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Abstract

Background: The biomedical literature is the primary information source for manual protein-protein
interaction annotations. Text-mining systems have been implemented to extract binary protein
interactions from articles, but a comprehensive comparison between the different techniques as well as
with manual curation was missing.

Results: We designed a community challenge, the BioCreative II protein-protein interaction (PPI) task,
based on the main steps of a manual protein interaction annotation workflow. It was structured into four
distinct subtasks related to: (a)detection of protein interaction-relevant articles; (b)extraction and
normalization of protein interaction pairs; (c)retrieval of the interaction detection methods used; and (d)
retrieval of actual text passages that provide evidence for protein interactions. A total of 26 teams
submitted runs for at least one of the proposed subtasks. In the interaction article detection subtask, the
top scoring team reached an F-score of 0.78. In the interaction pair extraction and mapping to SwissProt,
a precision of 0.37 (with recall of 0.33) was obtained. For associating articles with an experimental
interaction detection method, an F-score of 0.65 was achieved. As for the retrieval of the PPI passages
best summarizing a given protein interaction in full-text articles, 19% of the submissions returned by one
of the runs corresponded to curator-selected sentences. Curators extracted only the passages that best
summarized a given interaction, implying that many of the automatically extracted ones could contain
interaction information but did not correspond to the most informative sentences.

Conclusion: The BioCreative II PPI task is the first attempt to compare the performance of text-mining
tools specific for each of the basic steps of the PPI extraction pipeline. The challenges identified range from
problems in full-text format conversion of articles to difficulties in detecting interactor protein pairs and
then linking them to their database records. Some limitations were also encountered when using a single
(and possibly incomplete) reference database for protein normalization or when limiting search for
interactor proteins to co-occurrence within a single sentence, when a mention might span neighboring
sentences. Finally, distinguishing between novel, experimentally verified interactions (annotation relevant)
and previously known interactions adds additional complexity to these tasks.
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Background
Physical protein-protein interactions have been studied
extensively because of their crucial role in controlling central
biological processes such as cell division and their implica-
tions in a range of human diseases including cancer. A collec-
tion of experimental techniques is available to characterize
protein-protein interactions; some of them are more suitable
to determine stable complexes whereas others are generally
considered better for detecting transient interactions. The use
of large-scale proteomics approaches for experimentally
obtaining protein interaction information has resulted in an
additional source of interaction data. Also, bioinformatics
techniques based on sequence, structural, or evolutionary
information have been devised to predict binary protein
interactions.

To capture and provide efficient access to the underlying
information, structured interaction annotations have been
stored in public databases. These databases vary in annota-
tion depth and type of interactions, but a common character-
istic is that the annotations are primarily extracted by human
curators from relevant publications. Some interaction data-
bases such as the human protein-protein interaction database
HPRD (Human Protein Reference Database) [1], HomoMINT
(inferred human network) [2], and MIPS (Munich Informa-
tion Center for Protein Sequences) [3] focus on certain taxa
and store mainly information for human or mammalian pro-
teins. There are also more specialized interaction databases
like PDZBase [4], which is restricted to proteins with a PDZ
domain, or Reactome [5], which focuses on interactions
related to biological pathways. The interaction databases
MINT (Molecular Interactions Database) [6] and IntAct [7]
contain the largest number of nonredundant direct human
protein-protein interactions, exceeded in number only by
HPRD. They also provide literature references relevant to the
individual interactions, together with the experimental inter-
action detection method used as supporting evidence [8].

Although most interaction databases provide links to Swiss-
Prot identifiers for their interactor proteins, to compare
annotations derived from different databases as well as to
share the annotation effort, both a standard annotation for-
mat as well as controlled vocabulary terms describing the
experimental context are crucial. The Proteomics Standards
Initiative Molecular Interaction (PSI-MI) standard has been
developed to facilitate a coordinated annotation effort for
protein interactions using controlled vocabulary terms and
providing a common format as framework [9]. More efficient
retrieval systems of biological interactions contained in scien-
tific articles are in demand not only for specialized users such
as biological database curators, but also for the general biol-
ogy community. In order to improve the efficiency of locating
curation relevant articles by the Biomolecular Interaction
Network Database (BIND) curators, an extraction system
called PreBIND based on support vector machine (SVM) clas-

sifiers to detect interaction-relevant articles, has been devel-
oped [10].

A range of methods have been proposed to extract biological
associations from the literature. Some of them obtain general
associations, whereas others focus on certain biologically rel-
evant association categories (for example, protein interac-
tions, genetic interactions [gene regulation], or gene product-
functional keyword association [functional annotations])
[11,12].

In general, two baseline approaches to extract biological rela-
tions may be identified, although many of the previously pub-
lished systems are actually hybrid strategies combining
features from both. The approaches are termed local associa-
tion analysis and global association analysis.

The local association analysis or article-centric approach tries
to extract binary interactions for proteins co-occurring in a
predefined textual context, often corresponding to sentences
or text passages. To determine whether the co-occurring enti-
ties exhibit an interaction relationship, additional contextual
characteristics are considered. Some of these rely, for
instance, on the use of interaction keywords, verbs or seman-
tic frames, or on machine learning techniques for classifying
sentences according to their interaction relevance or even
exploitation of syntactical rules for detecting interaction rela-
tions. Some of these approaches integrate modules that han-
dle negation ('A [does not] interact with B') that reverse the
meaning of a predicate. Other approaches can detect enumer-
ations of multiple protein mentions in a single sentence. The
advantage of the article-centric approach is that it often pro-
vides interaction-relevant sentences useful for human inter-
pretation and can support detection of novel protein
interactions with only single citation evidence. Because this
type of approach extracts direct interactions together with the
supporting textual evidence, it may serve to improve annota-
tion consistency as well as facilitate annotation update.

Global association analysis, or multi-document interaction
extraction, tries to exploit recurrent co-occurrence of proteins
within a collection of documents or passages in order to
detect protein interaction pairs [13]. The strength or reliabil-
ity of the extracted interaction pairs can be calculated based
on statistical co-occurrence analysis. An interaction network
can thus be extracted providing a global systems biology over-
view that also captures indirect relations that go beyond a
single document. This strategy is more suitable for capturing
commonly known protein interactions, which have been
extensively studied with a collection of supporting citations.
One disadvantage of this approach is that it is not straightfor-
ward for human interpretation.

Most of the implemented methods extract interaction infor-
mation from PubMed abstracts and titles only, and not from
the corresponding full-text articles, obtaining results that are
Genome Biology 2008, 9(Suppl 2):S4
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not directly comparable with the information contained in
interaction databases, which access the whole documents.
Another limitation is that most of them address only very nar-
row aspects of the interaction annotation pipeline, which
gives somewhat artificial results that do not scale up to handle
real applications. Among the aspects often neglected are the
intricacies of the initial article selection process, as well as the
linking of the interactor proteins to their corresponding data-
base identifier, a step that is often referred to as 'normaliza-
tion'. Moreover, no previously reported text-mining strategy
distinguishes between experimentally verified interactions
and interaction statements that lack experimental confirma-
tion. This aspect is crucial, because most of the biological
annotation databases provide an evidence qualifier for each
annotation record. For BioCreative II, we developed a text-
mining task for the extraction of protein-protein interaction
annotations from the literature, and evaluated the submis-
sions against a manually curated 'gold standard' carried out
by expert database annotators.

The main aims posed when devising the protein-protein
interaction (PPI) task were as follows.

1. Determine the performance of state-of-the-art text-mining
tools in extracting PPIs, as compared with manual curation.

2. Provide participating systems with useful resources for
training and testing protein interaction extraction systems.

3. Explore which approaches are successful and practical.

4. Analyze the main difficulties and aspects influencing per-
formance of PPI extraction systems.

5. Promote the development of useful tools to extract protein-
protein interactions from text.

Previously published protein interaction extraction systems
do not have directly comparable evaluation setups to allow
one to carry out consistent comparison and benchmark stud-
ies, and they also yield results that are not comparable with
results of manual database annotation efforts (mainly due to
the lack of interactor protein normalization). The BioCreative
II PPI task was carried out to allow comparison of various
strategies on a common benchmark dataset based on data
collections prepared by domain experts and in line with the
content and annotation strategy of interaction databases.

