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Marine DNA viruses<p>Phylogenetic mapping of metagenomics data reveals the taxonomic distribution of large DNA viruses in the sea, including giant viruses of the Mimiviridae family.</p>

Abstract

Background: Viruses are ubiquitous and the most abundant biological entities in marine
environments. Metagenomics studies are increasingly revealing the huge genetic diversity of marine
viruses. In this study, we used a new approach - 'phylogenetic mapping' - to obtain a comprehensive
picture of the taxonomic distribution of large DNA viruses represented in the Sorcerer II Global
Ocean Sampling Expedition metagenomic data set.

Results: Using DNA polymerase genes as a taxonomic marker, we identified 811 homologous
sequences of likely viral origin. As expected, most of these sequences corresponded to phages.
Interestingly, the second largest viral group corresponded to that containing mimivirus and three
related algal viruses. We also identified several DNA polymerase homologs closely related to
Asfarviridae, a viral family poorly represented among isolated viruses and, until now, limited to
terrestrial animal hosts. Finally, our approach allowed the identification of a new combination of
genes in 'viral-like' sequences.

Conclusion: Albeit only recently discovered, giant viruses of the Mimiviridae family appear to
constitute a diverse, quantitatively important and ubiquitous component of the population of large
eukaryotic DNA viruses in the sea.

Background
Viruses are ubiquitous and the most numerous microbes in
marine environments. Previous analyses using electron
microscopy, epifluorescence microscopy and flow cytometry
revealed the existence of 106 to 109 virus-like particles per mil-
liliter of sea water [1-3]. Infecting marine organisms from
oxygen-producing phytoplankton to whales, viruses regulate
the population of many sea organisms and are important
effectors of global biogeochemical fluxes [4,5]. It is also
becoming clear that viruses hold a great genetic diversity;
comparative genomics [6,7] and virus-targeted metagenom-
ics studies [8-10] revealed a large amount of viral sequences

having no detectable homologs in the databases. As a reser-
voir of 'new' genes as well as vectors of 'old' genes, viruses may
significantly contribute to the evolution of microorganisms in
marine ecosystems.

Despite this progress in characterizing the environmental sig-
nificance of viruses, a quantitative description of the marine
virosphere remains to be done. This includes the determina-
tion of the relative abundance of virus families and the assess-
ment of the level of their genetic diversity. In this context,
large viruses, whose particle sizes can exceed those of small
bacteria [11], are of particular concern. Most of them, such as

Published: 3 July 2008

Genome Biology 2008, 9:R106 (doi:10.1186/gb-2008-9-7-r106)

Received: 15 February 2008
Revised: 20 May 2008
Accepted: 3 July 2008

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2008/9/7/R106
Genome Biology 2008, 9:R106

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18598358
http://genomebiology.com/2008/9/7/R106
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


http://genomebiology.com/2008/9/7/R106 Genome Biology 2008,     Volume 9, Issue 7, Article R106       Monier et al. R106.2
Acanthamoeba polyphaga [12], may be retained on the 0.16-
0.2 μpore filters specifically used in virus-targeted metagen-
omic studies and may not be gathered in the fraction tradi-
tionally associated with viral sequences [11]. A recently
released marine microbial metagenomic sequence data set,
produced by the first phase of the Sorcerer II Global Ocean
Sampling (GOS) Expedition [13], provides an opportunity to
quantitatively investigate viral diversity in marine environ-
ments. The GOS data comprise a large environmental shot-
gun sequence collection, with 7.7 million sequencing reads
assembled into 4.9 billion bp contigs. In the GOS expedition,
microbial samples were collected mainly from surface sea
waters, and some others were collected from non-marine
aquatic environments. Most DNA samples were extracted
from the 0.1-0.8 μsized fraction, which is dominated by bac-
teria. Williamson et al. [14] recently reported that at least 3%
of the predicted proteins contained within the GOS data are
of viral origin. Notably, a number of sequences most similar
to the genome of the giant mimivirus have been found in the
Sargasso Sea metagenomic data set [15], produced by a pilot
study of the GOS expedition [16], as well as in the new GOS
metagenomic data set [17].

Determining taxonomic distribution, referred to as 'binning',
is the first step to analyze microbial populations in metagen-
omic sequences [18]. One simple binning approach uses data-
base search programs such as BLAST to find the best scoring
sequence of known species. A majority rule can be used to
assign a taxonomic group to a metagenomic sequence [14,19].
Similar to the best hit criterion used to define orthologous
genes in complete genomes [20,21], two-way BLAST searches
were used to detect 'mimivirus-like' sequences in metagen-
omic data [15,17]. Such a post-processing of homology search
results can improve the accuracy of taxonomic assignment.
However, the use of homology search programs has serious
drawbacks [22]. For instance, BLAST scores are highly sensi-
tive to alignment sizes and to insertions/deletions. Further, it
is difficult to infer evolutionary distances among high scoring
hits only from the BLAST scores.

