
Open Access2009Chenget al.Volume 10, Issue 9, Article R90Research
mRNA expression profiles show differential regulatory effects of 
microRNAs between estrogen receptor-positive and estrogen 
receptor-negative breast cancer
Chao Cheng¤*, Xuping Fu¤†, Pedro Alves* and Mark Gerstein*‡§

Addresses: *Program in Computational Biology and Bioinformatics, Yale University, George Street, New Haven, CT 06511, USA. †State Key 
Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Handan Road, Yangpu District, Shanghai, 
200433, PR China. ‡Department of Molecular Biophysics and Biochemistry, Yale University, Whitney Avenue, New Haven, CT 06520, USA. 
§Department of Computer Science, Yale University, Prospect Street, New Haven, CT 06511, USA. 

¤ These authors contributed equally to this work.

Correspondence: Mark Gerstein. Email: mark.gerstein@yale.edu

© 2009 Cheng et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
MicroRNA regulatory effects <p>Most microRNAs have a stronger inhibitory effect in estrogen receptor-negative than in estrogen receptor-positive breast cancers </p>

Abstract

Background: Recent studies have shown that the regulatory effect of microRNAs can be
investigated by examining expression changes of their target genes. Given this, it is useful to define
an overall metric of regulatory effect for a specific microRNA and see how this changes across
different conditions.

Results: Here, we define a regulatory effect score (RE-score) to measure the inhibitory effect of
a microRNA in a sample, essentially the average difference in expression of its targets versus non-
targets. Then we compare the RE-scores of various microRNAs between two breast cancer
subtypes: estrogen receptor positive (ER+) and negative (ER-). We applied this approach to five
microarray breast cancer datasets and found that the expression of target genes of most
microRNAs was more repressed in ER- than ER+; that is, microRNAs appear to have higher RE-
scores in ER- breast cancer. These results are robust to the microRNA target prediction method.
To interpret these findings, we analyzed the level of microRNA expression in previous studies and
found that higher microRNA expression was not always accompanied by higher inhibitory effects.
However, several key microRNA processing genes, especially Ago2 and Dicer, were differentially
expressed between ER- and ER+ breast cancer, which may explain the different regulatory effects
of microRNAs in these two breast cancer subtypes.

Conclusions: The RE-score is a promising indicator to measure microRNAs' inhibitory effects.
Most microRNAs exhibit higher RE-scores in ER- than in ER+ samples, suggesting that they have
stronger inhibitory effects in ER- breast cancers.
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Background
MicroRNAs (miRNAs) are a class of small noncoding (19- to
24-nucleotide) RNAs that regulate the expression of target
mRNAs at the post-transcriptional level [1,2]. In higher
eukaryotic organisms, it is estimated that miRNAs account
for about 1% of genes and regulate the expression of more
than 30% of mRNAs [3].

It has been shown that miRNAs play critical roles in a variety
of biological processes such as cell proliferation [4], apoptosis
[5], development [6], and differentiation [7]. In humans,
strong links between cancer and miRNA deregulation have
been suggested by recent studies [8,9]. A lot of known miR-
NAs are found to be located in the fragile sites (regions with
high frequencies of copy number alterations in cancers) of
human chromosomes, indicating that many miRNAs may be
linked to carcinogenesis [10]. Furthermore, it has been shown
that aberrant expression of miRNAs contributes to carcino-
genesis by promoting the expression of proto-oncogenes or
by inhibiting the expression of tumor suppressor genes. For
instance, the down-regulation of let-7, which represses
expression of the proto-oncogene RAS, has been found in a
large proportion of lung cancer specimens [11]. Other exam-
ples are miR-15 and miR-16, which repress the anti-apoptotic
factor gene BCL2 in chronic lymphocytic leukemia [12]. In
addition, some recent studies suggest that expression profiles
of miRNAs are informative for the classification of human
cancers. Based on miRNA-expression profiles, Lu et al. [13]
reported the classification of 334 leukemia and solid cancers
that agrees well with the developmental lineage and differen-
tiation state of the tumors. Rosenfield et al. [14] demon-
strated that by using miRNA as biomarkers, tumors can be
classified into subclasses according to their primary origins.
Nowadays, miRNAs are thought of as promising biomarkers
for cancer diagnosis and prognosis.

It has been proposed that animal miRNAs regulate gene
expression mainly by inhibiting translation of their target
mRNAs [15,16]. More recent studies, however, have demon-
strated that expression regulation at the mRNA level (via
mRNA degradation or deadenylation) also serves as a critical
mechanism for miRNA function in animals [17-23]. Over-
expression of miRNA in cell lines cause moderate down-reg-
ulation of a large number of transcripts, many of which con-
tain the complementary sequences of the over-expressed
miRNA in their 3' untranslated regions (UTRs) [23]. Con-
versely, gene expression analysis from miRNA knockdown
animals reveals that miRNA recognition motifs are strongly
enriched in the 3' UTRs of up-regulated genes, but depleted in
the 3' UTRs of down-regulated genes[20]. Motivated by these
findings, several studies have demonstrated the effectiveness
of investigating miRNA regulation by examining their target
mRNA expression levels [24-27]. For example, Yu et al. [27]
show that miRNA targets have lower expression levels in
mature mouse and Drosophila tissues than in embryos via
global analysis of miRNA target gene expression.

In this study, we investigate differential miRNA regulation
between estrogen receptor (ER) positive (ER+) and negative
(ER-) breast cancers by examining changes in the expression
of the miRNAs' target genes. Breast cancer is a common dis-
ease, ranking first in terms of annual mortality in women
worldwide [28]. According to the ER status and responsive-
ness to estrogen, breast cancer can be divided into two sub-
types: ER+ and ER-. The links between miRNA expression and
breast cancer have been shown using miRNA microarray
techniques [13,29]. Specifically, the differential expression of
miRNAs between ER+ and ER- breast cancers has been inves-
tigated in [30-32]. In comparison with the large number of
mRNA expression datasets [33-41], miRNA expression data-
sets for ER+ and ER- breast cancer are still limited. Moreover,
results and conclusions from these studies are generally not
consistent and sometimes even conflicting [30-32]. In this
study, we take advantage of those mRNA expression datasets
to investigate differential miRNA regulation between ER+ and
ER- breast cancers.