Protein-protein interaction task
The PPI task comprised four sub-tasks, each of which was
concerned with a particular aspect of the interaction annota-
tion pipeline.

1. Interaction article subtask (IAS): classification and ranking
of PubMed abstracts, based on whether they are relevant to
protein interaction annotation or not.

2. Interaction pair subtask (IPS): extraction of binary protein-
protein interaction pairs from full-text articles. Proteins are
annotated with their corresponding unique SwissProt
identifier.

3. Interaction method subtask (IMS): extraction of the inter-
action detection method used to characterize the protein
interactions described in full-text articles. The interaction
detection methods must be characterized in terms of corre-
sponding MI ontology identifiers. They constitute the experi-
mental evidence for the interaction.

4. Interaction sentences subtask (ISS): retrieval of the textual
evidence passages that describe/summarize the interaction.

Participating teams were provided with a collection of train-
ing data for each subtask to build and train their literature
mining systems during the period from June to October
2006. Then, during the test phase, the participants had to
provide submissions for at least one of the PPI subtasks
within a predefined, short period of time (<2 weeks, to mini-
mize the possibility of a manual annotation attempt). Figure
1 provides a comparative flowchart of the manual protein-
protein interaction annotation process with the automatic
text-based extraction within the context of the BioCreative II
PPI task.

Results
A total of 26 teams submitted results for one or more PPI sub-
tasks. Each team could provide up to three runs (submis-
sions) per subtask, to allow them to explore different
parameters or methods. The most relevant results are
described in this article; additional results and data analysis
are available online [14].

Interaction articles subtask
The aim of the IAS was to determine whether text-mining
tools can detect and rank interaction annotation-relevant
articles based on PubMed titles and abstracts only. Although
manual interaction annotations are based on inspection of
full-text articles, PubMed titles and abstracts were used for
this set up. This is in line with the textual data availability,
because there are still general limitations in retrieving,
processing, and distributing large collections of full-text arti-
cles for a considerable number of annotation-relevant biolog-
ical journals. In this way we also explored the implicit
limitations of abstract-based detection of annotation-rele-
vant articles. Resulting applications would enable a more effi-
cient retrieval of protein-protein interaction literature for
biologists, as well as assisting database curators in the initial
article selection step.

Most of the manual curation strategies start with initial read-
ing of abstracts, followed by detailed examination of the cor-
responding full-text articles only when, based on the abstract,
Genome Biology 2008, 9(Suppl 2):S4
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the article appears to be worthwhile for manual curation. The
actual protein interaction annotations in turn are extracted

(in most cases) from the full-text articles. This implies that
there are cases where the abstracts alone are not informative

Manual versus automated protein-protein interaction annotationFigure 1
Manual versus automated protein-protein interaction annotation. Presented is a comparison between the manual protein-protein interaction (PPI) 
annotation process and the automatic extraction of protein interactions in the context of the PPI task of BioCreative II.
Genome Biology 2008, 9(Suppl 2):S4
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enough to determine curation relevance for the correspond-
ing full-text article. To increase recall, the MINT and IntAct
databases carry out a shared, exhaustive curation effort for a
specified list of journals of particular high content of protein
interaction annotations. The idea behind this shared curation
is to ensure that all the interaction annotation information
contained in articles from a certain publication period of
these journals has been extracted.

Participants received a training collection of abstracts result-
ing from the curation effort of the IntAct and MINT interac-
tion databases to develop their systems. To evaluate the
performance of these systems, participants received a test set
of unlabeled abstracts, which they had to classify into interac-
tion relevant or nonrelevant articles. For the evaluation, par-
ticipants were asked to return two separate ranked lists of
article identifiers as output, one for the abstracts classified as
protein interaction relevant and one for the abstracts classi-
fied as nonrelevant. They were asked to generate these classi-
fications automatically, without human re-ranking or manual
inspection.

A total of 19 teams submitted 51 runs (up to three runs were
allowed per team). The automatically classified articles were
compared with the classification carried out by the interac-
tion database curators. As evaluation measures, the recall,
precision, balanced F score and area under the receiver oper-
ating characteristic curve (AUC) were used, as is customary
for information retrieval experiments (see, for example, the
TREC [Text Retrieval Conference] competitions [15], which
have recently included a Genomics track):

Where TP is number of true-positive predictions (interaction-
relevant abstracts correctly identified); FP is the number of
false positives (abstracts which are not interaction-relevant
predicted as such by the participants); FN is the number of
false negatives (interaction-relevant abstracts wrongly classi-
fied as non-relevant by the participants); TN is the number of
true negatives (nonrelevant abstracts, which were identified
as such by the participants); P is the total number of positives
(interaction-relevant); and N is the total number of negatives
(not interaction-relevant abstracts). To calculate the AUC, the
standard R package ROCR, which integrates the most com-
mon evaluation metrics to assess the performance of classifi-

ers [16], was used. Figure 2 shows the overall precision-recall
plot for the IAS (part a) as well as a more detailed zoom of the
top scoring teams (part b). A detailed collection of the IAS
results obtained by each run of the participating teams is pro-
vided in Table 1.

Team 6 (Alex and coworkers [17]) achieved the highest AUC
(0.8554), with a precision of 0.7080, a recall of 0.8609, and
an F score of 0.7770. They applied a SVM classifier together
with careful pre-processing, stemming, part-of-speech (POS)
tagging, sentence splitting and shallow parsing. Team 6 also
integrated a protein name detection and abbreviation resolu-
tion systems. Team 57 [18] obtained the highest F score
(0.7800), also using a SVM-based text classifier. Figure 2b
shows that a common characteristic among a considerable
fraction of the top scoring teams was the usage of SVM tech-
niques for their classification systems. The usefulness of
SVMs to detect interaction literature had previously been
explored both at the level of abstracts and at the sentence
level [19]. A common trend in the submitted runs was the
consistently higher recall when compared with precision.
Manual blind classification of a randomly chosen subset of
412 test set abstracts by a domain expert (but without special
training for interaction annotation) showed a similar out-
come, with a very high recall of 0.97 and a considerable lower
precision of 0.75. A detailed examination of the IAS test set
predictions and the manual abstract classification showed
that there are two basic types of false-positive categorizations
when compared with annotations by interaction database
curators. The first type refers to protein interaction-related
abstracts that nonetheless do not have corresponding pro-
tein-protein interactions that are worth annotating in the full
text. This implies that there are cases in which abstracts do
not provide sufficient information to determine with cer-
tainty whether an experimental protein interaction character-
ization is described in the corresponding full-text article. The
second type of false-positive prediction corresponds to
abstracts describing interaction relations, but not between
proteins. These included the following interaction classes.

1. Protein-DNA interaction descriptions: these mainly refer to
transcriptional complexes that comprise associations
between regulatory gene sequences and transcription factors
(PMID 16311517, PMID 16601684).

2. RNA interaction descriptions: these refer to associations
between RNA molecules (for example, tRNA interaction with
the mRNA; PMID 16724118) or between proteins and RNA
molecules, such as in 'Musashi interacts specifically with the
polyadenylation response element in the 3' untranslated
region of the Mos mRNA' (PMID 16763568).

3. Cellular and subcellular structure interaction descriptions:
these refer to interactions of cells or cellular structures or
between proteins and cellular structures, such as liposomes
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Figure 2 (see legend on next page)
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(PMID 10409698), the nuclear envelope, or telomeres (PMID
16467853).

4. Chemical substance interaction descriptions, including
binding studies of metal ions (PMID 16601688), peptides
(PMID 16494877), nucleotides (PMID 16678163), oligonucle-
otides (PMID 16794580), or proteoglycans (16511564). The
following two phrases illustrate this kind of interaction
expressions: 'bovine RPE65 binds iron ion' (PMID 16319067)
and 'structure of a complex between Hrp1 and an oligonucle-
otide' (PMID 16794580).

5. Biological process association descriptions: these refer to
relations of a protein with a certain biological process or path-
way, such as in 'NDRG1 interacts with SIRT1/p53 signaling'
(PMID 16314423).