Phylogenetic analysis remains the most powerful way to
determine taxonomic distribution of metagenomic
sequences. Short and Suttle [23] used phylogenetic methods
to classify PCR-amplified gene sequences and suggested the
existence of previously unknown algal viruses in coastal
waters. Similar phylogenetic studies were performed to
assess the diversity of T4-type phages [24] or RNA viruses
[25,26] in marine environments. In these studies, different
markers, such as the major capsid genes or RNA-dependent
RNA polymerase gene sequences, were amplified by PCR or
RT-PCR and analyzed by phylogenetic methods. To examine
taxonomic distribution of large DNA viruses in a metagen-
omic sequence collection, B-family DNA polymerase (PolB) is
a useful marker [23,27,28]. PolB sequences are conserved in
all known members of nucleocytoplasmic large DNA viruses
(NCLDVs) [29], which include 'Mimiviridae' [30], Phycodna-

viridae, Iridoviridae, Asfarviridae, and Poxviridae. PolB
genes are also found in other eukaryotic viruses, such as her-
pesviruses, baculoviruses, ascoviruses and nimaviruses, in
some bacteriophages (for example, T4-phage, cyanophage P-
SSM2), and in some archaeal viruses (for example, Halovirus
HF1). Eukaryotes have four PolB paralogs (catalytic subunits
of α, δ, ε and ζ DNA polymerases). PolB genes are found in all
of the main archaeal lineages (Nanoarchaeota, Crenarchaeota
and Euryarchaeota). The presence of PolB homologs in bacte-
ria (the prototype being Escherichia coli DNA polymerase II)
is limited; PolBs are found in Proteobacteria, Acidobacteria,
Firmicutes, Chlorobi and Bacteroidetes. PolB genes are suita-
ble for the classification of large DNA viruses [31,32] thanks
to their strong sequence conservation and an apparently low
frequency of recent horizontal transfer [28,33].

When applying phylogenetic methods to environmental shot-
gun sequences, the treatment of short sequences requires
special attention. These sequences show large variation in
size and possibly correspond to different parts of a selected
marker gene. Piling up multiple short sequences on repre-
sentative markers from known organisms does not provide an
appropriate alignment (whatever software is used) with
enough signals for the subsequent phylogenetic analysis. In
this study we developed a new phylogeny-based method. The
method called 'phylogenetic mapping' analyzes individual
metagenomic sequences one by one and determines their
phylogenetic positions using a reference multiple sequence
alignment (MSA) and a reference tree. As an attempt to inves-
tigate the presence, the taxonomic richness and the relative
abundance of different large DNA viruses in marine environ-
ments, we analyzed the GOS data set using PolB sequences as
our reference. Our study does not address the abundances of
small DNA viruses or RNA viruses [14,34].

Results
Phylogenetic mapping
We searched the GOS data set for PolB-like sequences using
the Pfam hidden Markov profile (PF00136). This resulted in
a set of 1,947 sequences (from 23-562 amino acid residues).
These sequences are referred to as 'PolB fragments' in this
study. We next built a reference MSA of PolB homologs from
known organisms (Additional data file 1). The reference MSA
(Additional data file 2) corresponds to the polymerase
domains of PolB homologs and contains 101 sequences,
which were selected to achieve the widest possible taxo-
nomic/paralog coverage (but with a non-exhaustive sampling
for closely related species) for the analysis of the GOS metage-
nomic data. The reference MSA was used to generate a maxi-
mum likelihood tree (that is, the reference tree; Figure 1).
Although the phylogenetic reconstruction did not provide sta-
tistical support for most of the basal branches, many periph-
eral groupings (supported by bootstrap values ≥ 70%) were
coherent with the current taxonomy of viruses and cellular
organisms. In this tree, we identified eight viral groups:
Genome Biology 2008, 9:R106
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poxviruses; chloroviruses; phaeoviruses; mimivirus and
related algal viruses (Pyramimonas orientalis virus PoV01,
Chrysochromulina ericina virus CeV01 and Phaeocystis pou-
chetii virus PpV01); iridoviruses grouped with ascoviruses;
herpesviruses; baculoviruses; and one phage group. The PolB
homologs from African swine fever virus (ASFV, Asfarviri-
dae), Emiliania huxleyi virus 86 (EhV-86, Phycodnaviridae),
Heterosigma akashiwo virus 1 (HaV, Phycodnaviridae) and
the phage RM378 did not show well supported clustering with
other PolB sequences. We also identified eleven groups in the
reference tree for cellular PolB homologs: seven archaeal
groups, one bacterial group and three eukaryotic groups (α, δ
and ζ subtypes). Each of the GOS PolB fragments was then
examined for its phylogenetic position using the reference
MSA and the reference tree. To reduce the computation time
and to streamline tprocess of summarizing results, we
reduced the size of the reference MSA. Specifically, we
selected 51 representatives from the 101 reference sequences
and removed the remaining sequences. The reference tree
was also reduced so that the resulting tree contains only the
selected 51 representatives, while we conserved the original
topology of the full reference tree shown in Figure 1. The
reduced reference tree has 99 branches (including internal
branches). A constraint on this topology defines 99 possible
branching positions for each of the GOS PolB fragments. We
aligned, one by one, each of the PolB fragments on the
reduced reference MSA using the T-Coffee profile method.
Based on the resulting profile MSA containing 52 sequences,
the likelihoods for all 99 possible branching positions (thus
99 different topologies) were computed by ProtML [35]. A
statistical significance for the best tree among the 99 topolo-
gies was assessed by the RELL (resampling of estimated log
likelihoods) bootstrap method [36,37]. We considered the
branching position of a PolB fragment to be supported when
the RELL bootstrap value for the best topology was ≥ 75%.