For each miRNA, we calculate a regulatory effect (RE)-score,
which measures the expression difference between the targets
and non-targets of the miRNA in an expression profile. Then,
we compare the RE-scores of miRNAs in ER+ tumor samples
with their RE-scores in ER- samples to identify microRNAs
with changing RE-scores (which we term RE-changing
microRNAs). We applied our method to five independent
microarray datasets that include gene expression profiles for
both ER+ and ER- samples. In all of them, our results indicate
that the majority of RE-changing miRNAs showed higher RE-
scores in ER- than in ER+ samples, suggesting stronger inhib-
itory effects of miRNAs on their targets in ER- breast cancer.
To check the robustness, we performed the same analyses
using different miRNA target prediction methods, RE-score
calculation methods, and RE-changing miRNA identification
thresholds and obtained consistent results. Moreover, we
examined the expression levels of genes in the miRNA bio-
genesis pathway and found that Ago1 and Ago2 (which
encode argonautes, the key proteins forming the RNA-
induced silencing complex (RISC)) had significantly higher
expression levels in ER- than in ER+ breast cancer. This may
suggest higher RISC activities and, therefore, that miRNAs
down-regulate target gene expression in ER- breast cancer
with higher efficiency.

Results and discussion
Identification of RE-changing miRNAs between ER+ 

and ER- breast cancers
To measure the inhibitory effect of a miRNA, we calculate the
RE-score, denoted as the difference of average ranks between
the miRNA's non-target and target genes. It should be noted
that the RE-scores for different miRNAs may not be directly
comparable because the miRNAs regulate different sets of
target genes. However, we can compare the RE-scores for the
same miRNA in different conditions (that is, using different
Genome Biology 2009, 10:R90
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expression profiles). A higher RE-score indicates lower
expression levels of target genes and, thereby, a stronger
inhibitory effect of the corresponding miRNA. Given a breast
cancer microarray dataset, we calculate the RE-scores for
each miRNA in all samples. Then, we compare the RE-scores
in ER+ and ER- samples to identify miRNAs that show differ-
ent regulatory effects between these two breast cancer sub-
types. We refer to these miRNAs as RE-changing miRNAs.
Using ER+ as the reference, some RE-changing miRNAs show
stronger inhibitory effects, while others show weaker inhibi-
tory effects in ER- breast cancer. The false discovery rate
(FDR) was estimated using a similar method to the signifi-
cance analysis of microarrays (SAM) method [42]. A flow dia-
gram of our analysis is shown in Figure 1.

Most miRNAs show stronger inhibitory effects in ER- 

than in ER+ breast cancer
We applied our analysis to 5 carefully selected large scale
microarray datasets, each containing at least 30 expression
profiles for both ER+ and ER- breast cancer samples. Among
these datasets, four were measured by one-channel Affyme-
trix GeneChips and one was measured by two-channel cDNA
arrays (see Materials and methods for details about these
datasets). For each dataset, we calculated the RE-scores of
each miRNA in all samples. To do this, we needed to deter-
mine the target and non-target gene sets for miRNAs. Several
computational methods have been developed to identify
microRNA targets and predictions using these can be consid-
erably different (Additional data file 1, the distribution of
miRNA target gene numbers for different prediction tools). In
our analysis, the target genes for miRNAs were predicted
using the PITA algorithm, which has been shown to have high
prediction accuracy [43]. Subsequently, we computed t-
scores (ER- versus ER+) to measure the difference between
RE-scores for ER- and ER+ samples. A positive t-score for a
miRNA suggests that this miRNA has higher overall RE-
scores and, thereby, stronger inhibitory effects on its targets
in ER- samples. Conversely, a negative ER-/ER+ t-score indi-
cates a stronger inhibitory effect of a miRNA in ER+ samples.
For example, to estimate the RE-score of miR-371 in a sample
from the HE (Hess et al. [44]) dataset, we first grouped the
total 14,327 genes in the HE dataset into two sets, one with
2,054 target genes and the other with 12,273 non-target
genes. Second, we sorted the expression levels of the 14,327
genes and computed the average ranks of the 2,054 targets
and 12,273 non-targets, respectively. The RE-score for miR-
371 in each sample was calculated as the average rank of the
non-targets minus the average rank of the targets. We per-
formed the RE-score calculation for 82 ER+ samples and 51
ER- samples and found that the RE-scores for the ER- samples
are significantly higher than those for ER+ samples (t-test, P
= 3.74E-15). We also compared the RE-scores for ER+ sam-
ples with those for ER- samples in the other four datasets. As
shown in Figure 2a, in all of the five datasets, the RE-scores
for miR-371 are significantly higher in ER- samples. Namely,
miR-371 represses the expression of its target mRNAs more

efficiently in ER- breast cancers. In the next section we dis-
cuss the results based on other miRNA target prediction
methods.

We calculated the ER-/ER+ t-scores (measuring the difference
between RE-scores for ER- versus ER+ samples) for 470
human miRNAs in all of the 5 datasets. Interestingly, we
found that most miRNAs exhibit higher RE-scores in ER-

than in ER+ samples, as suggested by the distributions of their
t-scores in Figure 2b. We calculated the significance of the t-
scores based on the permutation test using a similar method
to SAM [42] (see Materials and methods for detail). At the
0.05 significance level (FDR  0.05), we identified 109, 188,
15 and 306 RE-changing miRNAs from a total of 475 miRNAs
in the HE (Hess et al. [44]), MI (Miller et al. [38]), MN (Minn
et al. [39]) and VA (van't Veer et al. [34]) datasets, respec-
tively, and all of them show higher inhibitory effects in ER-

breast cancer. In the WA (Wang et al. [40]) dataset, we iden-
tified 377 RE-changing miRNAs, of which 373 have higher
inhibitory effects and only 4 lower inhibitory effects in ER-

breast cancer. This suggests that most miRNAs exhibit
stronger inhibitory effects on the expression of their targets in
ER- compared to ER+ breast cancer. This conclusion could
still be made when we relaxed the FDR threshold to 10% and
20%, as illustrated in Figure 2c. The t-score, P-value and FDR
of each miRNA for all datasets are provided in Additional data
file 2.