6. Host-pathogen interaction descriptions (for example, for
fungal pathogens; PMID 16263704).

7. Interactions between proteins and cells: 'The carboxyl-ter-
minal domains 19-20 of FH interact with the major opsonin
C3b, glycosaminoglycans, and endothelial cells.' (PMID
16601698).

8. Immune system interaction descriptions: these refer, for
instance, to binding characterizations of allergens and immu-
noglobulins which are not curated by interaction databases
(for example, IgE-binding of hevein; PMID 16638575).

9. Word sense ambiguity. When using words as features for a
document classifier, an incorrect identification of the word
sense can hamper the classification of abstracts. For instance,
the word 'complex', often used to describe a structural assem-
bly of proteins, can also denote 'having many relations'
(PMID 16482221).

10. Protein names: false positives resulting from protein
names containing interaction terms, for example, ATR-inter-
acting protein (ATRIP; PMID 1667595).

In case of false-negative test set classifications, some of them
corresponded to abstracts related to gene regulation but also
mentioned characterizations of transcriptional protein-pro-
tein complexes. Because many of the negative training sam-
ples corresponded to gene regulation characterizations, these
abstracts were harder to classify correctly. Other false-nega-
tive abstracts corresponded to very specific transient interac-
tion types (PMID 16648821). From abstracts alone it often

remains unclear whether the interaction mentioned is also
experimentally characterized in the full-text article. Well
known interactions that might be mentioned in abstracts are
usually not experimentally characterized in the correspond-
ing full-text article. Some of the abstracts do not explicitly
state protein interactions but provide enough contextual
information to make the article worthwhile for a full-text
curation check.

To be of practical significance, evaluation metrics should take
into consideration end user needs and the available amount
of literature data. The BioCreative scenarios have from the
start emphasized the actual usefulness of the results of the
systems for their intended users, biologists and curators, so as
to not create implausible or artificial test scenarios. In
exhaustive curation, as was the case of the BioCreative test
collection, a high recall is actually more desirable, in order not
to miss any curation-relevant article. When considering other
user scenarios, such as thematic curation against the whole
PubMed database, high precision and efficient relevance
ranking might have a greater practical impact.

To determine the effect of combining the predictions pro-
vided by different systems, a majority voting analysis was per-
formed. Based on simple majority voting, a precision of
0.7078 can be reached. Simple majority voting based results
showed a corresponding recall of 0.8817, F measure of
0.7852, and accuracy of 0.7592. The relationship between the
average prediction agreement and the corresponding article
rank was also studied. Figure 3 illustrates this relation, show-
ing that the higher the agreement between different submis-
sions on the correct class label was, the higher the
corresponding average rank of this abstract. This fact sup-
ports the idea of creating an online meta-server to leverage
fully the collective performance of the participating systems,
as well as to enhance comparison of their individual strengths
and weaknesses in real-world settings and conditions. The
BioCreative meta-server is further described in another arti-
cle in this supplement to Genome Biology [20].

Interaction pair subtask
The IPS goes beyond previously published strategies on auto-
matic protein interaction extraction from text. These were
often characterized by strong prior assumptions, resulting in
tools that were not directly comparable with existing protein
interaction annotation databases and were of only limited
practical use. Among the restrictions of previous efforts, as
mentioned previously, is the use of abstracts only, as well as
the assumption of co-occurrence of both entity mentions

Precision versus recall plot for the IASFigure 2 (see previous page)
Precision versus recall plot for the IAS. (a) Overview plot for all of the received submissions and (b) zoomed view of the top scoring teams, with some 
additional details related to the methods used (SVM-based approaches are represented by circles, and other methods by triangles) as well as the AUC 
score. Runs with an AUC greater than 0.8 are shown in green. AUC, area under the receiver operating characteristic curve; IAS, interaction article 
subtask; SVM, support vector machine.
Genome Biology 2008, 9(Suppl 2):S4
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within single sentences. Key aspects of biological annotations
- such as linking the entities to their corresponding unique
database identifiers or the consideration of experimental evi-
dence information supporting the interactions - still need fur-
ther refinement to avoid piling up small individual errors into
larger, more significant, global ones. Tackling these and other
challenges required that participating systems use full-text
articles provided in commonly available formats (PDF and
HTML) and extract binary protein interaction pairs regard-
less of whether they co-occurred within a sentence or not.
Additionally, each of the interactor proteins had to be linked
to its corresponding UniProt identifier or accession number.

This implied, for instance, that for the interactor protein
CARD10 the participants had to establish whether it corre-
sponded to the human (CAR10_HUMAN) or mouse protein
(CAR10_MOUSE) in order to assign the correct correspond-
ing database identifier. The manual association of interactor
proteins to their database identifiers constitutes one of the
most time-consuming steps within the manual interaction
curation pipeline. To develop their systems, the participants
received a collection of full-text articles and the correspond-
ing interaction annotation records of MINT and IntAct. As
test collection, a set of full-text articles was released. From
these, the participants had to extract the protein-protein
interaction pairs for which an experimental characterization
was provided in the article (for more details, refer to the data
preparation section). Each of the submissions was scored in
terms of precision and recall of the interaction pairs provided
by the system, as compared with the manually extracted ones.

To avoid inconsistencies resulting from the use of different
database releases, we provided a baseline SwissProt collec-
tion and only protein identifiers contained in that database
version were considered for evaluation purposes. Neverthe-
less, in practice it is not always possible to normalize the
interactor proteins mentioned in the text to a single database,
because there is currently no biological database that covers
all of the proteins described in the literature. Therefore, we
analyzed separately the following groups of articles: those
mentioning only interaction pairs in which both proteins
could be linked to a SwissProt record (SwissProt-only article
set); and those also including interactions formed by a pro-
tein contained in SwissProt and a protein contained in the
TrEMBL (Translated EMBL) database only (whole article
set).

