
High-throughput sequencing technologies are now in 
common use in biology. �ese technologies produce 
millions of short sequence reads and are routinely being 
applied to genomes, epigenomes and transcriptomes. 
Sequencing steady-state RNA in a sample, known as 
RNA-seq, is free from many of the limitations of previous 
technologies, such as the dependence on prior knowledge 
of the organism, as required for microarrays and PCR 
(see Box 1: Comparisons of microarrays and sequencing 
for gene expression analysis). In addition, RNA-seq 
promises to unravel previously inaccessible complexities 
in the transcriptome, such as allele-specific expression 
and novel promoters and isoforms [1-4]. However, the 
datasets produced are large and complex and inter pre-
tation is not straight forward. As with any high-through-
put technology, analysis methodology is critical to inter-
preting the data, and RNA-seq analysis procedures are 
continuing to evolve. �erefore, it is timely to review 
currently available data analysis methods and comment 
on future research directions.

Making sense of RNA-seq data depends on the 
scientific question of interest. For example, determining 
differences in allele-specific expression requires accurate 
determination of the prevalence of transcribed single 
nucleotide polymorphisms (SNPs) [5]. Alternatively, 
fusion genes or aberrations in cancer samples can be 
detected by finding novel transcripts in RNA-seq data 
[6,7]. In the past year, several methods have emerged that 
use RNA-seq data for abundance estimation [8,9], 

detection of alternative splicing [10-12], RNA editing 
[13] and novel transcripts [11,14]. However, the primary 
objective of many biological studies is gene expression 
profiling between samples. �us, in this review we focus 
on the methodologies available to detect differences in 
gene level expression between samples. �is sort of 
analy sis is particularly relevant for controlled experi-
ments comparing expression in wild-type and mutant 
strains of the same tissue, comparing treated versus 
untreated cells, cancer versus normal, and so on. For 
example, comparison of expression changes between the 
cultured pathogen Acinetobacter baumannii and the 
pathogen grown in the presence of ethanol - which is 
known to increase virulence - revealed 49 differentially 
expressed genes belonging to a range of functional 
categories [15]. Here we outline the processing pipeline 
used for detecting differential expression (DE) in RNA-
seq and examine the available methods and open-source 
software tools to perform the analysis. We also highlight 
several areas that require further research.

Most RNA-seq experiments take a sample of purified 
RNA, shear it, convert it to cDNA and sequence on a high-
throughput platform, such as the Illumina GA/ HiSeq, 
SOLiD or Roche 454 [16]. �is process generates millions 
of short (25 to 300 bp) reads taken from one end of the 
cDNA fragments. A common variant on this process is to 
generate short reads from both ends of each cDNA 
fragment, known as ‘paired-end’ reads. �e platforms 
differ substantially in their chemistry and processing steps, 
but regardless of the precise details, the raw data consist of 
a long list of short sequences with associated quality 
scores; these form the entry point for this review.

An overview of the typical RNA-seq pipeline for DE 
analysis is outlined in Figure 1. First, reads are mapped to 
the genome or transcriptome. Second, mapped reads for 
each sample are assembled into gene-level, exon-level or 
transcript-level expression summaries, depending on the 
aims of the experiment. Next, the summarized data are 
normalized in concert with the statistical testing of DE, 
leading to a ranked list of genes with associated P-values 
and fold changes. Finally, biological insight from these 
lists can be gained by performing systems biology 
approaches, similar to those performed on microarray 
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experiments. We critique below the currently available 
methodologies for each of these steps for RNA-seq data 
analysis. Rather than providing a complete list of all 
available tools, we focus on examples of commonly used 
open-source software that illustrate the methodology 
(Table 1). For a complete list of RNA-seq analysis soft
ware, see [17,18].

Mapping
To use RNA-seq data to compare expression between 
samples, it is necessary to turn millions of short reads 

into a quantification of expression. The first step in this 
procedure is the read mapping or alignment. At its 
simplest, the task of mapping is to find the unique 
location where a short read is identical to the reference. 
However, in reality the reference is never a perfect 
representation of the actual biological source of RNA 
being sequenced. In addition to sample-specific attributes 
such as SNPs and indels (insertions or deletions), there is 
also the consideration that the reads arise from a spliced 
transcriptome rather than a genome. Furthermore, short 
reads can sometimes align perfectly to multiple locations 
and can contain sequencing errors that have to be 
accounted for. Therefore, the real task is to find the 
location where each short read best matches the reference, 
while allowing for errors and structural variation.

Although research into how best to align reads to a 
reference is ongoing, all solutions by necessity involve 
some compromise between the computational require
ments of the algorithm and the fuzziness allowed in 
matching to the reference. Almost all short read aligners 
use a strategy of a first pass ‘heuristic’ match, which 
quickly finds a reduced list of possible locations, followed 
by thorough evaluation of all candidate alignments by a 
complex ‘local alignment’ algorithm. Without this initial 
heuristic search to reduce the number of potential align
ment locations, performing local alignment of millions of 
short reads would be computationally impossible on 
current hardware.

Current aligners enable fast heuristic matching by 
using either hash tables [19-22] or the Burrows Wheeler 
transform (BWT) [23-25]. Hash-table aligners have the 
advantage of being easily extendable to detect compli
cated differences between read and reference, at the cost 
of ever increasing computational requirements. Alterna
tively, BWT-based aligners can map reads that closely 
match the reference very efficiently but are prohibitively 
slow once more complex misalignments are considered. 
A detailed explanation of these techniques is beyond the 
scope of this review, but can be found in [23,26-30].

Aligners also differ in how they handle ‘multimaps’ 
(reads that map equally well to several locations). Most 
aligners either discard multimaps [25], allocate them ran
domly [29] or allocate them on the basis of an estimate of 
local coverage [31,32], although a statistical method 
incorporating alignment scores has also been proposed 
[33]. Paired-end reads reduce the problem of multi-
mapping, as both ends of the cDNA fragment from which 
the short reads were generated should map nearby on the 
transcriptome, allowing the ambiguity of multimaps to 
be resolved in most circumstances.