Use of other miRNA target prediction algorithms
Next, we investigated whether similar results can be obtained
using other miRNA target prediction methods. It has been
shown previously that distinct miRNA prediction methods
may result in considerably different target gene sets (Addi-
tional data file 1, the distribution of miRNA target numbers
for different prediction tools). To rule out the possible bias
introduced by PITA, we repeated our analysis using three
other miRNA target prediction methods: TargetScan [3], Pic-
Tar [45] and miRanda [46]. We chose these three out of a
handful of miRNA target prediction methods not only
because they have been prevalently used but also because
they are, in some sense, complementary to the PITA method.
Almost all miRNA target prediction methods first scan the 3'
UTR of transcripts for potential miRNA binding sites that are
complementary to the seed region of miRNAs. TargetScan
and PicTar meet stringent seed pairing criteria, whereas the
criteria are moderately stringent in PITA and miRanda. To
further increase the prediction accuracy, PITA takes into
account the local accessibility of the potential binding sites,
whereas miRanda and PicTar apply a different strategy: they
filter out those miRNA binding sites in non-conserved
regions. TargetScan, the most widely used prediction method,
considers both site conservation and context accessibility.

The results based on PicTar and miRanda are illustrated in
Figure 3a, b. As shown, the t-scores for RE-score comparisons
for ER- versus ER+ samples are more likely to be positive val-
Genome Biology 2009, 10:R90
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Schematic diagram showing the method for identifying RE-changing miRNAs between ER- and ER+ breast cancer samplesFigure 1
Schematic diagram showing the method for identifying RE-changing miRNAs between ER- and ER+ breast cancer samples. For each miRNA in each sample, 
a RE-score is calculated by comparing average ranks of its target and non-target genes. RE-changing miR (ER- > ER+) and RE-changing miR (ER- < ER+) 
represent miRNAs that have significantly higher and lower RE-scores in ER- compared to ER+ samples, respectively. RE-invariant miR represents miRNAs 
that show no significant difference in RE-scores between these samples. Note that many miRNAs share the same target mRNA, while many mRNAs can 
also be targeted by the same miRNA, which constitutes a complex miRNA-mRNA network.
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ues for all five datasets, suggesting that miRNAs have
stronger inhibitory effects on their targets in ER- breast can-
cer. Since both PITA and miRanda can require moderately
stringent miRNA seed:target complementarity, in order to
obtain more reliable target and non-target gene sets for miR-
NAs, we also tried another strategy: combining the prediction
results of PITA and miRanda methods. For each miRNA, we
define its target genes as those predicted by both methods and
its non-target genes as those predicted by neither. This will
presumably decrease both false positive and false negative
prediction rates. Based on this target and non-target gene set
definition, we again obtain similar results, as shown in Figure
3c.

TargetScan is currently the most widely used microRNA tar-
get prediction tool, which relies on strict miRNA seed region
complementarity [3,47]. In addition, the conservation of
binding site, the context of the miRNA-binding site, the prox-
imal AU composition, and proximity to sites for co-clustered
miRNAs can enhance the targeting efficacy of a binding site

[48]. Choosing different parameters for target prediction
results in quite different performance [49]. Among the
parameters, site conservation and site accessibility (meas-
ured as context score) are the two most important [50,51]. To
evaluate the performance of different TargetScan cutoffs in
the RE-score comparison, we chose three target sets - one in
which the members have a conserved binding site, one in
which the members have a context score greater than -0.20,
and one that includes all potential targets - which we refer to
as ConservedTS, ContextTS, and AllTS, respectively. These
three TargetScan predictions are quite different. On average,
210, 765, and 2,026 targets per miRNA are predicted in Con-
servedTS, ContextTS and AllTS, respectively. After integrat-
ing mRNA expression data with all three target sets to
compare the RE-scores in ER- and ER+ samples, we found
again that the t-scores for ER- versus ER+ samples are more
likely to be positive for all five datasets, as illustrated in Figure
3d-f. This demonstrates that the observation of higher RE-
scores in ER- breast cancer, for most miRNAs, is not likely
caused by a bias from the miRNA prediction method. Com-

Comparison of RE-scores between ER+ and ER- samples from five breast cancer expression datasetsFigure 2
Comparison of RE-scores between ER+ and ER- samples from five breast cancer expression datasets. (a) Box plots of RE-scores for miR-371. miR-371 
shows significantly higher RE-scores in ER- than in ER+ samples for all five datasets. The statistical significance level of difference (FDR) for each dataset is 
also shown. (b) Distributions of the t-scores for RE-score comparison between ER- and ER+ samples. The t-scores for 470 miRNAs were calculated by 
comparing their RE-scores for ER- samples with those for ER+ samples. The t-score distributions for the five datasets are shown in different colors. Most t-
scores are positive, indicating that most miRNAs exhibit higher RE-scores in ER- than in ER+ samples. (c) Proportion of RE-changing miRNAs with higher 
inhibitory effect in ER- samples (red) and RE-changing miRNAs with lower inhibitory effect in ER- samples (green) at three different significance levels (FDR 
 0.05, FDR  0.10, and FDR  0.20). The number on the top of a bar represents how many RE-changing miRNAs were identified from the corresponding 
mRNA microarray dataset. HE, MI, MN, VA and WA represent the microarray data published by Hess et al. [44], Miller et al. [38], Minn et al. [39], van't 
Veer et al. [34], and Wang et al. [40], respectively.
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plete results based on three TargetScan predictions,
miRanda, PicTar, and the intersection of PITA and miRanda
can be found in Additional data file 2.