Table 1

IAS result overview

Team Run Precision Recall F score AUC Accuracy

T4 1 0.7040 0.8373 0.7649 0.7495 0.7430

T4 2 0.6061 0.9379 0.7364 0.5529 0.6647

T4 3 0.7128 0.7929 0.7507 0.7479 0.7371

T6 1 0.7080 0.8609 0.7770 0.8554 0.7533

T7 1 0.6851 0.8432 0.7560 0.8270 0.7282

T7 2 0.6682 0.8639 0.7535 0.7875 0.7179

T7 3 0.6840 0.8580 0.7612 0.8318 0.7312

T11 1 0.6411 0.8669 0.7371 0.7995 0.6913

T11 2 0.7222 0.7692 0.7450 0.7567 0.7371

T11 3 0.6769 0.7811 0.7253 0.7013 0.7046

T14 1 0.7343 0.4497 0.5578 0.7500 0.6440

T14 2 0.7371 0.4645 0.5699 0.7561 0.6499

T14 3 0.7465 0.4704 0.5771 0.7570 0.6558

T19 1 0.6247 0.7337 0.6748 0.6765 0.6470

T19 2 0.6453 0.5651 0.6025 0.6765 0.6278

T27 1 0.5886 0.8550 0.6972 0.6812 0.6292

T27 2 0.5554 0.9201 0.6927 0.6244 0.5923

T27 3 0.6076 0.8521 0.7094 0.6945 0.6514

T28 1 0.7507 0.8107 0.7795 0.8471 0.7710

T28 2 0.7471 0.7692 0.7580 0.8150 0.7548

T28 3 0.6864 0.7899 0.7345 0.7993 0.7149

T30 1 0.5826 0.5947 0.5886 0.6197 0.5849

T30 2 0.4871 0.5030 0.4949 0.5643 0.4874

T30 3 0.5995 0.6953 0.6438 0.6581 0.6160

T31 1 0.6678 0.5947 0.6291 0.6714 0.6499

T31 2 0.7206 0.5266 0.6085 0.6793 0.6617

T31 3 0.7959 0.3462 0.4825 0.6793 0.6292

T37 1 0.5480 0.9793 0.7028 0.6976 0.5864

T37 2 0.5755 0.9467 0.7159 0.7468 0.6248

T37 3 0.5312 0.9822 0.6895 0.6550 0.5583

T41 1 0.6098 0.8876 0.7229 0.7535 0.6603

T41 2 0.6154 0.8757 0.7228 0.7720 0.6647

T41 3 0.6193 0.8905 0.7306 0.7714 0.6721

T44 1 0.6888 0.8580 0.7642 0.7320 0.7356

T44 2 0.6459 0.8580 0.7370 0.5970 0.6942

T44 3 0.7081 0.8254 0.7623 0.7433 0.7430

T48 1 0.9118 0.0917 0.1667 0.6572 0.5421

T48 2 0.5887 0.8639 0.7002 0.6422 0.6307

T48 3 0.8346 0.3136 0.4559 0.6904 0.6263

T49 1 0.5261 0.9852 0.6859 0.7968 0.5495

T49 2 0.5170 0.9911 0.6795 0.7990 0.5332

T49 3 0.5741 0.7219 0.6396 0.5894 0.5938

T51 1 0.7179 0.8284 0.7692 0.8412 0.7518

T52 1 0.6929 0.8343 0.7570 0.8057 0.7326

T52 2 0.6651 0.8462 0.7448 0.8146 0.7105

T57 1 0.7031 0.8757 0.7800 0.8194 0.7533

T57 2 0.7024 0.8728 0.7784 0.8151 0.7518

T57 3 0.6962 0.8609 0.7698 0.8054 0.7430

T58 1 0.7656 0.4349 0.5547 0.7326 0.6514

T58 2 0.7692 0.5030 0.6082 0.7578 0.6765

T58 3 0.6676 0.7308 0.6977 0.7554 0.6839

AUC, area under the receiver operating characteristic curve; IAS, 
interaction article subtask.

Table 1 (Continued)

IAS result overview
Genome Biology 2008, 9(Suppl 2):S4
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When calculating the performance of the interaction extrac-
tion systems, two general evaluation strategies can be
distinguished.

1. The micro-averaged performance is based on combining
results from each interactor protein pair, weighting equally
all pairs, regardless of the number of interactions mentioned
per article. This number can vary considerably, depending on
whether a high-throughput experiment or low-throughput
detailed interaction characterization was carried out. This
score reflects the global performance of a system when com-
pared with the whole collection of curated interaction pairs.

2. Macro-averaged scores are based on computing results per
document and then averaging them for the whole document
collection. Thus, the score for each document is weighted
equally.

The second evaluation strategy is more useful for practical
applications, because it provides some insight into how stable
the method is when it is applied to a given article. Tables 2
and 3 show the evaluation of the protein-protein interaction
pair extraction for the whole test set article collection and the
SwissProt-only article subset, respectively.

For this subtask, a total of 45 runs from 16 teams were evalu-
ated. As a general trend, the performance of the systems on
the SwissProt-only article set was slightly higher, both in
terms of recall (in case of 40 runs) as well as precision (in case
of 38 runs). Looking at the performance of individual sys-

tems, the run submitted by team 4 [21] obtained the highest
average precision of 0.39, followed by team 28 [22] with 0.31
and team 6 [17] reaching a 0.28.

With respect to recall, team 42 [23] submitted the top-scoring
run (0.42), followed by team 4 (0.37) and team 6 (0.30). To
provide a balanced view of both precision and recall, the aver-
age of the F scores obtained for the test set article was also cal-
culated. Here, team 4 obtained an average F score of 0.29,
followed by run 3 of team 28 (0.26) and run 1 of team 6 (0.25).
As can be seen in Table 3 in case of the SwissProt-only article
set, team 28 obtained the best average F score (0.30), fol-
lowed by team 6 (0.29) and team 4 (0.28).

A common characteristic of the top scoring teams was the use
of rather sophisticated interactor protein normalization strat-
egies when compared with other systems; some of them are
described in this supplement. This emphasizes the intercon-
nectedness of the individual components of the pipeline,
where correct identification of protein mentions and linkage
to corresponding database records is one of the crucial
aspects for subsequent successful interaction extraction. For
this reason, we also analyzed the interactor protein normali-
zation performance by comparing the list of interactor pro-
teins extracted automatically with the list derived from
manual curation.

The macro-averaged precision, recall, and F score for articles
with at least a single prediction were calculated. The highest
precision for correct interactor protein normalization was of

Submission agreement versus average article rankFigure 3
Submission agreement versus average article rank. The relation of submission agreement among different runs to the average rank of the articles is 
presented for both relevant and nonrelevant articles. The overall agreement between systems was lower for nonrelevant articles (R2

relevant = 0.7 versus 
R2

nonrelevant = 0.59). In general, the higher the average rank of the article, the more systems agreed on the correct classification.
Genome Biology 2008, 9(Suppl 2):S4
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Table 2

IPS result overview (whole article collection)

Team Run Precision Recall F score

4 1 0.3893 0.3073 0.2885

6 1 0.2758 0.3011 0.2532

6 2 0.2218 0.2592 0.2066

6 3 0.2392 0.3035 0.2272

11 1 0.0510 0.2753 0.0717

11 2 0.0510 0.2753 0.0717

11 3 0.0517 0.2776 0.0726

14 1 0.1791 0.1421 0.1384

14 2 0.1944 0.1300 0.1414

14 3 0.1162 0.1057 0.0985

17 1 0.0413 0.2543 0.0631

17 2 0.1018 0.2012 0.1182

17 3 0.1633 0.2066 0.1599

19 1 0.0854 0.2115 0.1036

19 2 0.1144 0.2681 0.1361

19 3 0.1595 0.2466 0.1690

28 1 0.1373 0.2905 0.1579

28 2 0.2177 0.2651 0.2039

28 3 0.3096 0.2935 0.2623

30 1 0.0551 0.1888 0.0731

30 2 0.0345 0.2352 0.0528

30 3 0.1574 0.1846 0.1382

36 1 0.0441 0.1121 0.0503

36 2 0.0229 0.0990 0.0305

36 3 0.0548 0.1350 0.0680

40 1 0.0762 0.2489 0.0990

40 2 0.2632 0.2484 0.2171

42 1 0.0160 0.4167 0.0280

42 2 0.2384 0.2218 0.2014

42 3 0.2101 0.2024 0.1827

43 1 0.0395 0.0846 0.0424

43 2 0.0828 0.0680 0.0653

43 3 0.0620 0.0867 0.0592

47 1 0.0830 0.1891 0.0910

47 2 0.0889 0.1909 0.0950

47 3 0.0747 0.1855 0.0844

49 1 0.0109 0.1092 0.0185

49 2 0.0289 0.0557 0.0345

49 3 0.0255 0.0865 0.0357

58 1 0.0003 0.0006 0.0004

58 2 0.0003 0.0006 0.0004

58 3 0.0004 0.0006 0.0005

60 1 0.0323 0.0942 0.0362

60 2 0.0162 0.0558 0.0205

60 3 0.0251 0.0654 0.0299

Interaction pair subtask (IPS) results for the whole article set. The 
average precision, recall, and F score obtained for each of the test set 
submissions are shown.