When considering reads from genomic DNA, mapping 
to a relevant reference genome is all that is needed. How
ever, RNA-seq is sequencing fragments of the transcrip
tome. This difference is dealt with in several ways. Given 

Figure 1. Overview of the RNA-seq analysis pipeline for 
detecting differential expression. The steps in the pipeline are 
in red boxes; the methodological components of the pipeline are 
shown in blue boxes and bold text; software examples and methods 
for each step (a non-exhaustive list) are shown by regular text in blue 
boxes. References for the tools and methods shown are listed in Table 
1. First, reads are mapped to the reference genome or transcriptome 
(using junction libraries to map reads that cross exon boundaries); 
mapped reads are assembled into expression summaries (tables of 
counts, showing how may reads are in coding region, exon, gene or 
junction); the data are normalized; statistical testing of differential 
expression (DE) is performed, producing and a list of genes with 
associated P-values and fold changes. Systems biology approaches 
can then be used to gain biological insights from these lists.
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that the transcriptome is ‘built from’ the genome, the 
most commonly used approach (at least initially) is to use 
the genome itself as the reference. This has the benefit of 
being easy and not biased towards any known annotation. 
However, reads that span exon boundaries will not map 
to this reference. Thus, using the genome as a reference 
will give greater coverage (at the same true expression 
level) to transcripts with fewer exons, as they will contain 
fewer exon junctions. Longer reads are more likely to 
cross exon boundaries, thus causing the fraction of junc
tion reads to increase [2].

In order to account for junction reads, it is common 
practice to build exon junction libraries in which refer
ence sequences are constructed using boundaries between 
annotated exons [2,32,34,35]. To map reads that cross exon 
boundaries without relying on existing annotations, it is 
possible to use the dataset itself to detect splice junctions 
de novo [36-41]. Another option is the de novo assembly 
of the transcriptome, for use as a reference, using genome 
assembly tools [42,43]. All de novo methods can identify 
novel transcripts and may be the only option for 
organisms for which no genomic reference or annotation 

Table 1. Software methods and tools for differential expression analysis of RNA-seq

Analysis step	 Method	 Implementation	 References

Mapping	 General aligner	 GMAP/GSNAP 	 [91]

		  BFAST 	 [20]

		  BOWTIE 	 [25]

		  CloudBurst 	 [92]

		  GNUmap 	 [93]

		  MAQ/BWA 	 [23]

		  PerM 	 [19]

		  RazerS 	 [94]

		  Mrfast/mrsfast 	 [22]

		  SOAP/SOAP2 	 [24,95]

		  SHRiMP 	 [21]

	 De novo annotator	 QPALMA/GenomeMapper/PALMapper 	 [37]

		  SpliceMap 	 [96]

		  SOAPals 	 [95]

		  G-Mo.R-Se 	 [97]

		  TopHat 	 [40]

		  SplitSeek 	 [36]

	 De novo transcript assembler	 Oases 	 [98]

		  MIRA 	 [99]

Summarization	 Isoform-based	 Cufflinks 	 [11]

		  ALEXA-seq 	 [10]

	 Gene-based	 Count exons only	 For example, [34,45]

		  Exon junction libraries 	 [34,44]

Normalization	 Library size		  For example, [34]

	 RPKM	 ERANGE 	 [32]

	 TMM	 edgeR 	 [48]

	 Upper quartile	 Myrna 	 [45,47]

Differential expression	 Poisson GLM	 DEGseq 	 [100]

		  Myrna 	 [47]

	 Negative binomial	 edgeR 	 [57] 

		  DESeq 	 [46]

		  baySeq 	 [58]

Systems biology	 Gene Ontology analysis	 GOseq 	 [68]

Abbreviations: GLM, generalized linear model; RPKM, reads per kilobase of exon model per million mapped reads; TMM, trimmed mean of M-values.
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is available. However, de novo methods are computation
ally intensive and may require long, paired-end reads and 
high levels of coverage to work reliably. For example, 
Trapnell et al. [11] used over 430 million paired-end 
reads for de novo assembly of the mouse myoblast trans
criptome in order to quantify expression during cell 
differentiation.

A commonly used approach for transcriptome mapping 
is to progressively increase the complexity of the mapping 
strategy to handle the unaligned reads [44]. For example, 
in a large study investigating expression variation in 69 
Nigerian HapMap samples, Pickrell et al. [35] found that 
for 46 bp Illumina reads, 87% mapped to the reference 
genome with two mismatches using MAQ (a hash-table-
based aligner) [23]. An additional 7% could be mapped to 
an exon-exon junction library, constructed from all 
possible combinations of Ensembl exons. The remaining 
unmapped reads were examined for evidence of the 
sequencer having erroneously sequenced the poly(A) tail. 
If a read began or ended with at least four As or Ts, these 
bases were trimmed and the rest of the read was mapped 
to the reference, resulting in a further 0.005% of reads 
being mapped. This large dataset enabled the annotation 
of over 100 new exons and identified more than a 
thousand genes in which genetic variation influences 
overall expression levels or splicing. This would not have 
been possible without a method for handling reads that 
cross exon boundaries.

Summarizing mapped reads
Having obtained genomic locations for as many reads as 
possible, the next task is to summarize and aggregate 
reads over some biologically meaningful unit, such as 
exons, transcripts or genes. The simplest and most 
common approach counts the number of reads over
lapping the exons in a gene (for example, [32,34,45]). 
However, a significant proportion of reads map to 
genomic regions outside annotated exons, even in well-
annotated organisms, such as mouse and human. For 
example, Pickrell et al. [35] found that about 15% of 
mapped reads were located outside annotated exons for 
their Nigerian HapMap samples and these extra-exonic 
reads were more likely to be cell-type-specific exons. 
Similarly, Figure 2a shows an example of transcription 
occurring outside annotated exons in the RNA-binding 
protein 39 (RBM39) gene in LNCaP prostate cancer cells. 
Reads from other normal tissue cell types are more 
limited to known exons, but also show evidence for 
transcription outside of known exons.