Diversity of large DNA viruses in the GOS data set
Our phylogenetic mapping method could assign the best
branching position for 1,423 PolB fragments, of which 1,224
(86%) were mapped on viral branches. The best branching
position was statistically supported by the RELL method for
869 PolB fragments, of which 811 (93%) were mapped on
viral branches. Figure 2 and Additional data file 3 show the
taxonomic distribution of the GOS PolB fragments. The larg-
est fraction of the PolB fragments was mapped on the phage
group. Of 866 cases of mapping within the phage group, 633
were supported. This appears consistent with the current esti-
mate of the large number of phage-like particles and their
genetic richness in marine environments [3]. The second
largest number of supported mappings was found to fall into
large eukaryotic viruses commonly found in aquatic environ-
ments. Among them, the 'Mimiviridae group' (mimivirus,
PoV01 and CeV01 [17]) represented the largest fraction, with
115 supported cases. The chlorovirus group gathered 51 sup-
ported cases of mapping. The iridovirus/ascovirus group and
the branch leading to HaV showed five supported mappings

each. In contrast, no PolB fragment was mapped for the
groups for baculoviruses or herpesviruses commonly found in
terrestrial animals. Interestingly, we found two PolB frag-
ments mapped with good support on the ASFV branch (JCVI
SCAF 1101668126451, JCVI SCAF 1101668152950). When
these two PolB fragments were compared to the NCBI non-
redundant amino acid sequence database (NRDB) using
BLASTP, they were most similar to the ASFV PolB sequence.
ASFV is pathogenic to domestic pigs and is currently the sole
representative of the Asfarviridae family [38]. Concerning
cellular organisms, eukaryotic homologs gathered few map-
pings, as expected from the sample filtration threshold used
in the GOS metagenomic study. Two archaeal groups - the
group III containing crenarchaeotes (for example, Pyrobacu-
lum aerophilum, Cenarchaeum symbiosum) and the group
IV containing euryarchaeotes (for example, Thermoplasma
acidophilum, an uncultured euryarchaeote Alv-FOS1) - had
23 and 17 supported cases of mapping, respectively. The bac-
terial group presented ten supported mappings.

Validation of the mapping results using long PolB 
fragments
We examined the phylogenetic mapping result and the
sequence diversity of the PolB fragments classified in large
eukaryotic virus groups (that is, NCLDVs). From those
mapped on NCLDV branches, we selected long PolB frag-
ments that generated a profile MSA showing at least 150 non-
gapped sites. We computed a single alignment of these long
PolB fragments together with the reference PolB sequences
from large eukaryotic virus groups. A maximum likelihood
tree (Figure 3) based on the alignment was perfectly consist-
ent with our one-by-one mapping result (Figure 2) in terms of
taxonomic assignment. The Mimiviridae group contained 16
PolB fragments showing substantial sequence variations.
Twelve of them were significantly closer (bootstrap 100%) to
CeV01 or PpV01 (both viruses of haptophytes) than to
mimivirus or PoV01 (a green algal virus). Three of the rest
were grouped with either mimivirus (bootstrap 89%) or
PoV01 (bootstrap 96%). The last one (JCVI SCAF
1096627348452) was placed at the basal position of the Mim-
iviridae group. Although this basal positioning was not statis-
tically supported, it was consistent with our one-by-one
phylogenetic mapping result. The mimivirus PolB shared
47% identical amino acid residues with its closest homolog
(JCVI SCAF 1101668170038). A large and diverse group con-
taining 27 PolB fragments (bootstrap 92%) was also found
beside the chlorella virus group (Paramecium bursaria chlo-
rella viruses 1, K2 and NY2A). The DNA polymerase gene
from the recently released Ostreococcus virus OtV5 genome
(GenBank: EU304328) [39] was found grouped together with
these PolB fragments. The grouping of a PolB fragment with
ASFV PolB was also confirmed (bootstrap 100%).

Viral PolBs are more diverse than bacterial PolBs
We investigated the abundance of viral PolB genes relative to
bacterial PolB genes in the GOS data set. Here, we used read
Genome Biology 2008, 9:R106
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coverage as a proxy to measure the abundance of the cognate
DNA molecules in the samples. We computed the read cover-
age of each contig harboring a PolB fragment mapped on the

reference tree with significant support, and then obtained the
median of the read coverage values for each set of contigs
mapped on the same branch (Additional data file 3). PolB

Figure 1 
Maximum likelihood tree of 101 PolB sequences in the complete reference set. The phylogenetic tree was built using PhyML [73] (Jones-Taylor-Thornton 
substitution model [76], 100 bootstrap replicates) based on a multiple sequence alignment generated using M-Coffee [72]. This tree is unrooted per se. 
The phage group was arbitrarily chosen as an outgroup for presentation purposes. The lengths of branches do not represent sequence divergence. 
Bootstrap values lower than 70% are not shown. The selected 51 representatives for the phylogenetic mapping and the associated branches are highlighted 
in bold face and black lines, respectively. Different colors correspond to different taxa: viruses (blue), eukaryotes (orange), bacteria (green) and archaea 
(pink).
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sequences mapped on viral branches exhibited low median
coverage values ranging from 1.31 for the ASFV branch to
2.00 for a phage branch. The median coverage value for the
contigs mapped on the mimivirus branch (12 contigs) was
1.32. The viral contig with the largest read coverage (6.68)
was the one mapped on the cyanophage P-SSM4 branch. In
contrast, a higher median coverage value (8.40) was found for
bacterial contigs mapped on the branch leading to
Shewanella frigidimarina. One of the bacterial contigs
exhibited a read coverage of 29.17. Viral branches were thus
characterized by a large number of mapped contigs exhibiting
a low coverage. This is consistent with numerous and very
diverse viral populations [40]. On the other hand, the bacte-
rial branches exhibited a lower number of mapped contigs

with a larger read coverage. This is consistent with numerous
but less diverse populations of bacterial species, although our
results concern only bacteria having PolB homologs.