Table 3

IPS result overview (SwissProt only article collection)

Team Run Precision Recall F score

4 1 0.3908 0.2970 0.2849

6 1 0.3150 0.3356 0.2871

6 2 0.2519 0.2868 0.2308

6 3 0.2632 0.3394 0.2532

11 1 0.0562 0.2850 0.0770

11 2 0.0562 0.2850 0.0770

11 3 0.0569 0.2879 0.0780

14 1 0.1975 0.1543 0.1510

14 2 0.2113 0.1430 0.1552

14 3 0.1287 0.1157 0.1079

17 1 0.0452 0.2765 0.0684

17 2 0.1138 0.2274 0.1334

17 3 0.1901 0.2396 0.1862

19 1 0.0882 0.2287 0.1092

19 2 0.1200 0.2912 0.1453

19 3 0.1750 0.2748 0.1865

28 1 0.1566 0.3189 0.1784

28 2 0.2434 0.2828 0.2247

28 3 0.3696 0.3268 0.3042

30 1 0.0624 0.2153 0.0824

30 2 0.0367 0.2533 0.0557

30 3 0.1646 0.1964 0.1468

36 1 0.0456 0.1243 0.0560

36 2 0.0202 0.0997 0.0295

36 3 0.0560 0.1362 0.0686

40 1 0.0824 0.2672 0.1083

40 2 0.2751 0.2737 0.2355

42 1 0.0177 0.4368 0.0307

42 2 0.2522 0.2331 0.2112

42 3 0.2278 0.2158 0.1970

43 1 0.0412 0.1032 0.0491

43 2 0.1032 0.0836 0.0803

43 3 0.0734 0.1082 0.0731

47 1 0.0876 0.1964 0.0931

47 2 0.0940 0.1988 0.0978

47 3 0.0791 0.1920 0.0860

49 1 0.0107 0.1085 0.0186

49 2 0.0246 0.0564 0.0319

49 3 0.0234 0.0871 0.0340

58 1 0.0000 0.0000 0.0000

58 2 0.0000 0.0000 0.0000

58 3 0.0000 0.0000 0.0000

60 1 0.0384 0.1113 0.0422

60 2 0.0179 0.0631 0.0213

60 3 0.0281 0.0686 0.0314

Interaction pair subtask (IPS) results, SwissProt only. Average 
precision, recall, and F score obtained for the SwissProt-only test set 
articles for each of the evaluated runs of the IPS.
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0.56 (team 4) in case of the whole article set and of 0.57 (team
28) for the SwissProt-only collection. Obviously, the recall
obtained for the interactor normalization was generally
higher than its corresponding precision. In case of the whole
test set, team 42 had the highest recall of 0.68, followed by
0.55 of team 30 (Nakov and Divoli [24]) and 0.54 of team 11
(Abi-Haidar and coworkers [25]). When looking at the Swiss-
Prot-only set, team 42 could obtain a recall of 0.69, but with
a modest precision (0.08). Considering the F scores obtained
for the test set articles, team 28 reached a score of 0.52 for the
SwissProt-only set and team 4 of 0.48 in case of the whole test
set collection.

Interaction method subtask
The reliability of protein interactions is strongly linked to the
underlying experimental evidence providing support for a
specific interaction pair. Each experimental interaction
detection technique offers a certain implicit degree of reliabil-
ity, sometimes also providing contextual information as to
whether it is an in vivo or in vitro interaction or the corre-
sponding basic interaction type (stable or transient). For
most expert-derived biological annotations, the experimental
evidence is one of the central curation criteria. To provide a
consistent controlled vocabulary for describing protein inter-
action experiments, the Molecular Interaction (MI) ontology
has been developed [26], which is part of the curation stand-
ard of both the IntAct and MINT databases. For the IMS task,
the precision for each of the six runs submitted by the two
participating teams was calculated. This was done by compar-
ing the automatically extracted list of experimental tech-
niques used to confirm protein-protein interactions
described in each test set article with a previous manual
annotation performed by database curators. Interaction
detection methods had to be provided in the form of their cor-
responding unique MI concept identifier, which allows direct
mapping into the MI ontology. Each concept in the MI ontol-
ogy is characterized by an associated term as well as addi-
tional information such as short definitions, and a reference.
A total of 874 article-molecular interaction detection method
associations were provided in the test set. Taking into consid-
eration the relations of the interaction detection concepts in
the MI ontology, the evaluation metrics where calculated as
follows:

1. Exact concept matching: implies that the submitted inter-
action detection method is an exact match with respect to the
gold standard annotated concept.

2. Parent concept matching: implies that the submitted inter-
action detection method is either an exact match or a parent
concept with respect to the gold standard annotation. A par-
ent concept was defined as any higher node (a more general
concept) in the MI ontology. Therefore the directed acyclic
graph structure of the MI ontology was exploited, testing the
path from the predicted concept to the annotated one.

Tables 4 and 5 show the results obtained by teams 14 (Ehrler
and coworkers [27]) and 40 (Rinaldi and colleagues [28]) for
exact match and parent match evaluation, respectively. The
highest precision (0.67) was obtained by the first run of team
40, whereas the best F score (0.45) was obtained by the third
run of the same group. Team 40 applied a pattern matching
approach, automatically generating variants of the interac-
tion method terms as provided in the MI ontology. Hand-
crafted patterns for some of the methods were included.
When comparing the results between the two evaluation
types, the average increase in precision and recall for the par-
ent matching with respect to the exact matching was 0.13, and
0.11 in case of the F measure. The most significant perform-
ance difference in terms of F score (0.22) was for team 40
(run 2). It should be noted that team 14 only based their pre-
dictions on the abstracts, explaining their lower performance
and highlighting the importance of full text usage.

Interaction sentences subtask
The ISS was carried out because of increasing interest in
retrieving informative text passages in full-text articles sup-
porting biological annotations that can help in the curation,
interpretation, and update of annotations. In full-text arti-
cles, multiple evidence passages might appear that provide
protein-protein interaction evidence, some being more rele-
vant than others to summarize a given interaction. For the
ISS, participants had to provide, for each protein interaction
pair, a ranked list of a maximum of five evidence passages
describing their interaction. Each submitted evidence pas-
sage could comprise up to three consecutive sentences. The
submitted passages were pooled, duplicates removed, and a
unique identifier was assigned to each of them. The same was
done for the set of best summarizing interaction evidence
passages provided by the database curators.

The predictions were evaluated in terms of percentage of
interaction-relevant sentences with respect to the total
number of predicted (submitted) sentences. Also, the mean
reciprocal rank of the ranked list of interaction evidence

Table 4

IMS result: exact matching

Team Run Precision Recall F score

14 1 0.3628 0.2172 0.2513

14 2 0.3186 0.1980 0.2249

14 3 0.3348 0.1938 0.2265

40 1 0.6679 0.3383 0.4207

40 2 0.4028 0.5548 0.4363

40 3 0.5068 0.5222 0.4836

Interaction method subtask (IMS) results: exact matching. The results 
correspond to the averages calculated after scoring each article in 
terms of precision, recall, and F score for the identification of exact 
matching of article to normalized Molecular Interaction (MI) identifiers.
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passages with respect to the ma nually chosen best interac-
tion sentence was calculated. To determine whether the sub-
mitted passage corresponded to a passage in the gold
standard collection, we applied an approach based on sliding
the shorter over the longer one (after stripping any HTML
tags) and calculating for each position the corresponding
string similarity between both passages. Predicted passages
were considered as correct (mapping to the manually curated
ones) in case that the string similarity between them was sig-
nificant. For calculating the string similarity the Python dif-
flib library was used. Table 6 contains the results. Team 4 had
the highest score, with 19% of passages that could be mapped
to the manually extracted set. This team submitted few pas-
sages, but with a high fraction of correct ones. The score
reported here was evaluated on the basis of the specific pas-
sages identified by the curators. However, it is also possible
that alternative sentences appeared in the full-text article that
described the interactions, but were not selected by the
curator.

Most abstract-derived interaction sentences in the training
data collections provided for this task lacked experimental
information, which made the extraction of correct passages
more challenging.

The passages extracted by database curators often mentioned
the experimental detection method used to characterize the
described interaction or a reference to figures where the
experimental outcome was shown (80% of the cases),
whereas passages submitted by participating teams often did
not mention any interaction experiment. For example, the
following is a sentence extracted by the curators that reflects
this aspect: 'HAX-1 co-immunoprecipitates with BSEP,
MDR1, and MDR2 from transfected cells and hepatocytes.'
Here, 'co-immunoprecipitates' implies that a co-immunopre-
cipitation experiment was done, which confirmed the interac-
tion between HAX-1 and BSEP, MDR1, and MDR2

The ISS top performing team 4 applied multiple techniques to
retrieve interaction passages: the location of the sentence in
the document, the relation with figures and tables, whether

interaction-indicating keywords were present, the mention of
experimental methods, as well as summary-indicating cue
words.