One alternative summarization is to include reads 
along the whole length of the gene and thereby incor
porate reads from ‘introns’. This will include unannotated 
exons in the summary and account for poorly annotated 
or variable exon boundaries. However, including introns 

might also capture overlapping transcripts, which share a 
genomic location but originate from different genes. 
There are many other possible variations that could be 
used for summarization, such as including only reads 
that map to coding sequence or summarizing from de 
novo predicted exons [40]. Junction reads can also be 
added into the gene summary count or be used to model 
the abundance of splicing isoforms [11]. These different 
possibilities are illustrated schematically in Figure 2b. 
With these options, the choice of summarization has the 
potential to change the count for each gene as substan
tially as, or more substantially than, the choice of map
ping strategy. Despite this, little research has been carried 
out on which summarization method is the most appro
priate for DE detection.

Normalization
Normalization enables accurate comparisons of expression 
levels between and within samples [2,32,34]. It has been 
shown that normalization is an essential step in the analysis 
of DE from RNA-seq data [45-48]. Normalization methods 
differ for between- and within-library comparisons.

Within-library normalization allows quantification of 
expression levels of each gene relative to other genes in 
the sample. Because longer transcripts have higher read 
counts (at the same expression level), a common method 
for within-library normalization is to divide the summar
ized counts by the length of the gene [32,34]. The widely 
used RPKM (reads per kilobase of exon model per million 
mapped reads) accounts for both library size and gene 
length effects in within-sample comparisons. To validate 
this approach, Mortazavi et al. [32] introduced several 
Arabidopsis RNAs into their mouse tissue samples, 
across a range of gene lengths and expression levels. 
These non-native RNAs are known as ‘spike-ins’ and 
demonstrated that RPKM gives accurate comparisons of 
expression levels between genes. However, it has been 
shown that read coverage along expressed transcripts can 
be non-uniform because of sequence content [49] and 
RNA preparation methods, such as random hexamer 
priming [50]. Incorporating this understanding into the 
within-library normalization method may improve the 
ability to compare expression levels. Using RNA-seq data 
to estimate the absolute number of transcripts in a 
sample is possible, but it requires RNA standards and 
additional information, such as the total number of cells 
from which RNA is extracted and RNA preparation 
yields [32].

When testing individual genes for DE between samples, 
technical biases, such as gene length and nucleotide 
composition, will mainly cancel out because the underlying 
sequence used for summarization is the same between 
samples. However, between-sample normalization is still 
essential for comparing counts from different libraries 
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relative to each other. �e simplest and most commonly 
used normalization adjusts by the total number of reads 
in the library [34,51], accounting for the fact that more 
reads will be assigned to each gene if a sample is 
sequenced to a greater depth. However, it has been 
shown that more sophisticated normalization is required 
to account for composition effects [48], or for the fact 
that a small number of highly expressed genes can 
consume a significant amount of the total sequence [45]. 
To account for these features, scaling factors can be 
estimated from the data and used within the statistical 
models that test for DE [45,46,48]. Scaling factors have 
the advantage that the raw count data are preserved for 
subsequent analysis. Alternatively, quantile normalization 
and a method using matching power law distributions 
[52,53] have also been proposed for between-sample 
normalization of RNA-seq. �e non-linearity of both of 

these transformations removes the count nature of the 
data, making it unclear how to appropriately test for DE. 
So far, quantile normalization does not seem to improve 
DE detection to the same extent as an appropriate scaling 
factor [45] and it is not clear that the power law 
distribution applies to all datasets [48].

Di�erential expression
�e goal of a DE analysis is to highlight genes that have 
changed significantly in abundance across experimental 
conditions. In general, this means taking a table of 
summarized count data for each library and performing 
statistical testing between samples of interest.

Many methods have been developed for the analysis of 
differential expression using microarray data. However, 
RNA-seq gives a discrete measurement for each gene 
whereas microarray intensities have a continuous inten sity 

Figure 2. Summarizing mapped reads into a gene level count. (a) Mapped reads from a small region of the RNA-binding protein 39 (RBM39) 
gene are shown for LNCaP prostate cancer cells [90], human liver and human testis from the UCSC track. The three rows of RNA-seq data (blue and 
black graphs) are shown as a ‘pileup track’, where the y-axis at each location measures the number of mapped reads that overlap that location. 
Also shown are the genomic coordinates, gene model (labeled RBM39; blue boxes indicate exons) and conservation score across vertebrates. It is 
clear that many reads originate from regions with no known exons. (b) A schematic of a genomic region and reads that might arise from it. Reads 
are color-coded by the genomic feature from which they originate. Di�erent summarization strategies will result in the inclusion or exclusion of 
di�erent sets of reads in the table of counts. For example, including only reads coming from known exons will exclude the intronic reads (green) 
from contributing to the results. Splice junctions are listed as a separate class to emphasize both the potential ambiguity in their assignment (such 
as which exon should a junction read be assigned to) and the possibility that many of these reads may not be mapped because they are harder to 
map than continuous reads. CDS, coding sequence.
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distribution. Although microarray intensities are typically 
log-transformed and analyzed as normally distributed 
random variables, transformation of count data is not well 
approximated by continuous distributions, especially in 
the lower count range and for small samples. Therefore, 
statistical models appropriate for count data are vital to 
extracting the most information from RNA-seq data.