Use of alternative methods to compare miRNA 
inhibitory effects
To further substantiate our findings, we also used two alter-
native methods to investigate the inhibitory effects of miR-
NAs in ER+ and ER- breast cancers. The first method is similar
to the one described above, but we use a different way to cal-
culate the RE-scores for miRNAs in an expression profile.
Instead of computing the average rank difference between the
target and non-target gene sets for a miRNA, we calculate the
RE-score as follows: first, calculate the relative expression
levels of each gene across all of the samples by subtracting the
mean and then dividing by the standard deviation; second,

calculate the RE-score of a miRNA by comparing the relative
expression levels of its target and non-target genes. For clar-
ity, we will refer to these two RE-score calculation methods as
rank comparison and expression comparison. Similar to what
we found using the rank comparison method, RE-scores
obtained using expression comparison tend to be higher in
ER- samples as indicated by the t-score (ER- versus ER+) dis-
tribution (Figure 4a). These results are not dependent on the
miRNA target prediction method because similar results are
obtained using PITA and miRanda (complete results are
given in Additional data file 3). As a matter of fact, the t-
scores obtained by using expression comparison and rank
comparison are highly correlated. For example, for the VA
dataset, these two methods yield two sets of t-scores with a
correlation coefficient of 0.928 (Figure 4b). As shown, 432
out of 466 miRNAs have positive t-scores from both methods,

Distributions of the t-scores for comparison of RE-scores based on distinct miRNA target prediction algorithmsFigure 3
Distributions of the t-scores for comparison of RE-scores based on distinct miRNA target prediction algorithms. (a) PicTar algorithm. (b) miRanda 
algorithm. (c) Intersection of miRanda and PITA. (d-f) TargetScan algorithm where the site is conserved (d), the site context score is above -0.20 (e), and 
all potential targets are included (f). The t-score distributions for the five datasets are shown in different colors. The t-scores are more likely to be positive 
values in all five datasets, suggesting that miRNAs have stronger inhibitory effects on their targets in ER- breast cancer.
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confirming stronger inhibitory effects of miRNAs in ER-

breast cancer.

The other method, referred to as ARR (adapted ranked ratio),
is similar to the ranked ratio (RR) method proposed by Yu et
al. [27]. First, the expression levels of each gene in ER+ and
ER- samples were compared and a t-score (ER+/ER-) was cal-
culated to measure the expression differentiation of the gene
in the two breast cancer subtypes. The t-scores for all genes
were then ranked and genes were divided into two groups,
those with high t-scores and those with low t-scores. For each
miRNA, the ARR value was calculated by dividing the number
of target genes in the 'low' ranked group by the 'high' ranked
group. The ARR value is an indicator of the distribution of a
miRNA's targets within all genes. A low ARR value (ARR < 1)

indicates that a miRNA has more targets in genes with higher
t-scores, that is, genes that are lowly expressed in ER- sam-
ples; the target genes of this miRNA tend to have lower
expression levels in ER- breast cancer. We calculated the ARR
values for all miRNAs in each of these five datasets. The num-
bers of miRNAs with ARR < 1 and ARR > 1 are listed in Table
1. As shown, more miRNAs have ARR < 1 in all datasets, indi-
cating their stronger inhibitory effect in ER- breast cancer.

Although the ARR method is similar to the RR method
described by Yu et al. [27], they differ in some ways. The RR
value for a miRNA in a tissue is calculated by dividing the
number of targeted genes with 'low' expression by the number
of target genes with 'high' expression after the expression lev-
els of each gene across a series of tissues are ranked and split

Results obtained from an alternative RE-score calculation method based on expression comparisonFigure 4
Results obtained from an alternative RE-score calculation method based on expression comparison. (a) Distributions of the t-scores calculated by 
comparing the RE-scores from the expression comparison method. The employed target prediction algorithm was PITA. The t-score distributions for the 
five datasets are shown in different colors. (b) Correlation between the t-scores obtained from the two different RE-score calculation methods. The 
microarray dataset used was VA, published by van't Veer et al. [34]. The correlation coefficient (R) is 0.928, indicating that the t-scores obtained using 
expression comparison and rank comparison are highly correlated.
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Table 1

Number of miRNAs with ARR < 1 and ARR > 1 in each dataset

PITA miRanda

Dataset ARR < 1 ARR > 1 Percentage (ARR < 1) ARR < 1 ARR > 1 Percentage (ARR < 1)

HE 279 187 60% 224 188 54%

MI 446 24 95% 380 34 92%

MN 388 79 83% 293 122 70%

VA 407 60 87% 345 71 82%

WA 332 137 71% 299 113 72%
Genome Biology 2009, 10:R90
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into 'high' and 'low' groups, with half the genes in each. In our
ARR method, we first performed a t-test to compare the
expression levels of each gene in ER+ and ER- samples. The t-
scores were ranked and genes were divided into two groups
corresponding to high ranked and low ranked genes, each
containing half the genes. The ARR value of each miRNA was
then calculated by dividing the number of targets with high
rank by the number of targets with low rank. Compared with
the RR method described by Yu et al. [27], our method is dif-
ferent in three aspects. First, for each gene, the expression
levels were compared between ER+ and ER- samples. To
reveal the expression difference between two groups, the t-
score is more effective than the ranks across all samples. Sec-
ond, the ARR value from our method is actually an indicator
of difference between the expression distribution of a micro-
RNA's target genes and that of all genes. Therefore, it directly
reflects the regulatory effect of a microRNA on its target
genes. Third, for a microRNA, only one ARR value is obtained
based on the whole dataset with our method, and the ARR
value facilitates a global inspection of the inhibitory activity
differences of a microRNA between two sample groups.

