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Abstract

New technologies for rapidly assaying DNA sequences have revealed that the degree and nature
of human genetic variation is far more complex then previously realized. These same technologies
have also resulted in the identification of common genetic variants associated with more than 30

human diseases and traits.

Human genetic variation was named “breakthrough of the
year” by Science in 2007, reflecting the marked advances in
understanding the genetic basis of normal human
phenotypic diversity and susceptibility to a wide range of
diseases. The human genome is composed of 3 billion
nucleotides with approximately 0.5% of these nucleotides
differing among individuals [1]. This genetic variation, the
nucleotides that differ from person to person, affects the
majority of human phenotypic differences, from eye color
and height to disease susceptibility and responses to drugs.

Classification of genetic variants

Phenotypic variation in humans is a direct consequence of
genetic variation, which acts in conjunction with environ-
mental and behavioral factors to produce phenotypic diversity.
Genetic variants are classified by two basic criteria: their
genetic composition and their frequency in the population.
In terms of composition, polymorphisms can be classified as
sequence variants or structural variants. Sequence variants
range from single nucleotide differences between individuals
to 1 kilobase (kb)-sized insertions or deletions (indels) of a
segment of DNA (Figure 1) [2]. Larger insertions and
deletions, as well as duplications, inversions and trans-
locations, are collectively called structural variants. These
variants can range in size from 1 kb to those spanning more
than 5 megabases (Mb) of DNA [3].

Genetic variants are also classified in terms of their frequency
within the population, with common variants defined as

those in which the minor allele is present at a frequency of
greater than 5% in the population, while for rare variants it
is present at a frequency of less than 5%. The fundamental
source of genetic variation is mutation, and the majority of
common genetic variants arose once in human history and
are shared by many individuals today through descent from
common ancient ancestors. A polymorphism is, by conven-
tion, defined as a genetic variant that is present in at least 1%
of the population and thereby excludes rare variants that
may have arisen in relatively recent human history. Much of
the study of genetic variation to date has focused on
characterizing the 10 million estimated single nucleotide
polymorphisms (SNPs), as they comprise approximately
78% of human variants, thus accounting for most genetic
diversity. SNPs are located, on average, every 100 to 300
bases in the genome. Structural variants account for only an
estimated 22% of all variants in the genome, but they
comprise an estimated 74% of the nucleotides that differ
between individuals [1]. As a result of technological advances
that enable their detection, there has been a flurry of recent
efforts to catalogue structural polymorphisms on a genomic
scale [4-6].

The study of inheritance of genetic variation depends on two
key concepts: genetic linkage and linkage disequilibrium
(Figure 2). Two loci are in genetic linkage if they are physi-
cally close enough to one another such that recombination
occurs between them with a less than 50% probability in a
single generation, resulting in their co-segregation more
often than if they were independently inherited (Figure 2a,b).
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Classification of genetic variants by composition. Schematic of sequence
and structural variants compared to reference sequence. Sequence
variation (indicated by red line) refers to single-nucleotide variants and
small (less than | kb) indels. Structural variation includes inversions,
translocations and copy-number variants, which result in the presence of
a segment of DNA in variable numbers compared to the reference
sequence, as in duplications, deletions or insertions. Adapted from [4].
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Recombination frequency is measured in units of
centimorgans, with 1 centimorgan equal to a 1% chance that
two loci will segregate independently due to recombination
in a single generation. One centimorgan is, on average,
equivalent to 1 million base pairs (bp) in the human genome.