In general, the Poisson distribution forms the basis for 
modeling RNA-seq count data. In an early RNA-seq 
study using a single source of RNA, sequenced on 
multiple lanes of an Illumina GA sequencer, goodness-of-
fit statistics suggested that the distribution of counts 
across lanes for the majority of genes was indeed Poisson 
distributed [34]. This has been independently confirmed 
using a technical experiment [45] and software tools are 
readily available to perform these analyses [54]. However, 
biological variability is not captured well by the Poisson 
assumption [47,51]. Hence, Poisson-based analyses for 
datasets with biological replicates will be prone to high 
false positive rates resulting from the underestimation of 
sampling error [46,47,55]. Despite the low background 
and high sensitivity of the RNA-seq platform, designing 
experiments with biological replication is still critical for 
identifying changes in RNA abundance that generalize to 
the population being sampled. Design of RNA-seq 
experiments in general, including the fundamental con
siderations of blocking, randomization and replication, 
has recently been discussed in depth [56].

In order to account for biological variability, methods 
that have been developed for serial analysis of gene 
expression (SAGE) data have recently been applied to 
RNA-seq data [57]. The major difference between SAGE 
and RNA-seq data is the scale of the datasets. To account 
for biological variability, the negative binomial distribu
tion has been used as a natural extension of the Poisson 
distribution, requiring an additional dispersion para
meter to be estimated. A few variations of negative-
binomial-based DE analysis of count data have emerged, 
including common dispersion models [55], sharing 
information over all genes using weighted likelihood [51], 
empirical estimation of the mean-variance relationship 
[46] and an empirical Bayesian implementation using 
equivalence classes [58]. Extensions to the Poisson model 
to include overdispersion have also been proposed, 
through the generalized Poisson distribution [59] or a 
two-stage Poisson model, which tests for differential 
expression in two modes depending on the evidence for 
overdispersion in the data [60]. Several tools for either 
simultaneous transcript discovery and quantification [11] 
or alternative isoform expression analysis [10] also 
perform DE analysis. However, it is worth noting that 
these methods use either the Poisson distribution or 
Fisher’s exact test, neither of which explicitly deal with 
the biological variation discussed above.

Many of the current strategies for DE analysis of count 
data are limited to simple experimental designs, such as 
pairwise or multiple group comparisons. To the best of 
our knowledge, no general methods have been proposed 
for the analysis of more complex designs, such as paired 
samples or time course experiments, in the context of 
RNA-seq data. In the absence of such methods, resear
chers have transformed their count data and used tools 
appropriate for continuous data [31,47,61]. Generalized 
linear models provide the logical extension to the count 
models presented above, and clever strategies to share 
information over all genes will need to be developed; 
software tools now provide these methods (such as edgeR 
[57]). Furthermore, the methods discussed above are 
predominantly aimed at summarizing expression levels at 
which annotation exists. Methods, such as the maximum 
mean discrepancy test [62], have recently been proposed 
to detect DE in an untargeted manner.

Systems biology: going beyond gene lists
In many cases, creating lists of DE genes is not the final 
step of the analysis; further biological insight into an 
experimental system can be gained by looking at the 
expression changes of sets of genes. Many tools focusing 
on gene set testing, network inference and knowledge 
databases have been designed for analyzing lists of DE 
genes from microarray datasets [63-65]. However, RNA-
seq is affected by biases not present in microarray data. 
For example, gene length bias is an issue in RNA-seq 
data, in which longer genes have higher counts (at the 
same expression level) [66]. This results in greater 
statistical power to detect DE for long and highly 
expressed genes. These biases can dramatically affect the 
results of downstream analyses, such as testing Gene 
Ontology (GO) terms for enrichment among DE genes 
[66,67]. In order to enable gene set analyses, Bullard et al. 
[45] suggested modifying a DE t-statistic by dividing by 
the square root of gene length to minimize the effect of 
length bias on DE. Alternatively, GO-seq is an approach 
developed specifically for RNA-seq data that can incor
porate length or total count bias into gene set tests [68]. 
As the understanding of biases in RNA-seq data grows, 
systems biology tools that incorporate this understanding 
will be critical to extracting biological insight.

There is wide scope for integrating the results of RNA-
seq data with other sources of biological data to establish 
a more complete picture of gene regulation [69]. For 
example, RNA-seq has been used in conjunction with 
genotyping data to identify genetic loci responsible for 
variation in gene expression between individuals (expres
sion quantitative trait loci or eQTLs) [35,70]. Further
more, integration of expression data with transcription 
factor binding, RNA interference, histone modification 
and DNA methylation information has the potential for 
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greater understanding of a variety of regulatory mecha
nisms. A few reports of these ‘integrative’ analyses have 
emerged recently [71-73]. For example, Lister and co
authors [71] highlighted a striking difference in the 
correlations of RNA-seq expression with CG and non-
CG methylation levels in gene bodies. Similarly, combi
nations of sequencing-based datasets are beginning to 
provide insights into the mono-allelic associations 
between expression, histone modifications and DNA 
methylation [74].

Outlook
In this review, we have outlined the major steps in 
processing the millions of short reads produced by RNA-
seq into an analysis of DE between samples. In brief, the 
process is to map and summarize short read sequences, 
then normalize between samples and perform a statistical 
test of DE. Further biological insight can be gained by 
looking for patterns of expression changes within sets of 
genes and integrating the RNA-seq data with data from 
other sources.

Although many parts of this pipeline have been the 
focus of extensive research, there are still areas that offer 
the possibility of further refinements. So far, there has 
been little work researching which summarization metric 
is best suited to finding DE between samples. There is 
also scope for expanding existing statistical methods for 
DE detection to enable the analysis of more complex 
experimental designs. Moreover, the relative merits of 
the many approaches now available deserve further study, 
in terms of their flexibility to analyze various study 
designs, their performance in small and large studies, 
dependence on sequencing depth and the accuracy of the 
assumptions (such as mean-variance relationships) that 
are imposed. Furthermore, although there are many 
examples of using RNA-seq for the detection of alterna
tive splicing, there is scope to extend current methods to 
detect differences in gene isoform preference [10,11] 
when biological variability is prominent, perhaps using 
the count-based statistical methods mentioned above.