Although the calculations of RE-score and ARR value are
completely different, the results from each are highly consist-
ent. We compared the RE-scores determined by expression
comparison methods with the ARR results. First, we com-
puted the Spearman correlation of the RE-scores and the
ARR values for each microarray dataset. As illustrated in
Table 2, the inhibitory activities calculated by these two dif-
ferent methods are highly correlated, with the correlation
coefficients ranging from 0.578 to 0.861, which provides fur-
ther confirmation that more microRNAs show higher inhibi-
tory effects in ER- breast cancers. Second, we overlapped the
microRNAs with higher or lower inhibitory activity in ER-

cancers predicted by the RE-score and ARR values (Table 3).
If a microRNA has a t-score (ER-/ER+) > 0 in the RE-score
comparison and ARR < 1 in the ARR calculation, it is pre-
dicted to have higher inhibitory activity in ER- cancer by both

methods, whereas a microRNA with a t-score < 0 and RR > 1
shows consistently higher activity in ER+ cancer. More than
80% of the miRNAs overlap, indicating that these two meth-
ods are in strong agreement. Furthermore, the number of
miRNAs with consistently higher activity in ER- samples is
much higher than the number with consistently lower activity
in ER+ samples, again indicating that most miRNAs exhibit
higher regulatory effects in ER- than in ER+ samples. Some
significant miRNAs are identified by both methods. For
example, it has been reported that miR-206, which regulates
the estrogen receptor, has higher activity in ER- than ER+ can-
cers [52]. In our calculations, for all five microarray datasets,
the ARR values of this microRNA are all <1, and the t-scores
for RE-score comparison between ER- and ER+ cancers are all
>0 (Table 3). These results are consistent with the activity dif-
ference between ER+ and ER- cancer reported by Adams et al.
[52].

Differential regulatory effects of miRNAs can not be 
explained by miRNA expression differences between 
ER+ and ER- cancer
To understand why miRNAs tend to have stronger inhibitory
effects on their targets in ER- samples, we asked whether they
are more highly expressed in ER- breast cancers. Using
miRNA microarray technology, expression levels of miRNAs
have been previously measured and compared in ER- and ER+

samples in three different studies [30-32]. Iorio et al. [31]
identified 11 miRNAs that were differentially expressed
between ER+ and ER- samples, of which 8 were down-regu-
lated in the ER- samples. In contrast, many more miRNAs
were reported to be differentially expressed by Blenkiron et
al. [30] and Mattie et al. [32]. Specifically, Blenkiron et al.
identified 35 differentially expressed miRNAs, of which 11
were up-regulated and 24 were down-regulated in the ER-

samples. Mattie et al., however, reported that the majority of
differentially expressed miRNAs were down-regulated in ER-

samples (40 out of 43). These three miRNA expression stud-
ies do not support the idea that miRNAs tend to be more

Table 2

Correlation between the results obtained using the ARR and RE-score calculation methods

PITA PicTar

Datase
t

Percentage (ER- > 
ER+)

Percentage (ER- < 
ER+)

Spearman 
correlation

Percentage (ER- > 
ER+)

Percentage (ER- < 
ER+)

Spearman 
correlation

HE 58% 23% 0.861 77% 12% 0.752

MI 100% 0% 0.646 60% 16% 0.778

MN 73% 10% 0.668 62% 17% 0.763

VA 86% 2% 0.659 65% 5% 0.578

WA 68% 18% 0.855 59% 22% 0.837

Percentage (ER- > ER+): the fraction of microRNAs with ARR < 1 and t-score < 0, indicating that the microRNAs show higher regulatory activity in 
ER- than in ER+ samples, as consistently supported by both the ARR method and RE-score expression comparison method. Percentage (ER- < ER+): 
the fraction of microRNAs with RR > 1 and t-score > 0. These microRNAs show higher regulatory activity in ER+ samples, as supported by both the 
ARR method and the RE-score expression comparison method. Spearman correlation: the correlation between the ARR value and t-score (ER-/ER+).
Genome Biology 2009, 10:R90
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highly expressed in ER- than ER+ breast cancer. It should be
noted that the three studies obtained substantially different
results due to the technological issues of miRNA microarray
experiments.

In addition, to measure the correlation between miRNAs'
inhibitory effects and their expression levels, we calculated
the Spearman correlations of the t-scores for the miRNA
expression comparisons and those for the miRNA RE-score
comparisons. As illustrated in Table 4, there is only a very
weak positive correlation between them; particularly, the
miRNA expression data published by Mattie et al. [32] shows
almost no correlation with the miRNA regulatory effects pre-
dicted from all five mRNA expression datasets. This further
indicates that the stronger inhibitory effect of miRNAs in ER-

cancer cannot be explained by their expression levels.

Some microRNAs have large inconsistencies between their
expression levels and RE-scores. For example, many studies
have suggested that the expression levels of Dicer, the key
gene in the generation of microRNAs, vary in different cancer
subtypes [53-55]. In our study, Dicer is significantly down-
regulated in ER- compared to ER+ cancers (see next section
for details). A possible mechanism for this is that it is regu-
lated epigenetically [56]. Six microRNAs, miR-103, miR-
122a, miR-130a, miR-148a, miR-19a, and miR-29a, are com-
monly predicted to target Dicer by the prediction methods
PITA, miRanda, PicTar and Targetscan. We investigated the
expression levels of these microRNAs in two distinct datasets
published by Blenkiron et al. [30] and Mattie et al. [32]. The
expression levels of these microRNAs are mostly lower in ER-

samples (Figure 5), which is opposite to our inference that
they may be up-regulated to transcriptionally repress Dicer in
ER- cancer. We then compared the RE-scores of these micro-
RNAs in ER+ and ER- cancers. To our surprise, almost all
microRNAs show stronger inhibitory effects in ER- cancers
(Figure 5), which may explain why Dicer is expressed less in
ER- cancer. Especially, miR-122a, which was reported to tar-

get Dicer and function in various cellular stresses [57,58], is
expressed at significantly lower levels but shows significantly
higher inhibitory activity in ER- cancer, strongly indicating
that the differential regulatory effects of miRNAs can not be
explained by miRNA expression differences between ER+ and
ER- cancer.