Geographic distributions of viral PolBs
GOS metadata provide physicochemical and biological
parameters associated with each sampling site, such as water
temperature, salinity, chlorophyll a concentration, and sam-
ple's water depth. These data offer additional dimensions to
analyze the viral PolB fragments identified by our
phylogenetic mapping. Here we compared the relative abun-
dance of the predicted viral PolB fragments and the associ-
ated metadata across different GOS sampling sites (Figure
4a).

Phylogenetic mapping results of the GOS PolB fragmentsFigure 2
Phylogenetic mapping results of the GOS PolB fragments. Results of the phylogenetic mapping are summarized and displayed for each group in the 
reference tree. Numbers in parentheses (X/Y) are the total number of mapped PolB fragments (Y) and the number of supported cases (X). The tree 
topology is the same as the one shown in Figure 1. Branches with bootstrap values ≥ 70% are marked with filled circles. The 99 branches examined by our 
phylogenetic mapping are shown with black lines; other peripheral branches are shown with gray lines. The length of the scale bar corresponds to 0.5 
substitutions per site. colors correspond to different taxa: viruses (blue), eukaryotes (orange), bacteria (green) and archaea (pink).
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Maximumd tree of PolB sequences belonging to NCLDVsFigure 3 
Maximum likelihood tree of PolB sequences belonging to NCLDVs. The phylogenetic tree was built using PhyML [73] (Jones-Taylor-Thornton substitution 
model [76], 100 bootstrap replicates) based on a multiple sequence alignment generated using MUSCLE [77]. Bootstrap values lower than 50% are not 
shown. GOS sequences are marked with filled circles and displayed in purple. The tree was mid-point rooted. The DNA polymerase gene from the 
recently released Ostreococcus virus OtV5 (GenBank: EU304328) was included in this tree. The OtV5 PolB was not included in our reference set as it was 
not available at the time of our phylogenetic mapping study. The length of the scale bar corresponds to 0.5 substitutions per site.
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Predicted viral PolB fragments were detected in all of 44 GOS
sampling sites (Figure 4b). The relative abundance of differ-
ent virus groups showed substantial variation across these

samples. This is consistent with the diverse ecosystems cov-
ered by the GOS expedition.

Geographic localizationFigure 4 
Geographic localization. (a) The different sampling sites of the Sorcerer II Global Sampling expedition. The samples 00 and 01 are part of the Sargasso Sea 
pilot study [16]. The inset shows samples 27 to 36, which were sampled in the Galapagos Islands. The sampling sites displayed in light gray were not 
analyzed in the GOS original study, nor in this study. This part of Figure 1 was reproduced from [13]. (b) Relative abundance of PolB fragments for virus 
groups across GOS sampling sites. The left-most panel shows the relative abundance of viral PolBs in difierent GOS samples. The mimivirus group clearly 
appears as the most ubiquitous after phages. Four area plots (second to fifth panels from the left) show water temperature, chlorophyll a concentration 
(no information was available for GS20, GS30, GS32, GS33, GS47 and GS51 sites), salinity (no information was available for GS06, GS11, GS13, GS14, 
GS28, GS30, GS31, GS32, GS34 and GS37 sites) and sample depth, respectively. Two far right histograms (sixth and seventh panels) show the proportion 
and the estimated number of reads associated with the viral PolB fragments among total reads for a given sample.
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PolB fragments classified in the phage group were found in 42
(95%) of the 44 sample sites; the two samples without phage
PolB fragments were GS08 (Newport Harbor, Richmond,
USA) and GS32 (mangrove). In most samples (32 sites), puta-
tive phage PolBs exhibited a higher abundance relative to
putative eukaryotic viral PolBs. On the other hand, the rela-
tive abundance of eukaryotic viral PolBs was higher than that
of phage PolBs in 12 sampling sites. We found a significant
positive correlation between the relative abundance of phage
PolBs and water temperature (p = 0.001; Fischer's exact test
with no correction for multiple testing): phage-type PolBs
showed a higher relative abundance than eukaryotic viral
PolBs in tropical waters (T ≥ 20°C), while a reversed tendency
was observed in temperate water (T < 20°C). Interestingly,
among eukaryotic viral PolBs, putative Mimiviridae PolBs
showed the most widespread distribution, being detected in
38 (86%) of the total sites. One of these sampling sites (man-
grove located on Isabella, Ecuador) exhibits only viral PolBs
classified in the Mimiviridae group. This is the sole mangrove
site of all the GOS sampling locations. Mimiviridae PolBs
were also relatively abundant in two of the three samples
from a hydrostation located in the Sargasso Sea. Three sam-
ples correspond to different size fractions: 3.0-20.0 μm for
GS01a; 0.8-3.0 μm for GS01b; and 0.1-0.8 μm for GS01c.
Putative Mimiviridae PolBs were identified in the GS01a and
GS01c samples. The GS01a sample, which was targeted to
small eukaryotes, might have contained host species infected
by putative viruses of the Mimiviridae group. PolB fragments
grouped with chloroviruses were also widely distributed.
They were detected in 16 (36%) samples. The relative abun-
dance of this putative eukaryotic virus group showed a signif-
icant positive correlation with chlorophyll a concentration, a
measure of primary productivity in oceanic regions (p =
0.00002; Fisher's exact test with no correction for multiple
testing).