Given that there are substantial differences in the 
protocols that generate short reads, it will be important 
to formally compare RNA-seq platforms and the relative 
merits of the many data analysis methodologies. Such 
investigations may reveal benefits of platform-specific DE 
analysis methods and will also facilitate greater data 
integration. As the field is still relatively young, we expect 
many new methods and tools for the analysis of RNA-seq 
data to emerge in the near future.

Box 1: Comparisons of microarrays and sequencing 
for gene expression analysis
Several comparisons of RNA-seq and microarray data 
have now been made. These include proof-of-principle 

demonstrations of the sequencing platform [2,31,32], 
dedicated comparison studies [34,75-77] and analysis 
methodology development [10]. The results are unani
mous: sequencing has higher sensitivity and dynamic 
range, coupled with lower technical variation. Further
more, comparisons have highlighted strong concordance 
between microarrays and sequencing in measures of both 
absolute and differential expression. Nevertheless, micro
arrays have been, and continue to be, highly successful in 
interrogating the transcriptome in many biological 
settings. Examples include defining the cell of origin for 
breast cancer subtypes [78] and investigating the effect of 
evolution on gene expression in Drosophila [79].

Microarrays and sequencing each have their own 
specific biases that can affect the ability of a platform to 
measure DE. It is well known that cross-hybridization of 
microarray probes affects expression measures in a non-
uniform way [80,81] and sequence content influences 
measured probe intensities [82]. Meanwhile, several 
studies have observed a GC bias in RNA-seq data [45] 
and RNA-seq can suffer from mapping ambiguity for 
paralogous sequences. Furthermore, there is a higher 
statistical power to detect changes at higher counts (for 
example, a twofold difference of 200 reads to 100 reads is 
more statistically significant than 20 reads to 10, under 
the null hypothesis of no difference); this bias typically 
manifests in RNA-seq as an association between DE and 
gene length, an effect not present in microarray data 
[66,68]. Other studies indicate that specific sequencing 
protocols produce biases in the generated reads, which 
can be related to the sequence composition and distance 
along the transcript [49,50,83,84]. For example, library 
preparation for small RNAs has been found to strongly 
affect the set of observed sequences [85]. Furthermore, 
transcriptome assembly approaches are necessarily 
biased by expression level because less information is 
available for genes expressed at a low level [11,14]. Many 
of these biases are still being explored and clever 
statistical methods that harness this knowledge may be 
able to provide improvements on existing methods.

In addition to the larger dynamic range and sensitivity 
of RNA-seq, several additional factors have contributed 
to the rapid uptake of sequencing for differential 
expression analysis. First, microarrays are simply not 
available for many non-model organisms (for example, 
Affymetrix offers microarrays for approximately 30 
species [86]). By contrast, genomes and sequence infor
mation are readily available for thousands of species [87]. 
Moreover, even when genomes are not available, RNA-
seq can still be performed and the transcriptome can still 
be interrogated (for instance, a recent study used RNA-
seq to investigate the cell origin of the Tasmanian Devil 
facial tumor [88]). Second, sequencing gives unprece
dented detail about transcriptional features that arrays 
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cannot, such as novel transcribed regions, allele-specific 
expression, RNA editing and a comprehensive capability 
to capture alternative splicing. For example, a recent 
RNA-seq study [11] was able to show several examples of 
isoform switching during cell differentiation, and RNA-
seq was used to show parent-of-origin expression in 
mouse brain [5].

Sequencing is not without its challenges, of course. The 
cost of the platform may be limiting for some studies. 
However, with the expansion in total sequencing capacity 
and the ability to multiplex, the cost per sample to generate 
sufficient sequence depth will soon be comparable to that 
of microarrays. However, the cost of informatics to house, 
process and analyze the data is substantial [89]. 
Researchers with limited access to computing staff and 
resources may elect to use microarrays because data 
analysis procedures are relatively mature. Finally, it is clear 
that data analysis methodologies for sequencing data will 
continue to evolve for some time yet.

Acknowledgements
We thank Matthew Wakefield for helpful discussions and Natalie Thorne, 
Matthew Ritchie, Davis McCarthy, Terry Speed and Yoav Gilad for suggestions 
to improve the article. This work is supported by National Health and Medical 
Research Council (NH&MRC) (427614-MDR, 481347-MDR 490037-AO).

Author information
All authors contributed equally to this review.

Author details
1Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 
3052, Australia. 2Epigenetics Laboratory, Cancer Program, Garvan Institute of 
Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.

Published: 22 December 2010

References
1.	 Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ: Deep surveying of alternative 

splicing complexity in the human transcriptome by high-throughput 
sequencing. Nat Genet 2008, 40:1413-1415.

2.	 Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, 
Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, 
Vingron M, Lehrach H, Yaspo ML: A global view of gene activity and 
alternative splicing by deep sequencing of the human transcriptome. 
Science 2008, 321:956-960.

3.	 Wagner JR, Ge B, Pokholok D, Gunderson KL, Pastinen T, Blanchette M: 
Computational analysis of whole-genome differential allelic expression 
data in human. PLoS Comput Biol 2010, 6:e1000849.

4.	 Wang X, Sun Q, McGrath SD, Mardis ER, Soloway PD, Clark AG: 
Transcriptome-wide identification of novel imprinted genes in neonatal 
mouse brain. PLoS ONE 2008, 3:e3839.

5.	 Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C: High-
resolution analysis of parent-of-origin allelic expression in the mouse 
brain. Science 2010, 329:643-648.

6.	 Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, 
Barrette T, Palanisamy N, Chinnaiyan AM: Transcriptome sequencing to 
detect gene fusions in cancer. Nature 2009, 458:97-101.

7.	 Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, Maguire J, 
Johnson LA, Robinson J, Verhaak RG, Sougnez C, Onofrio RC, Ziaugra L, 
Cibulskis K, Laine E, Barretina J, Winckler W, Fisher DE, Getz G, Meyerson M, 
Jaffe DB, Gabriel SB, Lander ES, Dummer R, Gnirke A, Nusbaum C, Garraway 
LA: Integrative analysis of the melanoma transcriptome. Genome Res 2010, 
20:413-427.