Linkage disequilibrium is a measure of the co-occurrence in
a population of a particular allele at one locus with a
particular allele at a second locus at a higher frequency than
would be predicted by random chance. Linkage disequili-
brium is created when a new mutation occurs in a genomic
interval that already contains a particular variant allele, and
is eroded over the course of many generations by recom-
bination. Various statistics have been used to measure the
amount of linkage disequilibrium between two variant alleles,
one of the most useful being the coefficient of correlation 2.
When r2 = 1 the two variant alleles are in complete linkage
disequilibrium, whereas values of 72 < 1 indicate that the
ancestral complete linkage disequilibrium has been eroded.
Thus, while genetic linkage results from recombination in
the last two to three generations and measures co-
segregation in a pedigree, linkage disequilibrium depends on
the association of variant alleles within a population of
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Identification of genetic variation underlying human disease using linkage analysis and genome-wide association studies. (a) Rare Mendelian traits, such as a
monogenic disease with autosomal dominance inheritance, can be studied using linkage analysis in a family. The disease status is followed within a
pedigree (seven affected individuals depicted in red). (b) The disease loci (red bar) co-segregates with the genetic marker (blue bar), located 10
centimorgans (cM) apart. Each of the seven individuals with the disease carries the blue genetic marker, both inherited from the affected ‘parent’
chromosome (yellow). (c) Genetic variants underlying common diseases can be statistically identified by using SNP-based linkage disequilibrium (LD)
maps. The frequency of a causative variant (red diamond) will be higher (62%) among those with the disease when compared with a control population
(50%). (d) LD map of || variants cluster into three blocks of correlation r2> 0.8 (red scale correlation matrix). The LD between polymorphisms needs
to be empirically determined by genotyping a population and calculating the correlation.
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unrelated individuals and reflects evolutionary history
(Figure 2¢,d).

Advances in identification of genetic variants underlying
human traits

The first disease traits to be ascribed to particular genes
were Mendelian traits, which are controlled by a single gene
and follow well defined models of inheritance, such as
autosomal dominant, autosomal recessive, and X-linked
(Figure 2a). Genetic variants underlying Mendelian diseases
are highly penetrant by definition (that is, the variant is
associated with a very high relative risk of having the
disease) and, as a result of negative selection, they tend to be
rare (Figure 3).

In the 1980s and 1990s, the creation of genetic-linkage maps
was based on sequence-dependent data such as restriction-
fragment length polymorphisms [7,8] and microsatellite
markers [9]. These techniques established genetic-linkage
analysis as the traditional method for identifying genetic
variation underlying monogenic genetic disorders. Linkage
studies consisted of mapping broad genetic regions that
segregate with a disease in families and then using positional
cloning to narrow down the candidate region in order to
isolate disease-causing genes or variants. Linkage analyses
were successful in identifying genetic variants in genes
responsible for many notable Mendelian diseases, including
cystic fibrosis [10], for which the major disease variant has a
deletion of a single amino acid, Charcot-Marie-Tooth
Disease Type 1A [11], for which the underlying genetic
variant is a DNA duplication, and Huntington’s disease [12],
which is a trinucleotide repeat disorder. By 1995, genetic
linkage mapping had been used to uncover variants
underlying hundreds of human Mendelian traits and
diseases. Thus, almost a decade before the elucidation of the
human genome sequence, it was fully appreciated that DNA
variants of all classes, both common and rare as well as
sequence and structural, play important roles in single-gene
traits and rare Mendelian diseases.

The next, and more difficult, stage was to determine genes
associated with the far more common complex (multigene)
diseases such as diabetes, heart disease and cancer. The
conceptual framework for statistical association studies to
identify common genetic variants underlying common
diseases was established by Risch and Merikangas in 1996
[13], and is now referred to as the common disease/common
variant (CD/CV) hypothesis. This hypothesis states that
common diseases are caused by multiple genetic variants
that are present at a high frequency in the population and
confer cumulative incremental effects on disease risk
(Figure 3) [14,15]. It is thought that due to the low
penetrance and modest risk associated with these common
variant alleles, they do not undergo the same strong negative
selection as highly penetrant rare variants underlying
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The allelic spectrum of disease is dependent on the number of genetic
variants, their frequency in a population and on the size of their
phenotypic effect. Family-based linkage studies have proved successful in
identifying causative genetic variants in rare Mendelian disorders, which
are, by definition, caused by highly penetrant variants that have a low
frequency in the population. Complex diseases are caused by multiple
genetic variants that confer incremental risk of disease. Genome-wide
association studies have sufficient power to detect genetic variants with
modest phenotypic effects, provided that they occur at a high frequency
in the population. Adapted from [92].