Discussion and conclusion
The PPI task of the second BioCreative challenge was
designed to cover the main aspects relevant to automatically
extracting biological annotations from the scientific litera-
ture, namely normalized and experimentally verified protein
interactions. It also reflected the importance of collaborative
efforts between domain experts, who manually curate biolog-
ical relevant information from the literature, and the text-
mining community.

The results of the IAS task are promising and show that, in
general, the detection of protein-interaction relevant articles
from PubMed titles and abstracts can be achieved. A compar-
ison with systems using the corresponding full-text articles is
currently missing, but would certainly show better the bound-
aries of abstract-based interaction article classification. Simi-
lar systems could in principle be adapted to assist biologists
in certain steps within the curation process for other biologi-
cal annotation types, such as gene regulation or cellular local-
ization of proteins.

A deeper analysis of the evaluated results showed some of the
inherent challenges when using abstracts alone as well as the
difficulty in constructing a suitable true-negative training set
that does not present a bias because of the journal selection.
In the case of articles with a high percentage of true-positive
predictions, the titles and abstracts were in general character-
ized by a high density not only of words or expressions related
to protein interactions such as 'interacts', 'binding', 'interact-
ing partner', or 'interaction of', but also mentioned the actual
names of the methods used to characterize these interactions
experimentally. In the case of the test set article with PMID
16828757, expressions such as 'yeast two-hybrid screen', 'co-
immunoprecipitation', and 'in vitro binding assays' were
present.

Many of the false-negative articles corresponded to cases in
which gene regulation or gene expression mechanisms were
mentioned. These abstracts are often relevant to both protein
interactions as well as for genetic interactions. For example,
the article with PMID 16547462 describes oligomeric tran-
scription factors.

As for false-positive articles, several general characteristics
can be distinguished. Surprisingly, some systems recurrently
mentioned certain well characterized hub proteins, such as
EGF or EGFR (for instance, PMID 16316986). One potential
reason for this might be that they are often mentioned in the
positive training collection. The average performances of par-
ticipating systems over full-text articles, as well as the limita-
tions when using text-mining techniques to recover such

Table 5

IMS result: parent matching

Team Run Precision Recall F score

14 1 0.4986 0.3078 0.3495

14 2 0.4471 0.2847 0.3170

14 3 0.4881 0.2953 0.3375

40 1 0.6794 0.3472 0.4302

40 2 0.5899 0.8548 0.6519

40 3 0.6541 0.7093 0.6375

Interaction method subtask (IMS) result parent matching. Same as 
Table 4 but using the parent matching evaluation.
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protein-protein interactions, have been explored in these
tasks. Although the initial results are promising, they also
indicate that certain components still need further improve-
ments. Participating groups encountered several obstacles
that increased the difficulty of detecting normalized interac-
tion pairs from full-text articles. Some of these are listed
below.

1. Errors resulting from conversion of PDF or HTML format-
ted documents to plain text, such as page break errors, wrong
special character handling, and word joining.

2. Sentence boundary detection errors and difficulties in
processing tables and figure legends.

3. Multiple organism mentions and the resulting inter-spe-
cies ambiguity for protein normalization.

4. Incompleteness of currently available protein normaliza-
tion resources. Existing annotation databases such as Swiss-
Prot do not contain all of the symbols or names for proteins
described in the literature.

5. Difficulties in extracting the associations and in the han-
dling of coordination (multiple interaction pairs) from a sin-
gle sentence.

6. Interaction evidence phrases in legends or titles that often
do not correspond to grammatically correct sentences.

Table 6

ISS results: parent matching

Team Run Total TP Unique TP (unique) Percentage correct Percentage correct (unique) MRR

4 1 372 51 361 51 0.1371 0.1413 -

4 2 372 71 361 70 0.1909 0.1939 -

6 1 2,497 147 2,072 117 0.0589 0.0565 0.5525

11 1 18,385 360 5,156 131 0.0196 0.0254 0.6594

11 2 18,371 376 5,270 145 0.0205 0.0275 0.6253

11 3 18,371 387 5,252 156 0.0211 0.0297 0.6416

14 1 634 13 579 12 0.0205 0.0207 0.8718

14 2 458 10 422 10 0.0218 0.0237 0.8167

14 3 560 13 514 11 0.0232 0.0214 0.8718

27 1 1,420 37 1,386 36 0.0261 0.0260 0.4653

28 1 3,028 150 3,001 148 0.0495 0.0493 0.3740

28 2 2,249 127 2,231 126 0.0565 0.0565 0.3696

28 3 5,448 352 3,210 191 0.0646 0.0595 0.3392

36 1 4,515 232 3,407 169 0.0514 0.0496 0.5731

36 2 11,827 571 7,526 343 0.0483 0.0456 0.5813

36 3 4,083 247 3,018 161 0.0605 0.0533 0.5476

43 1 3,691 111 3,117 97 0.0301 0.0311 0.4083

43 2 1,507 69 1,383 63 0.0458 0.0456 0.3524

43 3 3,674 148 3,257 131 0.0403 0.0402 0.3449

47 1 7,934 278 4,975 159 0.0350 0.0320 0.5232

47 2 7,633 274 4,835 156 0.0359 0.0323 0.5205

47 3 8,355 290 5,172 163 0.0347 0.0315 0.5329

49 1 21,431 590 10,422 285 0.0275 0.0273 0.3785

60 1 2,243 104 2,019 91 0.0464 0.0451 0.3460

60 2 4,714 157 3,932 130 0.0333 0.0331 0.3959

60 3 7,780 229 6,293 192 0.0294 0.0305 0.3998

This table reflects the baseline evaluation of the submissions received for interaction sentences subtask (ISS). Here, the submitted passages were 
compared with the previously manually selected passages reflecting the best interaction evidence. The 'Total' column indicates the total number of 
evaluated passages (note that submissions of articles for which the curators could not find a suitable evidence passage where excluded from 
evaluation). True positive ('TP') is number of correct passages (mapping the manually annotated ones). The 'Unique' column shows the number of 
unique passages per run (after removing duplicate passages). The 'TP (unique)' column indicates the number of correct passages (mapping the 
manually annotated ones) in the collection of unique passages. 'Percentage correct' is the fraction of predicted passages corresponding to the 'best' 
previously extracted passages. The 'Percentage correct (unique)' is the fraction of unique predicted passages corresponding to the 'best' previously 
extracted passages. 'MRR' is the mean reciprocal rank of the correct passages. Note that in the case of team 4, the MRR should not be taken into 
account, because all of the submitted passages here were labeled with rank 1 by this team.
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7. Heavy use of domain specific terminology, for instance in
the case of experimental descriptions.

8. Evidence for interactions contained in sentences that are
not necessarily consecutive.

9. The need to use domain expert inference and bioinformat-
ics tools to perform protein normalization in order to normal-
ize some of the interactors.

10. Errors in shallow parsing and POS-tagging tools trained
on general English text collections, when applied to the spe-
cific expressions and abbreviations found in biomedical texts.

Figure 4 shows that the interactor normalization of human
and yeast proteins was better than for mouse or rat proteins
(it is easier to relate protein names of humans and yeast to
database entries than is the case for mouse or rat).

One must keep in mind that the results of the interactor pro-
tein normalization are not directly comparable with the per-

formance of the protein normalization tasks of BioCreative I
and II, because of basic differences in the task design.

This is also true for interaction pairs (Figure 5). Specifically,
the correct extraction of pairs of proteins derived from differ-
ent organisms is especially challenging, because it requires
associating correctly each of the interactors with a different
species, a process that can affect significantly both the recall
as well as the precision of interaction extraction systems.
Some participating teams tried to overcome the difficulty in
detecting these in vitro interaction types by restricting their
systems to interactions between proteins from the same
organism source. Some participants also did not handle the
extraction of homo-multimeric interaction types. For
instance, the extraction of homo-dimers often requires differ-
ent approaches because they are often not based on the co-
occurrence of two protein mentions but rather on the pres-
ence of specific expressions such as 'dimer' or 'complex'.