8.	 Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN: RNA-Seq gene expression 
estimation with read mapping uncertainty. Bioinformatics 2010, 26:493-500.

9.	 Jiang H, Wong WH: Statistical inferences for isoform expression in RNA-
Seq. Bioinformatics 2009, 25:1026-1032.

10.	 Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett 
R, Tang MJ, Hou YC, Pugh TJ, Robertson G, Chittaranjan S, Ally A, Asano JK, 
Chan SY, Li HI, McDonald H, Teague K, Zhao Y, Zeng T, Delaney A, Hirst M, 
Morin GB, Jones SJ, Tai IT, Marra MA: Alternative expression analysis by RNA 
sequencing. Nat Methods 2010, 7:843-847.

11.	 Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg 
SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq 
reveals unannotated transcripts and isoform switching during cell 
differentiation. Nat Biotechnol 2010, 28:511-515.

12.	 Wang L, Xi Y, Yu J, Dong L, Yen L, Li W: A statistical method for the detection 
of alternative splicing using RNA-seq. PLoS One 2010, 5:e8529.

13.	 Picardi E, Horner DS, Chiara M, Schiavon R, Valle G, Pesole G: Large-scale 
detection and analysis of RNA editing in grape mtDNA by RNA deep-
sequencing. Nucleic Acids Res 2010, 38:4755-4767.

14.	 Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee 
S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield 
YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, 
Moore RA, Hirst M, Marra MA, Jones SJ, Hoodless PA, Birol I: De novo assembly 
and analysis of RNA-seq data. Nat Methods 2010, 7:909-912.

15.	 Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M: Molecular 
mechanisms of ethanol-induced pathogenesis revealed by RNA-
sequencing. PLoS Pathog 2010, 6:e1000834.

16.	 Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnol 2008, 
26:1135-1145.

17.	 Software: Seqwiki: Seqanswers [http://seqanswers.com/wiki/Software]
18.	 Wikipedia: Short-Read Sequence Alignment [http://en.wikipedia.org/wiki/

List_of_sequence_alignment_software#Short-Read_Sequence_Alignment]
19.	 Chen Y, Souaiaia T, Chen T: PerM: efficient mapping of short sequencing 

reads with periodic full sensitive spaced seeds. Bioinformatics 2009, 
25:2514-2521.

20.	 Homer N, Merriman B, Nelson SF: BFAST: an alignment tool for large scale 
genome resequencing. PLoS ONE 2009, 4:e7767.

21.	 Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M: SHRiMP: 
accurate mapping of short color-space reads. PLoS Comput Biol 2009, 
5:e1000386.

22.	 Hach F, Hormozdiari F, Alkan C, Birol I, Eichler EE, Sahinalp SC: mrsFAST: 
a cache-oblivious algorithm for short-read mapping. Nat Methods 2010, 
7:576-577.

23.	 Li H, Durbin R: Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009, 25:1754-1760.

24.	 Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved 
ultrafast tool for short read alignment. Bioinformatics 2009, 25:1966-1967.

25.	 Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient 
alignment of short DNA sequences to the human genome. Genome Biol 
2009, 10:R25.

26.	 Pepke S, Wold B, Mortazavi A: Computation for ChIP-seq and RNA-seq 
studies. Nat Methods 2009, 6:S22-S32.

27.	 Li H, Homer N: A survey of sequence alignment algorithms for next-
generation sequencing. Brief Bioinform 2010, 11:473-583.

28.	 Ferragina P, Manzini G: Opportunistic data structures with applications. 
In Proceedings of the 41st Annual Symposium on Foundations of Computer 
Science: 12-14 Nov 2000. Redondo Beach, USA, 2000; 390-398. 

29.	 Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling 
variants using mapping quality scores. Genome Res 2008, 18:1851-1858.

30.	 Flicek P, Birney E: Sense from sequence reads: methods for alignment and 
assembly. Nat Methods 2009, 6:S6-S12.

31.	 Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, 
Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, 
Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM: Stem 
cell transcriptome profiling via massive-scale mRNA sequencing. Nat 
Methods 2008, 5:613-619.

32.	 Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and 
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 
5:621-628.

33.	 Taub M, Speed TP: Methods for allocating ambiguous short-reads. Commun 
Inf Syst 2010, 10:69-82.

34.	 Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an 
assessment of technical reproducibility and comparison with gene 
expression arrays. Genome Res 2008, 18:1509-1517.

Oshlack et al. Genome Biology 2010, 11:220 
http://genomebiology.com/2010/11/12/220

Page 8 of 10



35.	 Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras 
JB, Stephens M, Gilad Y, Pritchard JK: Understanding mechanisms 
underlying human gene expression variation with RNA sequencing. 
Nature 2010, 464:768-772.

36.	 Ameur A, Wetterbom A, Feuk L, Gyllensten U: Global and unbiased 
detection of splice junctions from RNA-seq data. Genome Biol 2010, 11:R34.

37.	 De Bona F, Ossowski S, Schneeberger K, Rätsch G: Optimal spliced 
alignments of short sequence reads. Bioinformatics 2008, 24:i174-i180.

38.	 Denoeud F, Aury JM, Da Silva C, Noel B, Rogier O, Delledonne M, Morgante M, 
Valle G, Wincker P, Scarpelli C, Jaillon O, Artiguenave F: Annotating genomes 
with massive-scale RNA sequencing. Genome Biol 2008, 9:R175.

39.	 Hammer P, Banck MS, Amberg R, Wang C, Petznick G, Lou S, Khrebtukova I, 
Schroth GP, Beyerlein P, Beutler AS: mRNA-seq with agnostic splice site 
discovery for nervous system transcriptomics tested in chronic pain. 
Genome Res 2010, 20:847-860.

40.	 Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with 
RNA-Seq. Bioinformatics 2009, 25:1105-1111.

41.	 Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski 
P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu J: MapSplice: 
Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic 
Acids Res 2010, 38:e178.