Mendelian diseases. In addition, environment and behavior
are believed to contribute over 70% of the susceptibility to
diseases such as cancer, coronary heart disease and type 2
diabetes [16]. On the basis of these assumptions in the
CD/CV model, it was posited that to identify variant that
occur at a high frequency in the population yet confer a small
risk for disease, it would be feasible to use SNP-based
linkage disequilibrium maps to survey the common genetic
variation present in the entire genomes of a large number of
individuals.

Several key technological advances laid the foundation for
the eventual successful implementation of genome-wide
association studies in identifying common genetic variants
underlying complex traits. The first was the completion of
the 3 billion bp human genome sequence in 2001, which
served as a reference sequence to which genotype or
sequence information from individuals could be compared
[17,18]. Then, large-scale efforts led to the discovery of a
substantial fraction of the 10 million estimated SNPs in the
human population. By genotyping millions of these SNPs in
hundreds of individuals, the International HapMap Project
created SNP linkage disequilibrium maps, reducing the vast
majority of common genetic variation in the 3 billion bp
human genome to around 500,000 tag SNPs that are proxies
for other SNPs in high linkage disequilibrium [19]. This
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resource has driven a wave of critical technological advances
in the design of genome-wide SNP arrays that allow the
rapid and cost-effective genotyping of hundreds of
thousands to millions of tag SNPs in each individual, thus
allowing the examination of common genetic variation
across the genome.

Genome-wide association studies using SNP-based arrays
compare the frequency of SNP alleles in the genomes of a
group of individuals with a complex trait (the cases) to a
control group (Figure 2¢). This approach allows the identifi-
cation of common genetic variants that are either causative
or in linkage disequilibrium with a causative allele. In
reviewing the design of successful genome-wide association
studies, three key features become clear. First, because of the
moderate risk conferred by many common genetic variants,
it is imperative to design an adequately powered study with
large sample sizes that are carefully controlled to minimize
bias [20-22]. Second, SNP selection and detection is critical,
and there is an ongoing effort to catalog more SNPs across
the genome and to create methods to assay SNP genotypes
more densely. Finally, even statistically convincing associa-
tions require validation by replication in an independent
cohort.

Identifying genetic variants underlying complex
(multigene) traits

During 2007, the first wave of genome-wide association
studies using tag SNPs resulted in the identification of
common genetic variants associated with a broad range of
common diseases and traits, including cancer, metabolic
diseases, immune-mediated diseases and neurodegenerative
diseases (Table 1). The findings of these genome-wide scans
can best be reviewed by discussing the results of studies
investigating specific complex diseases and traits. Gout and
its associated serum uric acid concentration has been
studied in two genome-wide association studies [23,24],
resulting in the identification of variants in the gene SLC2A9
(solute carrier family 2 member 9). SLC2A9 variants were
associated with high concentration of uric acid in the serum
(between 1.7% and 5.3% increase) and the expression level of
the isoform 2 of SLC2A9 was correlated with serum uric acid
concentration [24]. This isoform encodes the protein GlutgAN,
a putative fructose transporter expressed in kidney. As
fructose is upstream in the pathway generating uric acid, an
impaired expression of this protein possibly leads to the
increased level of serum uric acid observed in gout [23,24].

Multiple genome-wide association studies investigating
coronary artery disease have independently identified a
strong association with SNPs in a chromosomal region at
9p21. Individuals homozygous for the gp21 risk allele have a
1.9 higher relative risk of suffering from coronary artery
disease than individuals homozygous for the non-risk alleles
[22,25-28]. Interestingly, this region does not harbor any
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known genes, and the underlying biological reason for the
association is unknown. Beyond diseases, genome-wide
scans have identified variants associated with human height:
HMG2A (a transcription factor) and GDF5-UQCC (a locus
associated with osteoarthritis) [29,30]. In addition, variants
in FTO (fat mass and obesity associated gene) have been
associated with obesity: adults homozygous for the risk allele
have an increased relative risk of 1.67 for being obese
compared with the non-risk allele carriers [31].

