete coverage even in 
the high quality reference genome [96]. �us, as much as 
5 to 10% of the functional mouse genome may fall 
through the cracks of the present large-scale projects 
unless new technologies, or clever combinations of 
current technologies, are developed and used to 

investigate these genes. Nevertheless, the mouse is likely 
to remain the non-human vertebrate with the most 
sequenced, and best studied, genome for the foreseeable 
future. Together, the advances described here will under-
pin an understanding of mouse genetics within the 
current decade unthinkable to CC Little when he first 
began generating inbred lines over a century ago [1].
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