42.	 Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly 
using de Bruijn graphs. Genome Res 2008, 18:821-829.

43.	 Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a parallel 
assembler for short read sequence data. Genome Res 2009, 19:1117-1123.

44.	 Cloonan N, Xu Q, Faulkner GJ, Taylor DF, Tang DT, Kolle G, Grimmond SM: 
RNA-MATE: a recursive mapping strategy for high-throughput RNA-
sequencing data. Bioinformatics 2009, 25:2615-2616.

45.	 Bullard JH, Purdom E, Hansen KD, Dudoit S: Evaluation of statistical methods 
for normalization and differential expression in mRNA-Seq experiments. 
BMC Bioinformatics 2010, 11:94.

46.	 Anders S, Huber W: Differential expression analysis for sequence count 
data. Genome Biol 2010, 11:R106.

47.	 Langmead B, Hansen KD, Leek JT: Cloud-scale RNA-sequencing differential 
expression analysis with Myrna. Genome Biol 2010, 11:R83.

48.	 Robinson MD, Oshlack A: A scaling normalization method for differential 
expression analysis of RNA-seq data. Genome Biol 2010, 11:R25.

49.	 Li J, Jiang H, Wong WH: Modeling non-uniformity in short-read rates in 
RNA-Seq data. Genome Biol 2010, 11:R50.

50.	 Hansen KD, Brenner SE, Dudoit S: Biases in Illumina transcriptome 
sequencing caused by random hexamer priming. Nucleic Acids Res 2010, 
38:e131.

51.	 Robinson MD, Smyth GK: Moderated statistical tests for assessing 
differences in tag abundance. Bioinformatics 2007, 23:2881-2887.

52.	 Balwierz PJ, Carninci P, Daub CO, Kawai J, Hayashizaki Y, Van Belle W, Beisel C, 
van Nimwegen E: Methods for analyzing deep sequencing expression 
data: constructing the human and mouse promoterome with deepCAGE 
data. Genome Biol 2009, 10:R79.

53.	 Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, 
Tuch BB, Siddiqui A, Lao K, Surani MA: mRNA-Seq whole-transcriptome 
analysis of a single cell. Nat Methods 2009, 6:377-382.

54.	 Wang L, Feng Z, Wang X, Zhang X: DEGseq: an R package for identifying 
differentially expressed genes from RNA-seq data. Bioinformatics 2010, 
26:136-138.

55.	 Robinson MD, Smyth GK: Small-sample estimation of negative binomial 
dispersion, with applications to SAGE data. Biostatistics 2008, 9:321-332.

56.	 Auer PL, Doerge RW: Statistical design and analysis of RNA sequencing 
data. Genetics 2010, 185:405-416.

57.	 Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. 
Bioinformatics 2010, 26:139-140.

58.	 Hardcastle TJ, Kelly KA: baySeq: Empirical Bayesian analysis of patterns of 
differential expression in count data. BMC Bioinformatics 2010, 11:442.

59.	 Srivastava S, Chen L: A two-parameter generalized Poisson model to 
improve the analysis of RNA-seq data. Nucleic Acids Res 2010, 38:e170.

60.	 Auer PL: Statistical design and analysis of next-generation sequencing 
data. PhD Thesis. Purdue University West Lafayette, Indiana; 2010

61.	 Parikh A, Miranda ER, Katoh-Kurasawa M, Fuller D, Rot G, Zagar L, Curk T, 
Sucgang R, Chen R, Zupan B, Loomis WF, Kuspa A, Shaulsky G: Conserved 
developmental transcriptomes in evolutionarily divergent species. 
Genome Biol 2010, 11:R35.

62.	 Stegle O, Drewe P, Bohnert R, Borgwardt K, Rätsch G: Statistical tests for 
detecting differential RNA-transcript expression from read counts. Nat 
Precedings 2010, in press.

63.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, 
Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set 
enrichment analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 
102:15545-15550.

64.	 Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: 
DAVID: Database for Annotation, Visualization, and Integrated Discovery. 
Genome Biol 2003, 4:P3.

65.	 Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res 2000, 28:27-30.

66.	 Oshlack A, Wakefield MJ: Transcript length bias in RNA-seq data confounds 
systems biology. Biol Direct 2009, 4:14.

67.	 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, 
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, 
Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene 
ontology: tool for the unification of biology. The Gene Ontology 
Consortium. Nat Genet 2000, 25:25-29.

68.	 Young MD, Wakefield MJ, Smyth GK, Oshlack A: Gene ontology analysis for 
RNA-seq: accounting for selection bias. Genome Biol 2010, 11:R14.

69.	 Hawkins RD, Hon GC, Ren B: Next-generation genomics: an integrative 
approach. Nat Rev Genet 2010, 11:476-486.

70.	 Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, 
Guigo R, Dermitzakis ET: Transcriptome genetics using second generation 
sequencing in a Caucasian population. Nature 2010, 464:773-777.

71.	 Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, 
Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar 
AH, Thomson JA, Ren B, Ecker JR: Human DNA methylomes at base 
resolution show widespread epigenomic differences. Nature 2009, 
462:315-322.

72.	 Ouyang Z, Zhou Q, Wong WH: ChIP-Seq of transcription factors predicts 
absolute and differential gene expression in embryonic stem cells. Proc 
Natl Acad Sci U S A 2009, 106:21521-21526.

73.	 Raha D, Wang Z, Moqtaderi Z, Wu L, Zhong G, Gerstein M, Struhl K, Snyder M: 
Close association of RNA polymerase II and many transcription factors 
with Pol III genes. Proc Natl Acad Sci U S A 2010, 107:3639-3644.

74.	 Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, 
Fouse SD, Delaney A, Zhao Y, Olshen A, Ballinger T, Zhou X, Forsberg KJ, Gu J, 
Echipare L, O’Geen H, Lister R, Pelizzola M, Xi Y, Epstein CB, Bernstein BE, 
Hawkins RD, Ren B, Chung WY, Gu H, Bock C, Gnirke A, Zhang MQ, Haussler D, 
et al.: Comparison of sequencing-based methods to profile DNA 
methylation and identification of monoallelic epigenetic modifications. 
Nat Biotechnol 2010, 28:1097-1105.