In spite of the exciting successes of recent SNP-based
genome scans, the results of studies investigating specific
complex diseases indicate that the approach frequently
identifies common variants that account for only a small
fraction (less than 10%) of the heritable component of the
disease [32]. Most of the associated SNPs typically result in
an increased relative risk of around 1.2 for heterozygotes and
for many diseases only a few SNPs have been identified.
Thus, we are left asking where is the remaining genetic
variance underlying these heritable diseases? It is likely that
some of this missing variation is accounted for by common
variants with very small effects, which the current studies,
despite the rather large cohorts used, are not powerful
enough to capture. The additive or even multiplicative
integrated effect of common SNPs may be important, as
recently shown with five SNPs that increase susceptibility to
prostate cancer [33]. Such gene-gene interactions are
typically not accounted for in the analysis of genome scans.
It is well established that SNP-based genome scans have
limited power to capture the association of rare variants,
which are likely to be important contributors to complex
diseases. Structural variants have been demonstrated to
underlie phenotypic diversity of complex traits [34,35] but
have not generally been captured with current SNP-centric
platforms for ultra-high throughput genotyping. Recent
studies have shown that this class of variants is enriched in
segmentally duplicated regions of the genome, in which
there is a paucity of tag SNPs because of technical difficulties
[36]. Thus, the missing variation in SNP-based genome
scans indicates that systematically examining these other
types of variants for their contribution to complex diseases is
important.

Functional annotation of genetic variants

Although the discoveries of SNP-based genome-wide associa-
tion studies are exciting, it is important to note that they are
limited to the statistical association of DNA variants with
common diseases and that the biological mechanisms
underlying most of these findings are not yet known. For
example, multiple studies have shown that three SNPs on
chromosome 16p13 in the vicinity of KIAAo350 are
unequivocally associated with type 1 diabetes, but it is
unclear how the risk and non-risk alleles differ; is it in
expression, alternative splicing patterns, or the function of
the protein encoded by KIAA0350? [37] This uncertainty in
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Genetic loci associated with disease and phenotypic variation