The percentage of agreement of the submitted runs on the
true-positive interaction pairs for interactions between pro-
teins of different organisms was only 2.6%, as compared with
12.3% for interactions of proteins from the same species. This
agreement was even lower for homo-dimeric interactions

Agreement of TP interactor protein normalization versus total number of protein occurrences, by corresponding organism sourceFigure 4
Agreement of TP interactor protein normalization versus total number of 
protein occurrences, by corresponding organism source. This figure 
shows the total number of interactor proteins in the test set for each 
organism with respect to the percentage agreement between different 
participating systems in case of the correct (true positive [TP]) 
predictions. Each circle represents the interactor protein set for a single 
species in the test set. Human (red circle), mouse (pink circle), rat (orange 
circle), and yeast (green circle) proteins are the most frequent interactor 
protein organism sources in the interaction pair subtask (IPS) test set 
collection. A total of 50 different organisms were included in the test set 
(considering the SwissProt subset), corresponding to 1,110 unique 
interactor proteins.

TP interaction pair normalization with respect to organism source compositionFigure 5
TP interaction pair normalization with respect to organism source 
composition. This figure shows the total number of interaction pairs in the 
test set (840) for each corresponding organism source combination with 
respect to the percentage agreement between different participating 
systems in case of correct (true positive [TP]) predictions. Interaction 
pairs of proteins form different organisms (for example, between mouse 
and human proteins) are basically experimental in vitro interactions.
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(0.85%) when compared with hetero-dimeric interactions
(11.3%).

It is generally assumed that large training and test collections
of full text articles with in-depth annotations of biologically
relevant information will improve the performance of text-
mining technologies. The data collections derived from this
BioCreative PPI task can be seen as a contribution in this
direction, being a useful resource for the development of
interaction extraction systems. This is also true for protein
mention and normalization components, where the BioCrea-
tive I challenge has already provided useful resources for
abstract processing.

As a general observation on the outcome of the strategies
used, it can be stated that the most sophisticated and com-
plete systems did significantly outperform more basic strate-
gies, which often only adapted existing supervised learning
modules for this task. In case of the top performing teams,
such as teams 4, 6, and 28, both general language as well as
domain-specific resources were exploited. It is therefore clear
that using sophisticated gene mention and normalization
detection strategies generally improved the results of partici-
pating teams and constitute one of the most important com-
ponents for interaction extraction systems. Also, efficient
handling of linguistic coordination is crucial when extracting
associations such as protein-protein interactions. The use of
a supervised learning-based sentence classifier and the detec-
tion of interaction method names also seemed to play a role in
the performance of interaction detection strategies.

When comparing the performance of the interactor protein
normalization and the interaction pair extraction, it seems
that the extraction of the interaction pairs is slightly better
than would be expected. Even if details are still unclear, it
might indicate a gain from the global information contained
in the articles.

However, one aspect that has not been addressed in the cur-
rent BioCreative evaluation is how the resulting systems
would perform when doing interactive evaluation as part of
curation-assistance tools. To close the gap between text-min-
ing systems and the actual end users, such interactive assess-
ments would be especially useful. Here, aspects such as
interaction ranking, and time spent per curation when using
the text mining systems compared with baseline PubMed
search-based approaches, could provide additional insights
into the importance of literature mining applied to the bio-
medical domain.

From the results obtained in the PPI task it becomes clear that
although current technology might be sufficiently robust for
detecting binary interactions statements from PubMed
abstracts sentences, the automatic extraction and normaliza-
tion of novel experimentally characterized interactions from
full-text articles still requires substantial improvements in

terms of performance. The strategies that participated in the
PPI task can provide useful results for assisting biologists and
database curators in the retrieval process of experimentally
generated interaction information contained in the literature.
One potential evaluation set up that could facilitate the
improvement of current protein interaction annotation
extraction systems would consist of aligning the different
tasks that influence the interaction extraction pipeline by
using a common reference data collection for all tasks and
allowing specific evaluation of each individual components
that influence the overall performance. Additional aspects of
interest for future community evaluations in biomedical text
mining are related to both qualitative as well as quantitative
characterizations of the workload associated with each of the
individual steps underlying manual curation, from the initial
article selection to the completed annotation record, and how
text-mining tools could improve the efficiency within each of
these steps when compared with a baseline system of un-
assisted curation. This would require available online systems
that could be directly tried out by the potential end-user
community.

Materials and methods
Data and corpus collections
Interaction article subtask datasets
The submissions had to be made in a predefined format,
together with a short system description. The construction of
a suitable training set for the IAS exploited the content of
existing interaction databases, namely IntAct and MINT. The
motivations behind this data selection strategy were the fol-
lowing.

1. Explore the usability of existing citation collections derived
from biological annotation databases for the detection of
curation-relevant articles.

2. Pinpoint the main challenges for selecting and retrieving
suitable article collections, based on existing database
citations.

3. Evaluate the use of abstract-based article classification and
ranking versus manually curated articles.

The annotation records of both interaction databases are
freely accessible for download and share a common annota-
tion standard based on the HUPO (Human Proteome Organ-
isation) PSI-MI format. The training collections were
distributed using a simple XML-like format. Three abstract
collections were included in the training set for this subtask.

1. The positives collection (physical protein-protein interac-
tion relevant articles) was based on a set of PubMed articles
that are relevant for protein interaction curation in the sense
of the annotation process and guidelines used by the MINT
and IntAct databases. This means that the corresponding full-
Genome Biology 2008, 9(Suppl 2):S4
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text articles have been used to extract manual annotations
and therefore meet the underlying curation standards used to
extract experimentally verified protein interaction
information. The initial collection contained articles resulting
from exhaustive curation as well as from thematic curation.
Some articles were removed from this collection mainly
because either no corresponding abstracts could be retrieved
from PubMed or because they corresponded to results
obtained by large-scale experiments. Because the actual cura-
tion was done based on the full-text articles as opposed to the
abstracts, it is conceivable that in some cases the abstracts in
this collection may lack sufficient information to be consid-
ered interaction-relevant. The initial positive training collec-
tion consisted of 3,536 PubMed titles and abstracts
distributed together with the corresponding PMID and the
article source (journal and publication date).

2. The negatives collection (nonrelevant articles) consisted
exclusively of journal titles and abstracts rejected during
exhaustive curation. These articles have no associated anno-
tation records extracted by the domain expert curators and
are thus not relevant to protein interaction annotation (nega-
tive training instances were available only for those journals
for which exhaustive curation had been carried out). The neg-
ative collection contained a total of 1,959 entries. The training
collections of the positive and negative instances were not
balanced; participating systems had to address the resulting
class imbalance.

3. Finally, we also included a collection of likely positive arti-
cles, consisting of PubMed citations that had been extracted
from protein interaction annotations curated by other inter-
action databases (including BIND, HPRD, MPACT, and
GRID). This additional large collection constitutes a noisy
dataset, in the sense that the corresponding databases have
different annotation standards compared with MINT and
IntAct (for instance, regarding the curation of genetic
interactions) and thus have not been included as part of the
ordinary positive training collection. This collection consisted
of a total of 18,930 records.

No restrictions in terms of using additional resources or data
collections for the purpose of system development and train-
ing were imposed on the participating teams. Therefore, addi-
tional resources, such as those resulting from gene mention
detection or associated MeSH terms could be exploited, as is
also done in real-life situations.

In order to perform a comparative assessment of the various
participating systems, a common test data collection was pro-
vided to all participants. This dataset consisted of a collection
of PubMed records (article titles and abstracts) in a format
compliant with the training collection, but without providing
the corresponding article source information as well as with-
out the actual class label (relevant or not relevant). Most of
the articles in the test set resulted from exhaustive curation of

recent publications from specified journals (such as the
EMBO Journal or FEBS letters) published over a predefined
period of time. The resulting annotations from the curation of
these articles were held back by the interaction databases
until the competition was over. Some of the initial test set
articles supplied by the database curators had to be removed
from the test set, because no PubMed abstract was available.
An additional criterion for the construction of the test set was
to make sure that neither publication date nor journal name
could be used as a relevant discriminative feature for classify-
ing the articles.