75.	 Bradford JR, Hey Y, Yates T, Li Y, Pepper SD, Miller CJ: A comparison of 
massively parallel nucleotide sequencing with oligonucleotide 
microarrays for global transcription profiling. BMC Genomics 2010, 11:282.

76.	 Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li Y, Zeng R, Khaitovich 
P: Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC 
Genomics 2009, 10:161.

77.	 ‘t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes 
RX, Boer JM, van Ommen GJ, den Dunnen JT: Deep sequencing-based 
expression analysis shows major advances in robustness, resolution and 
inter-lab portability over five microarray platforms. Nucleic Acids Res 2008, 
36:e141.

78. 	 Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, 
Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ; kConFab, Fox SB, Yan 
M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ: Aberrant 
luminal progenitors as the candidate target population for basal tumor 
development in BRCA1 mutation carriers. Nat Med 2009, 15:907-913.

79.	 Rifkin SA, Houle D, Kim J, White KP: A mutation accumulation assay reveals a 
broad capacity for rapid evolution of gene expression. Nature 2005, 
438:220-223.

80.	 Naef F, Magnasco MO: Solving the riddle of the bright mismatches: 
labeling and effective binding in oligonucleotide arrays. Phys Rev E Stat 
Nonlin Soft Matter Phys 2003, 68:011906.

81.	 Wu Z, Irizarry RA: Stochastic models inspired by hybridization theory for 
short oligonucleotide arrays. J Comput Biol 2005, 12:882-893.

82.	 Binder H, Kirsten T, Loeffler M, Stadler PF: Sensitivity of microarray 
oligonucleotide probes: variability and effect of base composition. J Phys 

Oshlack et al. Genome Biology 2010, 11:220 
http://genomebiology.com/2010/11/12/220

Page 9 of 10



Chem B 2004, 108:18003-18014.
83.	 Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for 

transcriptomics. Nat Rev Genet 2009, 10:57-63.
84.	 Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, 

Turner DJ: A large genome center’s improvements to the Illumina 
sequencing system. Nat Methods 2008, 5:1005-1010.

85.	 Linsen SE, de Wit E, Janssens G, Heater S, Chapman L, Parkin RK, Fritz B, 
Wyman SK, de Bruijn E, Voest EE, Kuersten S, Tewari M, Cuppen E: Limitations 
and possibilities of small RNA digital gene expression profiling. Nat 
Methods 2009, 6:474-476.

86.	 Affymetrix [http://www.affymetrix.com]
87.	 NCBI: Entrez Genome [http://www.ncbi.nlm.nih.gov/sites/genome]
88.	 Murchison EP, Tovar C, Hsu A, Bender HS, Kheradpour P, Rebbeck CA, 

Obendorf D, Conlan C, Bahlo M, Blizzard CA, Pyecroft S, Kreiss A, Kellis M, Stark 
A, Harkins TT, Marshall Graves JA, Woods GM, Hannon GJ, Papenfuss AT: The 
Tasmanian devil transcriptome reveals Schwann cell origins of a clonally 
transmissible cancer. Science 2010, 327:84-87.

89.	 Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP: Computational 
solutions to large-scale data management and analysis. Nat Rev Genet 
2010, 11:647-657.

90.	 Li H, Lovci MT, Kwon YS, Rosenfeld MG, Fu XD, Yeo GW: Determination of tag 
density required for digital transcriptome analysis: application to an 
androgen-sensitive prostate cancer model. Proc Natl Acad Sci U S A 2008, 
105:20179-20184.

91.	 Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and 
splicing in short reads. Bioinformatics 2010, 26:873-881.

92.	 Schatz MC: CloudBurst: highly sensitive read mapping with MapReduce. 
Bioinformatics 2009, 25:1363-1369.

93.	 Clement NL, Snell Q, Clement MJ, Hollenhorst PC, Purwar J, Graves BJ, Cairns 
BR, Johnson WE: The GNUMAP algorithm: unbiased probabilistic mapping 
of oligonucleotides from next-generation sequencing. Bioinformatics 2010, 
26:38-45.

94.	 Weese D, Emde AK, Rausch T, Doring A, Reinert K: RazerS - fast read 
mapping with sensitivity control. Genome Res 2009, 19:1646-1654.

95.	 Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment 
program. Bioinformatics 2008, 24:713-714.

96.	 Au KF, Jiang H, Lin L, Xing Y, Wong WH: Detection of splice junctions from 
paired-end RNA-seq data by SpliceMap. Nucleic Acids Res 2010, 
38:4570-4578.

97.	 G-Mo.R-Se: Gene MOdeling using RNA-Seq [http://www.genoscope.cns.fr/
externe/gmorse/]

98.	 Oases: De Novo Transcriptome Assembler For Very Short Reads [http://
www.ebi.ac.uk/~zerbino/oases/]

99.	 Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, Suhai S: 
Using the miraEST assembler for reliable and automated mRNA transcript 
assembly and SNP detection in sequenced ESTs. Genome Res 2004, 
14:1147-1159.

100.	 DEGseq: Identify Differentially Expressed Genes from RNA-seq data 
[http://www.bioconductor.org/packages/release/bioc/html/DEGseq.html]

doi:10.1186/gb-2010-11-12-220
Cite this article as: Oshlack A, et al.: From RNA-seq reads to differential 
expression results. Genome Biology 2010, 11:220.

Oshlack et al. Genome Biology 2010, 11:220 
http://genomebiology.com/2010/11/12/220

Page 10 of 10


	Abstract
	Mapping
	Summarizing mapped reads
	Normalization
	Differential expression
	Systems biology: going beyond gene lists
	Outlook
	Box 1: Comparisons of microarrays and sequencing for gene expression analysis
	Acknowledgements
	Author information
	Author details
	References