The sample exhibiting the broadest taxonomic richness of
viral PolBs was from Chesapeake Bay (GS12, MD, USA),
which is an estuary. The GOS metagenomic sequences from
this site exhibited PolB fragments classified in phages, chlo-
roviruses, Asfarviridae and Mimiviridae. Notably, this site is
a highly eutrophic estuary with an extremely high chlorophyll
a concentration. PolBs classified in Asfarviridae were also
detected in another estuary site (GS11, Delaware Bay, NY,
USA), which is close to Chesapeake Bay.

Prediction of putative 'new' viral genes
Contigs harboring putative viral PolB homologs were rela-
tively small, ranging from 0.4-12.5 kb (average 1,874 bp) for
contigs mapped on eukaryotic viral branches and 0.5-8.8 kb
(average 1,885 bp) for phages. To examine the presence of
additional open reading frames (ORFs) in these contigs, these
putative viral contigs were searched against NRDB using
BLASTX. We detected several genes or gene fragments that
are usually specific to viruses. For example, several contigs
(for example, JCVI SCAF 1096626858151, JCVI SCAF

1096626920680) containing PolB fragments assigned to the
chlorovirus group also harbor an ORF most similar to the
OtV5 putative major capsid gene. Several putative phage-type
contigs (for example, JCVI SCAF 1096628232224, JCVI
SCAF 1096626847406) mapped on the cyanophage P-SSM4
branch exhibited ORFs similar to regA (translation repressor
of early genes) or uvsX (recA-like recombination and DNA
repair protein genes). The presence of such 'virus-specific'
genes next to the 'virus-like' PolB homologs corroborates the
validity of our phylogenetic mapping approach.

During this search, we found an ORF similar to RimK, a pro-
tein involved in post-translational modification of the ribos-
omal protein S6, in a contig (JCVI SCAF 1096626956347)
having a PolB fragment mapped on the cyanophage P-SSM4
branch. In this contig, the rimK homolog was flanked by a
phage-specific regA homolog (Figure 5). rimK homologs are
found in bacteria, archaea and eukaryotes [41]. To our knowl-
edge, no rimK homolog has been found in a viral genome.
Using this putative viral RimK homolog as a query of
TBLASTN, we screened the entire GOS data set. We identified
more than a hundred contigs harboring RimK homologs with
higher similarities (BLAST score from 137 up to 732; E-value
< 10-30) than those exhibited by cellular homologs (BLAST
score < 132; E-value > 10-29) in NRDB. The sequences of those
putative phage RimK homologs were readily aligned with
Escherichia coli RimK along its entire length (not shown),
and showed amino acid residues highly conserved in the ATP-
graps domain of bacterial RimK [41]. Several GOS RimK
sequences showed an additional domain of unknown func-
tion (DUF785, PF05618, E-value < 0.001) at the carboxy-ter-
minal side of the ATP-graps domain. A DUF785 domain is
present also in RimK of some bacteria (at the amino-terminal
side of the ATP-graps domain) such as Synechococcus sp.
(Q7U6F4) and euryarchaeotes (at the carboxy-terminal side
of the ATP-graps domain) such as Halobacteria (for example,
Q5V351). Furthermore, many of the GOS contigs encoding
RimK homologs exhibited additional ORFs usually specific to
phages such as T4-like clamp loader subunit genes, contrac-
tile tail sheath protein genes or T4-like DNA packaging large
subunit terminase genes (Figure 5). Our phylogenetic analy-
sis indicates that those RimK homologs are closely related to
each other and distantly related to bacterial RimK (Figure 6).
These results suggest the existence of phages carrying rimK
homologs in marine environments.

Discussion
Until recently, the marine virosphere was terra incognita.
The increasing amount of environmental sequence data now
provides unprecedented opportunities to explore the viral
world. Previous studies characterized the abundance and the
genetic richness of marine viruses using environmental
sequencing approaches [8,14,19,23,24]. However, the extent
of species diversity within individual viral groups is still
unclear. This is especially the case for large DNA viruses.
Genome Biology 2008, 9:R106
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Large DNA viruses were often overlooked or were not the spe-
cific focus of marine metagenomic projects. In this study, we
used a new phylogenetic mapping approach to identify viral
PolB sequences contained in the GOS metagenomic data set
and assessed their taxonomic distribution. This study does
not concern small viruses, including RNA viruses. Beyond
BLAST searches, our phylogenetic mapping approach pro-
vided a somewhat unexpected picture of the taxonomic distri-
bution of viral sequences in the metagenomic data.

In the GOS data we identified 811 PolB-like sequences closely
related to known viral PolB sequences. This is consistent with
the existence of a wide taxonomic spectrum of PolB-contain-
ing DNA viruses in marine environments [23]. As previously
noted [14], phages are the main contributors to this diversity;
our method predicted that 78% (633/811) of the viral PolB
fragments were of phage origin. This proportion is likely an
underestimate of the actual taxonomic diversity of double-
stranded DNA phages in the GOS sampling areas as only a
subset of DNA phages carry PolB genes.