Several studies have reported that good classification of can-
cer subtypes can be achieved using the expression levels of
miRNAs [13,14]. Because striking differences in the RE-
scores for a set of miRNAs between ER+ and ER- samples are
observed, the RE-score of an miRNA could be a promising
predictor for breast cancer subtype classification. We used
the RE-scores of the top eight significantly RE-changing miR-
NAs in the MN dataset [39] to classify the ER+ and ER- sub-
types. As expected, the accuracy was up to 89.29%. The RE-
score profiles of these miRNAs are plotted in Figure 6. The
classification accuracy was comparable or even better
(85.76%) when estimated using the expression levels of the
top 35 differentially expressed miRNAs in the dataset pub-
lished by Blenkiron et al. [30], suggesting that the prediction
of ER status of breast cancer based on miRNA regulatory
effect or miRNA targeted mRNA expression is an alternative
to that based on miRNA expression.

Differential expression of miRNA processing genes 
between ER+ and ER- breast cancers
In addition to miRNA abundance, post-transcriptional regu-
lation of miRNA expression may also be important for the
inhibitory effect of miRNAs on their targets. Deregulation of
genes required for miRNA biogenesis may be expected to lead
to global changes in miRNA expression as well as the inhibi-
tory effects of miRNAs. Therefore, we examined whether

Table 3

Regulatory activity of miR-206 predicted by the RE-score and ARR 
methods

PITA PicTar

Dataset ARR t-score (ER-/ER+) RR t-score (ER-/ER+)

HE 0.986 0.91 0.852 1.98

MI 0.973 1.91 0.977 1

MN 0.97 1.02 0.783 2.56

VA 0.979 2.47 0.823 3.82

WA 0.977 1.57 0.84 3.09

t-score (ER-/ER+): the t-score is calculated by performing a t-test to 
measure differentiation of the RE-scores for a miRNA in the two 
breast cancer subtypes. Note that here the RE-scores were calculated 
using the expression comparison method.

Table 4

Correlation between microRNA RE-scores and their expression 
levels

Expression level

PITA miRanda

BL MA BL MA

RE-score

HE 0.218 0.023 0.150 -0.069

MI 0.211 0.056 0.254 -0.072

MN 0.235 0.089 0.201 -0.085

VA 0.102 0.015 0.071 -0.044

WA 0.285 0.121 0.251 -0.055

BL and MA represent the microRNA microarray data published by 
Blenkiron et al. [30] and Mattie et al. [32]. HE, MI, MN, VA and WA 
represent the mRNA microarray data published by Hess et al. [44], 
Miller et al. [38], Minn et al. [39], van't Veer et al. [34], and Wang et al. 
[40], which were used to infer the microRNA RE-scores.
Genome Biology 2009, 10:R90
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The expressions and RE-scores of microRNAs predicted to target DicerFigure 5
The expressions and RE-scores of microRNAs predicted to target Dicer. BL and MA represent the microRNA microarray data published by Blenkiron et al. 
[30] and Mattie et al. [32]. HE, MI, MN, VA and WA represent the mRNA microarray data published by Hess et al. [44], Miller et al. [38], Minn et al. [39], 
van't Veer et al. [34], and Wang et al. [40], which were used to calculate the microRNA RE-scores. If the difference between ER+ and ER- samples is 
significant, the plot is flagged with three asterixes. The expression levels of these six microRNAs are mostly lower in ER- samples; however, almost all the 
RE-scores in ER- samples are higher, suggesting that the differential regulatory effects of miRNAs can not be explained by miRNA expression difference 
between ER+ and ER- cancers.
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miRNA processing genes are differentially expressed in ER+

and ER- breast cancers.

We found that among the miRNA processing genes, Ago1 and
Ago2 were significantly up-regulated in ER- compared to ER+

samples in all datasets, with combined P-values of 4.0E-8 and
2.0E-10, respectively, whereas Dicer and TRBP were signifi-
cantly down-regulated, with combined P-values of 8.8E-6
and 2.9E-10, respectively (Figure 7b; Additional data file 4).
Differential expression of Ago1, Ago2 and Dicer between ER+

and ER- breast cancer has been previously investigated and
consistent results were reported by Blenkiron et al. [30]. As
shown in Figure 7a, several proteins play a critical role in the
miRNA processing pathway. DROSHA, a double-stranded
RNA-specific ribonuclease, digests the pri-miRNA in the
nuclease to release hairpin, precursor miRNA (pre-miRNA)
[7]; then DICER, a member of the RNase III nuclease, cleaves
the pre-miRNA into a single-stranded mature miRNA with
the assistance of TRBP [59]; finally, the mature miRNA is
incorporated into RISC consisting of DICER, TRBP, AGO and
several other proteins [60-62]. Among the eight human AGO
proteins, AGO1 and AGO2 are known to play the most impor-
tant roles in transcriptional silencing mediated by miRNAs or
small interfering RNAs. Assembly of human RISC minimally
requires AGO2, DICER, and TRBP, among which AGO2 is the
catalytic engine owing to its endonuclease activity and the
DICER-TRBP complex acts simply as a platform [60,63,64].
The relatively lower abundance of AGO1 and AGO2 proteins
in ER+ breast cancer may limit the activity of functional RISC,
which would in turn lower the inhibitory effect of miRNAs on
their targets. Moreover, since the expression levels of Dicer
and Ago genes are anti-correlated in ER+ and ER- cancer,
there is no necessary link between the mature miRNA expres-

sion levels and RISC activity. This may also explain the global
up-regulation of miRNA expression levels in ER+ cancer
observed by Blenkiron et al. since Dicer is significantly up-
regulated [30].