Disease type Disease Associated loci Date of publication Reference
Cancer Acute lymphoblastic leukemia PAXS and others 12 April 2007 [40]
Breast cancer FGFR2, TNCR9, MAP3K I, LSP and others 27 May 2007 [41]
Colon, prostate cancer 8q24 8 July 2007 [42-44]
Colorectal cancer SMAD7 14 October 2007 [45]
CRACI (HMPS) 16 December 2007 [46]
Multiple solid tumors CASP8 22 April 2007 [47]
Prostate cancer 8q24 I April 2007 [48,49]
TCF2; 17p | July 2007 [50]
2p15, Xp11.22 and multiple others 10 February 2008 [51-53]
Heart Myocardial infarction, coronary 9p21 6 January 2008 [26]
artery disease, intracranial
aneurysm
9p21 3 May 2007 [26,54]
6q25, 2936 18 July 2007 [28]
Atrial fibrillation 4q25 | July 2007 [55]
Metabolic Celiac disease IL-2, IL-21 10 June 2007 [56]
Diabetes, type | 12924 and others 6 June 2007 [57]
KIAA0350 15 July 2007 [37]
IL2RA 5 August 2007 [58]
Diabetes, type 2 CDKALI and six others 26 April 2007 [59,60]
WESI | July 2007 [61]
Gout SLCA9 9 March 2008 [23,24]
Hypercholesterolemia CELSR2 9 February 2008 [62]
Lipoprotein disorders MLXIPL and multiple others 13 January 2008 [32,62,63]
Obesity FTO 12 April 2007 [31]
Neurodegenerative ~ Amyotrophic lateral sclerosis FLJ10986 I August 2007 [64]
DPPé6 16 December 2007 [65]
Multiple sclerosis IL7Ro, IL2R0 28 July 2007 [66-68]
Immune mediated Ankylosing spondylitis ARTSI, IL23R 2| October 2007 [69]
Autoimmune thyroid disease TSHR, FCRL3 2] October 2007 [69]
Rheumatoid arthritis 6p2l, Ipl3 7 June 2007 [22]
TRAFI-C5 31 August 2007 [70]
6q23 4 Nov 2007 [71,72]
Systemic lupus erythematosus TNFSF4 2 December 2007 [73]
PXK, KIAA1542, BANKI, C8orf-BLK, 20 January 2008 [74-77]
ITGAM
Age-related macular degeneration C3 18 July 2007 [78]
Celiac disease IL-2, IL-21 10 June 2007 [56]
Other Asthma (childhood) ORMDL3 4 July 2007 [79]
Bipolar disorder 16p12 7 June 2007 [22]
Crohn’s disease IRGM 6 June 2007 [80]
ILR23 26 October 2006 [81]
IBDS October 2001 [82]
ATGI6LI 15 April 2007 [83,84]
S5pl3.l 5 March 2007 [85]
NOD2 16 June 2001 [86]
Gallstone disease ABCGS8 15 July 2007 [87]
Glaucoma LOXLI 9 August 2007 [88]
HIV host control HLA-B*5701 19 July 2007 [89]
Psoriasis -Defensin, CNV 2 December 2007 [90]
Restless leg syndrome MEISI, BTBD9, MAP2K5 18 July 2007 [91]

Genome Biology 2008, 9:215



http://genomebiology.com/2008/9/4/215

the underlying biological cause of an association is especially
pronounced when the variant lies in a chromosomal interval
that does not contain a gene, such as the association of the
9p21 interval with coronary artery disease. Therefore, the
findings of most association studies currently can only be
used for crude predictions of the likelihood that an
individual will develop a certain disease.

To translate the findings of SNP-based genome scans into
clinical practice to improve human health, it is necessary to
establish new, highly innovative approaches for assaying
intervals containing associated variants for functional differ-
ences between the risk and non-risk alleles. This will require
access to diverse and large patient populations to obtain
biological samples. Each genomic interval has a different
landscape of functional sequences, and this, together with the
fact that each disease affects different biological processes,
makes it impossible to develop a ‘one-size-fits-all’ strategy to
annotate associated sequences for functional differences
between risk and non-risk alleles. Thus, it is also essential to
make use of diverse experimental methods and technologies
in all the various biological ‘omics’: genomics, proteomics,
epigenomics, metabolomics, structural genomics and
glycomics.

Several public and private initiatives are developing ‘next
generation’ sequencing technologies based on pyrosequencing
(Roche-454) [38], sequencing by synthesis (Illumina-Solexa)
[39] or sequencing by ligation (ABI-SOLiD). These techno-
logies, capable of the cost-effective generation of massive
amounts of DNA sequence, are already being used to sequence
targeted regions, and in the near future will be capable of
sequencing whole genomes of individuals to simultaneously
examine SNPs and other genetic variants for associations with
specific diseases. The statistical analysis methods for assessing
the relationship between rare genetic variants identified in
sequence data and complex traits are beginning to be
developed. Results of sequence-based studies conducted so far
suggest that associated intervals will be identified on the basis
that the frequency of rare genetic variants with functional
consequences will be greater in individuals with the complex
disease versus controls. Thus, next-generation sequencing
technologies, by detecting a myriad more SNPs and other
types of variation associated with complex disease, will
increase the difficulty and at the same time, the importance of
functional annotation of genetic variants. At this point, it
appears that we are just beginning to appreciate the extent of
human genomic variation. Projects like the ‘1000 Genomes’
and large-scale efforts to perform deep-coverage sequencing
in both healthy patients and those with complex traits will
help propel this exciting field further.
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