Interestingly, the mimivirus group was the second largest in
terms of the number of assigned PolB fragments (that is, 115
cases of mapping). Previous studies revealed the existence of
mimivirus-like sequences in the GOS metagenomic data set
[15,17]. Our data now suggest that the species/strain richness
contained in the GOS metagenomic samples for this viral
group may be comparable to those exhibited by other groups
of eukaryotic large DNA viruses, including most of the previ-
ously characterized phycodnaviruses. The amoeba infecting
mimivirus has the largest known viral genome (1.2 Mb). Its
particle size is approximately 0.7 m in diameter including its
filamentous layer [11]. In addition, the mimivirus group con-

tains two haptophyte viruses (CeV01 (510 kb), and PpV01
(485-kb)) and a virus infecting a green algal species (PoV01
(560 kb)) [17,42]. Their genomes are also larger than any
other eukaryotic viruses sequenced so far [43,44]. The parti-
cle sizes of these three algal viruses are 0.16-0.22 μm, being
compatible with the filter sizes used in the GOS sampling.
Notably, their particle sizes are comparable to those of classic
phycodnaviruses with a mean diameter of 0.16 ± 0.06 μm
[45,46]. By counting overlapping PolB fragments mapped on
the mimivirus group, we estimated that at least 85 distinct
species/strains of Mimiviridae are present in the GOS
metagenomic samples. Within the mimivirus group, two hap-
tophyte viruses (PpV1 and CeV01) were clustered together
with a high bootstrap value (Figure 3). Most (84%; 97/115) of
the Mimiviridae-like PolB fragments were mapped within
this subgroup. Haptophyte species may thus be the major
hosts of putative viruses corresponding to the PolB subgroup.
Overall, these data suggest that large DNA viruses composing
the Mimiviridae group represent one of the main components
of marine eukaryotic large DNA viruses.

The branch leading to the chloroviruses presented 51 cases of
GOS PolB fragment mapping. These GOS sequences were
closely related to the recently determined PolB sequence from
OtV5. OtV5 infects Ostreococcus tauri, a small green algal
species of prasinophyte (approximately 1 μm in diameter)
found in diverse geographic locations [47]. Short and Suttle
identified a group of viral sequences closely related to
prasinoviruses (Micromonas pusilla viruses) through
sequencing PCR products targeted to algal virus PolBs [23].
We found that some of the sequences studied in their work
were also highly similar to the OtV5 PolB sequence. For
instance, the sequence named BSA99-5 (GenBank:
AF405581) in their study exhibited 93% amino acid sequence
identity to the OtV5 PolB sequence. This suggests that the
major hosts for this putative viral group may be
prasinophytes.

Surprisingly, we identified two PolB fragments most closely
related to the ASFV PolB. ASFV is currently the sole isolated
member of the Asfarviridae family. The known natural hosts
of ASFV are terrestrial animals, including warthogs, bush
pigs and soft ticks [38]. ASFV causes a persistent but asymp-
tomatic infection in these hosts. In domestic pigs, ASFV
causes an acute hemorrhagic infection with mortality rates up
to 100% depending on different viral isolates. We now predict
the existence of additional Asfarviridae in marine environ-
ments, although the contamination from terrestrial origin
cannot be excluded. In a recent metagenomic study,
Marhaver et al. [48] analyzed the viral communities associ-
ated with healthy and bleaching corals. They showed that
alphaherpesvirus-like and gammaherpesvirus-like sequences
accounted for 4-8% of the analyzed environmental
sequences. GOS sampling sites include a coral reef atoll site
(GS51). No herpesvirus-type PolB fragment was detected in
our study.

Gene organization of GOS contigs with putative phage RimK sequencesFigure 5
Gene organization of GOS contigs with putative phage RimK sequences. 
Putative phage rimK genes are shown in red. Other predicted genes are 
color coded according to their best BLAST hit taxonomies in NRDB as 
shown in the inset panel. MT-A70 corresponds to the adenine-specific 
methyltransferase. gp17 is a T4-like DNA packaging large subunit 
terminase homolog. gp18 is a contractile tail sheath protein homolog. The 
crystal structure of a GOS homolog for the protein encoded by the 
hypothetical gene (gray) has been determined and is available in the 
Protein Data Bank (3BY7).
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Maximum likelihood tree of RimK sequencesFigure 6 
Maximum likelihood tree of RimK sequences. RimK sequences were retrieved from UniProt [78] and from the GOS metagenomic data set using BLASTP. 
The phylogenetic reconstruction was performed using PhyML [73] (Jones-Taylor-Thornton substitution model [76], 100 bootstrap replicates) based on a 
multiple sequence alignment generated with MUSCLE [77]. Bootstrap values lower than 50% are not shown. The tree was mid-point rooted. GOS 
sequences are marked with filled circles and displayed in purple. The length of the scale bar corresponds to 0.4 substitutions per site.
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Through the analysis of geographic distribution, we found
that putative viral PolB fragments were identified in all of the
44 GOS samples. This suggests a wide presence of PolB-
encoding viruses in diverse marine environments. Interest-
ingly, phage PolB sequences were more abundant than
eukaryotic viral PolB sequences in samples from tropical
areas; conversely, many samples from temperate areas were
enriched in eukaryotic viral PolBs. Further, most of the sam-
ples showing a great taxonomic richness of viral PolB
sequences corresponded to those from temperate areas. This
observation is consistent with the current understanding of
the distribution of eukaryotic and bacterial phytoplankton in
oceans. Gibb et al. [49] surveyed the spatial distributions of
phytoplankton pigments across the Atlantic Ocean over 100°
of latitude (from 50°N to 50°S). They showed a major transi-
tion in pigment characteristics from temperate to tropical/
sub-tropical waters; temperate waters were characterized by
larger phyto-biomass enriched in eukaryotic phytoplankton,
while tropical/sub-tropical waters exhibited smaller phyto-
biomass enriched in prokaryotic phytoplankton such as
prochlorophytes [49].