The relevant and nonrelevant entries were randomly shuffled
so that the article order in the test collection could also not be
used to differentiate relevant from nonrelevant records. The
resulting test set collection of 750 entries was an actual subset
from the initial collection provided by the database curators.
One of the databases also provided a small number of un-
curatable abstracts, meaning that the associated full-text
articles were not worthwhile to curate (too complicated and
from a very specific scientific subdiscipline) or the abstract
was misleading, meaning that protein interactions were men-
tioned in the abstract but the full-text article lacked the
experimental characterization for the proposed interactions.
These articles were also removed from the test collection.

The resulting initial IAS test set consisted of 375 positive (rel-
evant) and negative (nonrelevant) entries, respectively. Nev-
ertheless, during the postevaluation period, several records
were revised and finally removed from the initial test collec-
tion. Thus, the revised test set contained a slight imbalance,
consisting of 338 interaction relevant articles and 339 nonrel-
evant records (for a total of 677 instances).

Interaction pair subtask, interaction method subtask, and interaction 
sentences subtask datasets
For these subtasks a larger training collection of full-text arti-
cles (740) and a smaller collection of test set articles (358)
were provided to registered teams. Both collections contained
full-text articles in different formats, namely as HTML and
PDF. Additionally, we also provided these articles as plain
text automatically converted from HTML to plain text using
html2text and from PDF to plain text using pdftotext. Both
collections consisted of subsets of the original training and
test set provided by the interaction databases after extensive
filtering. For the subselection process, the following criteria
were taken into account.

1. Redundancy: duplicate articles that had been annotated by
both databases were removed.

2. Journal: only articles from publishers who made full-text
available could be included for this evaluation.

3. Large-scale experiments: articles that mentioned large-
scale experiments were removed.
Genome Biology 2008, 9(Suppl 2):S4
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4. Full text: only full articles which were currently available
both in HTML and PDF formats were included; in case of
articles published before 2000, the full-text articles were
often only available in PDF.

5. Format: in some cases, the articles could not be converted
to plain text using the previously mentioned tools and had to
be removed.

For the training package, in addition to the 740 full-text arti-
cles in the various previously mentioned formats, the associ-
ated annotation files for each article in standard PSI-MI
format and as flat annotation files were provided to the par-
ticipants. These annotations contained the normalized inter-
action pairs, the interaction detection methods, as well as
some additional information curated by the interaction data-
bases. Also, a file with the MI identifiers of concepts that were
children or ancestor nodes of the interaction detection
method (a total of 155 concepts) formed part of the training
package for the IMS.

In case of the ISS, only a limited amount of unique full-text
interaction evidence passages could be provided for the train-
ing collection (63). To compensate, additional resources were
included in the training package:

1. Anne-Lise Veuthey corpus: a collection of sentences kindly
provided by Anne-Lise Veuthey from the Swiss Institute of
Bioinformatics (SIB), containing protein interaction related
sentences from PubMed abstracts. It included a total of 697
evidence sentences.

2. Prodisen interaction subset: a collection of 921 sentences
related to interactions derived from the Prodisen corpus [19].
Each sentence from a given abstract was manually classified
regarding whether it contained interaction descriptions of
genes and proteins.

3. Christine Brun corpus: a set of sentences derived from
abstracts related to interactions and their corresponding
interaction type (defined as direct or indirect).

4. GeneRIF interactions: the collection of interaction sen-
tences provided by GeneRIF. There are a total of 51,381
entries in this collection.

Although all of these additional collections are related to
interaction sentences, they differ from the passages extracted
by the interaction database curators in several points: they
are derived from abstracts alone, whereas the BioCreative
interaction evidence passages were extracted from full-text
articles; and they are single sentences, whereas the BioCrea-
tive test passages can span several sentences.

The training data for the IMS consisted of a subset of annota-
tions and their corresponding full-text articles derived from

the IntAct and MINT databases. These articles had been
curated manually to extract protein interactions for both the
interaction pairs as well as the interaction detection methods.
We recommended for this subtask not to use articles in the
training set describing large-scale experiments (more than 20
to 30 interactions), because they were also excluded from the
test set. Not all of the proteins mentioned in a given article are
usually studied by all of the mentioned protein interaction
detection methods.

As test set for the IPS, IMS and ISS, a total of 358 full-text
articles were provided to the participants. The interaction
databases MINT and IntAct had previously curated these
articles, but held the derived annotations back until the sub-
mission phase of test set predictions was over. These articles
were provided in the same formats as the training set and
resulted from filtering the initial collection provided by the
interaction databases following the subselection criteria pre-
viously introduced. It was not possible to convert some of the
articles to plain text (for instance, PMID 7629138). It was also
verified that the overall length and word count of the articles
converted to plain text from PDF were consistent with the
plain text conversion from the HTML formatted articles.

Participating methods overview
A common characteristic of the majority of the participating
strategies at the IAS was the usage of machine learning tech-
niques (17 out of 19), with SVMs, naïve Bayes, and maximum
entropy classifiers being the most frequently used methods.
Regarding the natural language processing (NLP) compo-
nents often integrated into these systems, stemming and POS
tagging were the most common ones. Surprisingly, only a few
systems exploited Bio-NLP applications such as protein name
taggers or adapted existing lexical resources such as biologi-
cal ontologies for detecting interaction-relevant articles. A
number of teams used sentences as their processing unit but
most of them based their bag-of-words approaches on whole
abstracts as processing unit.

Most of the participating systems did not make use of any
additional training data collections to develop their systems,
which implies that most of them relied only on the training
collections provided by the task organizers. Only a few excep-
tions can be found, for instance in the case of team 6, who also
used a proprietary corpus of biomedical papers annotated
with proteins and their interactions.

In addition to MINT and IntAct, other interaction databases
are also currently available. The majority of the teams did not
exploit annotations derived from these other interaction
annotation resources. Some teams had in-house interaction
annotation collections, as in the case of team 47, who
exploited a collection of their own annotations for system
development.
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Most of the participating strategies are characterized by the
integration of machine learning techniques to address some
of the subtasks, with SVMs being the most frequently adapted
technique, followed by maximum entropy models.

In order to identify correctly the normalized interactor pro-
teins, it is important to associate text mentions with database
records (SwissProt accession numbers). Here the use of pro-
tein name tagging and normalization strategies is crucial. The
gene mention and gene normalization tasks of the BioCrea-
tive challenge addressed these aspects in the case of PubMed
abstracts. For the normalization of the interactor proteins
from full-text articles, most of the participants used a data-
base look-up and protein name dictionary-based approaches
in order to map protein names and symbols contained in the
SwissProt database to text mentions. Only a few teams made
use of more sophisticated protein mention detection methods
like LingPipe [29], Abner [30], or the maximum entropy
Markov model based tagger developed by Curran and Clark
[31].

In full-text articles, proteins derived from multiple organism
sources are often described in the same passage. This is often
the case for human proteins and their related mouse
homologs. Many protein names contained in biological anno-
tation databases such as SwissProt suffer from interspecies
protein name ambiguity, meaning that two proteins from dif-
ferent organism sources share the same name (or symbol). In
order to provide correct associations of proteins to SwissProt
records, the detection of the corresponding organism source
is thus of practical relevance. Not all the strategies used for
the PPI task applied organism tagging to improve the interac-
tor protein normalization.

Almost all teams integrated currently available NLP compo-
nents into their systems for these subtasks. The most fre-
quently used components were POS tagging, stemming, and
sentence segmentation algorithms, as well as tokenization
and shallow parsing tools. Some systems also used additional
elements, such as lemmatization, chunking, and abbreviation
extraction (team 6), or predicate analysis (team 49). The fol-
lowing applications were used by one or more teams: Brill's
POS tagger, MedPost, Stanford parser, Schwartz and Hearst
abbreviation extraction tool, and MxTerminator for sentence
segmentation. Only a few teams used external lexical
resources such as dictionaries or ontologies. For protein
name recognition, team 6 exploited a proprietary protein list
derived from RefSeq. A considerable number of strategies
were characterized by integrating sentence classifiers to
detect interaction-relevant sentences from the full-text arti-
cles. Another common feature of the participating strategies
was the use of regular expressions or pattern matching strat-
egies (for example, for the tagging of protein or species names
as well as for the interaction detection method identification).
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