It seems that the key genes in the microRNA biogenesis path-
way are subjected to delicate regulation and their differential
expression is likely to be associated with distinct tumor sub-
types. More interestingly, genes in this pathway are not con-
sistently regulated: Dicer and TRBP, which are involved in
miRNA maturation and RISC assembly, are down-regulated
whereas the catalytic engine of RISC is up-regulated in ER-

relative to ER+ breast cancer. As a result, the capability of
miRNAs (or more precisely RISC) to repress their targets may
not be reflected by their expression levels. Using microRNA
microarray experiments, Blenkiron et al. [30] found that the
most differentially expressed miRNAs between ER+ and ER-

cancers are down-regulated in the latter. They also examined
the correlation between miRNA expression and changes in
the mRNA levels of their direct targets but failed to detect
enrichment for down- or up-regulation of predicted target
miRNAs consistent with miRNA expression differentiation in
most cases. This can be explained by the hypothesis that
many miRNAs act at the level of translation rather than
mRNA stability; nevertheless, this can also be explained by
discordance in changes of expression between the key miRNA
processing genes. Our results demonstrate that miRNAs tend
to have stronger inhibitory effect on their mRNA targets in
ER- breast cancer, suggesting that the AGO proteins (up-reg-
ulated in ER- cancer at the mRNA level), the catalytic engine
of RISC, may eventually determine the efficiency of miRNAs
to down-regulate their targets. In addition, deregulation of
the key genes in the miRNA biogenesis pathway may be

RE-score profiles of microRNAs for the classification of ER+ and ER- breast tumorsFigure 6
RE-score profiles of microRNAs for the classification of ER+ and ER- breast tumors. The figure demonstrates unsupervised hierarchical clustering of 57 ER+ 

and 42 ER- samples in the MN dataset [39] using the top 8 RE-changing miRNAs. A dendrogram of the tumors is shown at the top, with ER+ samples in red 
and ER- samples in yellow. For hierarchical clustering, RE-scores of each miRNA were mean centered and normalized, and tumors were clustered using 
Pearson correlation (uncentered) and average linkage (CLUSTER and TREEVIEW software) [73].
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Differential expression of miRNA processing genes between ER+ and ER- breast cancer samplesFigure 7
Differential expression of miRNA processing genes between ER+ and ER- breast cancer samples. (a) miRNA biogenesis and function pathway. Genes 
significantly up-regulated and down-regulated in ER- compared to ER+ samples are shown in yellow and cyan, respectively. A gene - for example, Drosha - is 
marked grey to denote that it shows no significant differential expression between ER- and ER+ samples. (b) Expression levels of Ago1, Ago2, Dicer, and 
TRBP in ER+ (red) and ER- (green) samples. The mean and the standard deviation of the expression levels for each gene are shown as a bar and vertical line, 
respectively. Data for a gene are not shown if it is missing from a dataset. The combined P-value for each gene is also shown.
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related to tumorigenesis of certain cancer types, as has been
suggested by the fact that down-regulating DICER expression
promoted tumorigenesis in vitro and in a mouse lung cancer
model [65].

It has been reported that Ago2 is expressed more in ER- than
in ER+ breast cancer cell lines, and that this is correlated with
active ER signaling [66]. AGO2 enhances cell proliferation,
reduces cell-cell adhesion, and increases cell migratory abil-
ity, which contribute to the tumor phenotype transformation
from ER+ to ER- through overexpression of Ago2. Either gene
amplification or activation of cell signaling cascades elevates
Ago2 expression in ER- cancer cells. Up to now, no clear evi-
dence or experimental data have shown that Ago2 is ampli-
fied in ER- cancer. The epidermal growth factor receptor
(EGFR) and mitogen activated protein kinase (MAPK) signal-
ing cascades are the major signal transduction pathways in
ER- breast cancers [67,68]. One of the frequent and remarka-
ble features in ER- cancer is the up-regulated EGFR gene [69].
Adams et al. [66] proposed and confirmed that epidermal
growth factor stimulated Ago2 expression in ER- cancers and
that this was primarily regulated by the MAPK pathway. In
addition, with the overexpression of Ago2, the inhibition
activity of miR-206 was elevated, whereas without Ago2 the
activity of miR-206 remained unchanged even with the over-
expression of miR-206, suggesting that formation of Ago2-
miRNA complexes is the main factor influencing miR-206
inhibitory activity [70]. This is consistent with our finding
that the activity of a microRNA cannot be explained merely by
its expression level. Based on this suggestion, a hypothesis
can be provided that, with elevated Ago2 expression, an
miRNA's inhibitory activity accordingly increases, which
leads to low expression levels of genes involved in ER+ cell
types and the predominant expression of genes involved in
the oncogenic pathways leading to ER- cancer.

Despite growing evidence that Dicer mRNA levels vary
between different tumor subtypes and that these variations
are correlated with cancer progression [53-55], the regulation
of Dicer remains unclear. Weisen et al. [56] reported that type
I interferon represses Dicer. As already reported, MAPK sig-
naling pathways comprise a major cascade in ER- cancers
[68]. Type I interferon signals can be transduced by the
MAPK pathway [71], and the activated MAPK pathway in ER-

cancers may enhance the signal of type I interferon, which
results in the inhibition of Dicer expression. Another possible
explanation of the low expression of Dicer in ER- cancers may
be the regulatory effect of miRNAs. DICER's epigenetic regu-
lation could also occur via specific mechanisms involving the
DICER 3' UTR and the binding of microRNAs [56]. In this
study, we have shown that the activity of miRNAs is stronger
in ER- than ER+ cancer and that Dicer is targeted and sup-
pressed to a lower level in ER- compared to ER+ cancers.

Conclusions
In this study, we created the RE-score to measure the inhibi-
tory effect of a miRNA on its targets. Based on RE-score cal-
culations, we compared the inhibitory effects of miRNAs on
their targets between two breast cancer subtypes, ER+ and
ER-. miRNAs that showed significantly different inhibitory
effects were identified for five independent datasets. We
found that, for most miRNAs, the target genes were more
repressed in ER- than ER+ breast cancer, suggesting that miR-
NAs have stronger inhibitory abilities in the former. The exact
identity of the miRNA targets does not seem important since
these findings are robust to several distinct methods of
miRNA target prediction and are further consolidated by
another two methods for comparing miRNA regulation. To
seek the potential mechanisms contributing to the inhibitory
effects of miRNAs, we explored miRNA abundance measured
by miRNA microarrays and expression levels of genes
involved in miRNA biogenesis and function. Our analysis
indicates that a high inhibitory ability is not necessarily asso-
ciated with high miRNA expression levels, because previous
miRNA expression data do not suggest prevalent over-
expression in ER- breast cancer. However, it is interesting to
find that several key miRNA processing genes are signifi-
cantly differentially expressed between ER+ and ER- breast
cancer. Ago1 and Ago2 are significantly up-regulated in ER-

cancer, while Dicer and TRBP are significantly down-regu-
lated. These results imply that the miRNA processing path-
way is subject to subtle regulation and that deregulation of
key genes in this is involved in the cancer pathology. This
method is easily applied and can be used to investigate the
miRNA regulation underlying other microarray datasets.