The relatively high abundance of eukaryotic viral PolBs in
samples from temperate areas (showing high chlorophyll a
concentrations) was mainly due to the abundance of the GOS
PolB sequences grouped with chlorovirus PolBs. This again
suggests that the hosts of these putative viruses are green
algae (such as prasinophytes). In contrast, Mimiviridae-like
PolB fragments showed a wider geographical distribution.
They were identified in sequences from most of the GOS sam-
pling sites, from northeast Atlantic Ocean to southwest
Pacific Ocean. These sites correspond to a variety of habitat
types, such as coastal seas, open oceans, fresh water sites
(GS20, Lake Gatun, Panama; GS32, mangrove, Isabella,
Ecuador) and even hypersaline waters (GS33, Punta Cormo-
rant Lagoon, Floreana, Ecuador). The detection of Mimiviri-
dae-like PolB fragments was not correlated with chlorophyll
a concentration. Hence, the hosts of these putative Mimiviri-
dae viruses are not limited in temperate/eutrophic waters. In
fact, species of haptophyte have been found and known to
occasionally form blooms in waters from sub-polar to (sub-
)tropical latitudes, including oligotrophic areas [50-52].
Acanthamoeba, the host of mimivirus, also have the ability to
survive in diverse environments [53].

Finally, our study allowed the identification of putative phage
rimK. In E. coli, RimK catalyzes the post-translational addi-
tion of glutamic acid residues to the amino terminus of ribos-
omal protein S6 [54]. A resistance to antibiotics was
suggested for the E. coli mutant lacking the activity of the S6-
modification [55]. Reeh and Pedersen [56] showed that the
relative level of the S6-modification was not affected by the
growth rate in culture. Besides these observations, however,
much is unknown for the functional consequence of the S6
modification in E. coli. Bacteriophage T7 modifies ribosomal
protein S6, S1 and translational initiation factors by phospho-

rylation upon infection of E. coli [57]. The modifications of
host translational proteins are performed by a T7-encoded
kinase, and enhance phage reproduction under sub-optimal
growth conditions. It was suggested that the phosphorylation
of these proteins serves to stimulate translation of the phage
late mRNAs. The RimK homologs found in phage-like contigs
may be involved in a similar process. Unexpected homologs of
cellular genes are continuously identified in viral genome
sequences [12,58,59]. We believe that our phylogenetic map-
ping approach will be useful to identify further occurrences of
unexpected viral genes in environmental sequences.

Conclusion
The use of a phylogenetic approach provided a comprehen-
sive picture of the taxonomic distribution of large viruses
enclosed in the GOS metagenomic data. As expected, the
highest genetic richness corresponded to phages. Interest-
ingly, our data suggest that Mimiviridae represent a major
and ubiquitous component of large eukaryotic DNA viruses in
diverse marine environments.

Materials and methods
Extraction of PolB fragments from the GOS 
metagenomic data set
We retrieved the combined assemblies of the GOS metagen-
omic data through the CAMERA website [60]. The data set
was composed of 3,081,849 scaffolds. We extracted all the
stop-to-stop ORFs (≥ 60 amino acid residues) from the
assembled sequences using EMBOSS/GETORF [61]. We
obtained a set of 21,406,171 ORFs. Those ORFs were trans-
lated into corresponding amino acid sequences. To identify
PolB-like fragments in this set, we used the Pfam profile
(PF00136, both long and fragment search versions: 'ls' and
'fs') [62] and the HMMER software as a search engine [63]
using an E-value threshold of 0.001. We then removed redun-
dancy (due to the double use of 'ls' and 'fs' versions of the
Pfam profile) and false positive detections (having the best hit
against non-PolB sequences in the NRDB) by BLASTP [64]
using an E-value threshold of 10-5). We extracted only the
parts of metagenomic amino acid sequences that were aligned
on the Pfam profile representing the polymerase domains of
PolB. Thus, additional domains (such as endonuclease
domains) were not included in our PolB sequence set. No con-
tig was found to contain more than one PolB homolog. As a
result of these processes, we obtained 1,947 distinct PolB-like
sequences (from 23-562 amino acid residues); these
sequences are referred to as PolB fragments in this study. We
parsed the GOS PolB fragments to find intein insertions by
the TIGRFAM profiles TIGR01445 (intein amino terminus)
and TIGR01443 (intein carboxyl terminus) [65], but none of
these fragments had a detectable intein domain. In this study,
we did not include the protein priming subfamily of the B
family DNA polymerase [28], which is represented by the
Pfam profile PF03175. The members of this subfamily are
Genome Biology 2008, 9:R106
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found in eukaryotic linear plasmids of mitochondrion, phages
and adenoviruses.

PolB homologs from the NRDB
We retrieved PolB homologs from the NRDB, RefSeq [66]
and KEGG [67] databases using BLAST using multiple query
sequences (E-value < 10-5) and the PolB Pfam profile (E-value
< 0.001). We removed species redundancy using BLAST-
CLUST [64] while keeping the widest possible taxonomic/
paralog coverage (but with a non-exhaustive sampling for
closely related species). This resulted in a set of 120 PolB
homologs (Additional data file 1). We removed intein
sequences in the PolBs of mimivirus [68], HaV [69] and
CeV01 (GenBank: ABU23716).

Construction of the reference alignment and the 
reference tree
We next constructed an alignment of PolB homologs from
known organisms (that is, the reference MSA) and generated
a phylogenetic tree of PolB homologs (that is, the reference
tree). There is a tradeoff between the number of distant
homologs included in the reference MSA (contributing to a
wider taxonomic/paralog coverage) and the quality of the
resulting MSA and tree (contributing to a reliable classifica-
tion of metagenomic sequences). Among the 120 PolB
homologs, we identified 19 highly divergent sequences that
decrease the quality of the resulting PolB alignment and tree
but that show no close homologs in the GOS PolB fragments.
This process was performed through multiple trials of build-
ing alignments by T-Coffee [70] and phylogenetic trees by
PhyML for the PolB homologs. These 19 sequences
correspond to six groups of PolB homologs: eukaryotic DNA
polymerase ε, a Trichomonas vaginalis DNA polymerase α-
like paralog, PolBs of unclassified herpesviruses (Ostreid,
Ictalurid and Ranid herpesviruses), Heliothis zea virus, a
nimavirus (shrimp white spot syndrome virus), and PolBs of
a group of bacteria related to Prosthecochloris vibrioformis
and Chlorobium tepidum. There was no PolB-like fragment
in the GOS data exhibiting a best BLAST hit against these
groups of PolB homologs. Therefore, the removal of the six
groups of PolB homologs from our reference data set does not
affect the interpretation of the results described in this man-
uscript. After discarding these 19 sequences, the final PolB set
was composed of 101 sequences. We aligned the 101 PolB
sequences using M-Coffee accessible from a public server [71]
with the use of default options. M-Coffee is a meta-method for
assembling multiple sequence alignments [72]. We extracted
only the polymerase domain sequences from the alignment
(that is, the reference MSA; Additional data file 2). The refer-
ence alignment showed four conserved regions (numbered
from I to IV) previously described as the signatures of the
PolB polymerase domains [33]. We next built a maximum
likelihood tree based on the reference MSA (that is, the refer-
ence tree) using PhyML after removing gap-containing sites
[73] with JTT substitution model and a gamma low (four rate
categories). Bootstrap values were obtained after 100 boot-

strap replicates. We used the phylogeny.fr platform [74] to
generated scalable vector graphics from newick formatted
trees.

Phylogenetic mapping
Each of the metagenomic PolB fragments was taxonomically
assigned by aligning it against the reference MSA and by
examining its phylogenetic position in the reference tree. In
order to reduce the computation time and to avoid unneces-
sary complications in summarizing results within too dense a
tree, we reduced the size of the reference MSA and the refer-
ence tree. Specifically, we selected 51 PolBs from the 101
PolBs contained in the initial set. We kept the selected 51
PolBs in the reduced set, and deleted the remaining PolBs.
The selection of the 51 representatives was carried out in the
following way. First, we selected all the PolBs (that is, ASFV,
EhV86, HaV, Phage RM378) that were not grouped with
other PolBs with a statistical support (≥ 70% bootstrap value)
in the initial reference tree (Figure 1). Second, we selected two
or three representatives from each of the statistically sup-
ported monophyletic groups (≥ 70% bootstrap value). The
choice of representatives from a monophyletic group was
arbitrary. We simply selected two or three relatively distant
sequences from the members of the monophyletic group. To
obtain a reduced reference MSA composed of the selected 51
sequences, we extracted a part (that is, lines) of the initial ref-
erence MSA (containing gaps). The initial reference tree
(composed of 199 branches including internal ones) was also
reduced by pruning branches leading to the non-selected
leaves using BAOBAB [75].

The reduced reference tree has 99 branches (including inter-
nal branches); the constraint on the topology of the reduced
reference tree thus defined 99 possible branching positions
for each PolB-like fragment extracted from the metagenomic
data set. The reduced reference MSA and the reduced refer-
ence tree are the basis for our phylogenetic mapping in this
study. Each of the PolB fragments from the GOS data set was
aligned on the reduced reference MSA (containing gaps)
using T-Coffee [70] with a profile alignment option. For the
T-Coffee profile alignment, we used the option '-profile com-
parison = full10'. If a GOS PolB fragment generates an align-
ment with less than 50 sites after removing gap-containing
sites, we discarded the GOS PolB fragment from our analysis.
Based on the resulting alignment (51 reference sequences and
one GOS PolB fragment), the likelihoods of all 99 possible
branching positions (thus 99 different topologies) for the
PolB fragment were computed by ProtML [35]. A statistical
significance for the best tree among the 99 topologies was
assessed by the RELL method [36,37]. We considered the
branching position of a PolB fragment to be supported when
the RELL bootstrap value for the best topology was ≥ 75%.
Genome Biology 2008, 9:R106
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Read coverage
Read coverage for a contig was defined by dividing the cumu-
lated size of reads contributing to the contig by the size of the
contig.

Relative abundance of PolBs
For the analysis of the relative abundance of PolB sequences,
we used the same approach used by Williamson et al. [14].
Briefly, we first estimated the average number of reads over-
lapping with a part of a contig where a PolB domain was
encoded, by taking into account the length of the PolB domain
(as defined by the Pfam hit) and the length of the contig. The
abundance of the PolB-sequences for each viral group for a
given sample site was then quantified by the total number of
reads associated with the relevant set of PolB-sequences (that
is, the sum of the estimated read numbers). For a given site,
the viral PolB proportion was computed by dividing the total
number of viral PolB reads (for all viral groups) by the total
number of reads obtained from the site.
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