Materials and methods
Breast cancer microarray datasets
All the microarray data used in this study were downloaded
from public databases or from the websites provided by the
original publications. Over ten breast cancer datasets have
been generated in previous studies [33-41,44]. From these
datasets, we chose five according to the following criteria:
contain at least 30 samples for both ER+ and ER- breast can-
cer; and expression of ER+ and ER- samples is measured using
the same platform. The first criterion is to ensure a high
power of statistical analysis, while the second criterion is to
avoid bias introduced by platform effect. Among these five
datasets, one used cDNA arrays and the other four used oligo-
nucleotide arrays produced by Affymetrix. Numbers of ER+

and ER- samples in each dataset are listed in Table 5. The
expression values are represented by normalized log ratios
for cDNA microarrays or by log-transformed intensities after
Robust Multichip Average normalization for Affymetrix oli-
gonucleotide microarrays [72]. The probe or probeset IDs are
mapped to NCBI Refseq IDs. When multiple probe sets are
mapped to the same Refseq ID, their values are averaged to
represent the expression level of this Refseq gene.
Genome Biology 2009, 10:R90
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miRNA target predictions
A number of miRNA target prediction approaches have been
suggested in the past few years [43,45-47]. In this paper, we
utilize four sets of miRNA target prediction data derived
using PITA [43], miRanda [46], PicTar [45] and TargetScan
[3,47], respectively. All miRNA target prediction datasets
were downloaded from the most recently updated websites.
To facilitate the analysis, the target gene IDs were also con-
verted into NCBI Refseq IDs. For each miRNA, the target
genes are defined as those presented in the microarray data
and predicted to contain at least one binding site at their 3'
UTR; the non-target genes are defined as those presented in
the microarray data but not predicted to be regulated by the
miRNA.

Measuring a miRNA's inhibitory effect with the 
average rank difference between its targets and non-
targets
To measure the inhibitory effect for a miRNA, we defined the
RE-score, which measures the difference in expression levels
between its target and non-target genes. The RE-score can be
calculated in two ways: one is based on rank comparison and
the other is based on expression comparison.

The RE-score based on rank comparison is calculated as fol-
lows. We denote the number of a miRNA's targets and non-
targets as Nt and Nn, respectively. After sorting the expression
levels of all genes, the ranks of target genes and a non-target
genes are denoted as Rt and Rn, respectively. The RE-score of
a miRNA is defined as the difference of the average rank
between its targets and non-targets:

where  and  represent the mean target and non-target

ranks, respectively. The RE-score is essentially a transforma-

tion of the sum rank statistic (the sum of ranks for target

genes) used in the Wilcoxon rank sum test. Since genes with

high absolute expression values have high rank values, a pos-

itive RE-score indicates that the non-target genes of a miRNA

tend to be expressed at higher levels than its target genes, pre-

sumably due to the inhibitory effect of the miRNA on its tar-

get genes. The higher the RE-score, the stronger the

inhibitory effect of a miRNA on its targets.

Identifying microRNAs with significantly changed RE-
scores between ER+ and ER- breast cancer
To investigate the difference of a miRNA regulatory effect
between ER+ and ER- breast cancer, a two sample t-test was
performed to compare RE-scores and determine whether the
RE-scores of a miRNA are significantly different between ER+

and ER- cancer.

Since usually hundreds of miRNAs are examined simultane-
ously, multiple testing corrections needed to be considered.
We calculated the FDR based on permutations similar to the
method used in SAM [42]. If there were N1 ER+ and N2 ER-

samples, the t-scores obtained from comparing RE-scores for
each miRNA were calculated in the original data, denoted as
TRES(r) for the rth miRNA. We then permutated the samples;
at each permutation, N1 samples were randomly selected to
form one permuted ER+ group, and the rest of the samples
were used as the permutated ER- group. The permutated t-
score, denoted as TRES(r, k), for the rth miRNA in the kth per-
mutation, is recalculated. We then considered the histogram
of all TRES(r, k) over all r and k, and used this null distribution
to compute an FDR value for a given t-score TRES(r) = TRES*.
If TRES*  0, the FDR is the ratio of the percentage of all (r, k)
with TRES(r, k)  0, whose TRES(r, k)  TRES*, divided by the
percentage of miRNAs with TRES(r)  0, where TRES(r) 
TRES*, and similarly if TRES* < 0.

If the FDR for a miRNA is below a predefined threshold, we
call this miRNA as a significantly RE-changing miRNA.

ER+ and ER- cancer subtype classification
The miRNA RE-score is a promising feature to classify tumor
subtypes as well as microRNA expression. In this study, we
constructed a multi-miRNA signature and used the algorithm
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Table 5

Breast cancer gene expression datasets used in this study

Number of samples

Dataset ID Reference Array type ER+ ER-

HE Hess et al. [44] One channel oligo 82 51

MI Miller et al. [38] One channel oligo 213 34

MN Minn et al. [39] One channel oligo 57 42

VA van't Veer et al. [34] Two channels cDNA 53 44

WA Wang et al. [40] One channel oligo 209 77
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of a linear support vector machine. We ranked the P-values
that were derived from the comparison of RE-scores or
expressions. The top N significant RE-score changing micro-
RNAs or differentially expressed microRNAs were chosen to
perform the classification analysis. To estimate the effect of
the classifier, we adapted a leave one out cross validation
strategy. Generally, the number of ER+ samples is different
from the number of ER- samples. If there were N1 ER+ and N2

ER- samples, assuming that N1 > N2, in order to balance the
sample effect, we randomly selected N2 ER+ samples. The
total 2* N2 (N2 ER+ and N2 ER-) samples were used in the
leave one out validation. The classification accuracy was
determined by averaging the accuracies of the leave one out
validations repeated 100 times.
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