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Summary

Proteins of the ring between ring fingers (RBR)-domain family are characterized by three groups
of specifically clustered (typically eight) cysteine and histidine residues. Whereas the amino-
terminal ring domain (N-RING) binds two zinc ions and folds into a classical cross-brace ring
finger, the carboxy-terminal ring domain (C-RING) involves only one zinc ion. The three-
dimensional structure of the central ring domain, the IBR domain, is still unsolved. About 400
genes coding for RBR proteins have been identified in the genomes of uni- and multicellular
eukaryotes and some of their viruses, but the family has not been found in archaea or bacteria.
The RBR proteins are classified into 15 major subfamilies (besides some orphan cases) by the
phylogenetic relationships of the RBR segments and the conservation of their sequence
architecture. The RBR domain mediates protein-protein interactions and a subset of RBR
proteins has been shown to function as E3 ubiquitin ligases. RBR proteins have attracted interest
because of their involvement in diseases such as parkinsonism, dementia with Lewy bodies, and
Alzheimer’s disease, and in susceptibility to some intracellular bacterial pathogens. Here, we
present an overview of the RBR-domain containing proteins and their subcellular localization,
additional domains, function, specificity, and regulation.
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Gene organization and evolutionary history
The ring between ring fingers (RBR) proteins are a large and

diverse group of proteins characterized by a compact sequence

module that is predicted to form three ring finger-type, or

‘ring’, domains separated by loops [1,2]. The RBR domain

usually occurs as part of a multidomain protein with diverse

functional modules, and appears to mediate protein-protein

interaction. The function of most of the family members has

not yet been explored experimentally, but a subset of RBR

proteins is known to have E3 ubiquitin ligase activity.

The sequence of each ring domain in the RBR region contains

a cluster of, typically, eight cysteine and histidine residues that

potentially bind metal ions. The amino-terminal ring domain

(RING1 or N-RING) is thought to bind two zinc ions and to

fold into a classical cross-braced ring finger, whereas the

carboxy-terminal ring (RING2 or C-RING) appears to bind

only one metal ion and forms a hydrophobic core different

from that of classical ring fingers [3]. The central

cysteine/histidine cluster is likely to also form a ring finger-

type structure. Morett and Bork [4] derived a general

sequence profile-based characterization of this domain and

called it IBR (in between rings). Independently, van der

Reijden et al. [5] identified this domain - with a more

restricted PROSITE-like pattern [6] C6HC - as DRIL (double

ring finger linked) domain, and called the family of RING-

DRIL-RING-containing proteins TRIAD. The two definitions

are largely overlapping but not identical. The approach of



Morett and Bork [4] is consistent with the concept of

sequence homology and the criterion of statistically

significant sequence similarity and is therefore the

preferred one.

RBR proteins make up a large, diverse family with, at

present, around 400 representatives in sequence databases.

On the basis of sequence conservation within the RBR

segment, RBR proteins are assigned to 15 subfamilies (A-I,

P, S, T, U, X, Z; Figure 1). There are also some 10 orphan

sequences that could be considered as their own groups.

Subfamily A (Ariadne-like proteins) can be further sub-

divided into around 10 clusters (A0-A9). Similarly, several

subgroups can be distinguished for subfamilies S (found

only in viruses), T (the TRIAD3 proteins), and Z (found only

in protozoa). The alignment of RBR segments from sequence

representatives of the various groups is shown in Figure 1

and details with respect to the conservation of the cysteine/

histidine pattern and loop sizes are given in Additional data

file 1, available online with this article. Additional information

(sequence lists, subgroup alignments, annotations, and

supplementary text and tables) is also available at our

website [7].

Genome sequencing projects have added considerably to the

information on RBR genes; they comprise a complex and

ancient gene family that has been found in all eukaryotes

examined and in some of their viruses. There are two RBR

proteins in the yeast Saccharomyces cerevisiae, six in

Drosophila melanogaster, 10 in Caenorhabditis elegans,

about 40 in Arabidopsis thaliana, around 23 in the zebrafish

(Danio rerio), and about 15 in humans (Additional data file

1). Genes of RBR proteins are dispersed throughout the

genome. They vary in chromosomal location and exon

number. For example, Mladek et al. [8] have studied the

Ariadne (A) subfamily in Arabidopsis: the 16 AtARI genes

are distributed between all five chromosomes at 10 loci.

Despite the conserved sequence, they have distinct gene
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Figure 1
Multiple alignment of RBR domain segments. The figure includes the sequences of 64 representative RBR segments. This alignment is part of the grand
alignment used to create the phylogenetic tree in Figure 2. The sequence identifier gives the subfamily code (first letter) followed by the taxon and the
accession number in GenBank. The loop segments between the three ring-like domains are indicated by ‘XX’. The gray bars at the bottom represent the
degree of amino acid type conservation of alignment positions. The alignment was primarily generated with CLUSTALX [70] and edited manually. Taxon
abbreviations: Am, Apis mellifera; At, Arabidopsis thaliana; Ce, Caenorhabditis elegans; Dd, Dictyostelium discoideum; Dm, Drosophila melanogaster; Dr, Danio
rerio; Gz, Gibberella zeae; Hs, Homo sapiens; Nc, Neurospora crassa; Sp, Schizosaccharomyces pombe.

* * * * * * * XXX * * * * * * * * XX * * . * . * * *
AAm|XP_396912.1| CGICFTIQP--SAMMTGLE-CGHR-FCTGCWGEYLTTKIMEEGVGQT--IACAA----HACDIL-XX-RWCPS-PDCNNAIK---VQYVEARP-----VTCK---CGHT-FCFHCGE---NWHDPVK-CHLLR-XX-KECPKCNVTIEKD-GG-CNHMVCKNQ--NCKTDFCWVC   140
AAm|XP_624643.1| CSVCVAIYS--AEKFSTLT-CGHS-FCKDCWCMHFEVQITQ-GISTG--ISCMA----QDCNVL-XX-RFCPG-PNCQMIMRSK-EQRAKR-------VMCSS--CKTV-FCFRCGI---DYHAPTD-CNTMK-XX-KDCPKCHICIEKN-GG-CNHMQCYN----CKYDFCWMC   138
AAt|NP_189408.1| CDVCMEDDLP-SNVMTRME-CGHR-FCNDCWIGHFTVKINE-GESKR--ILCMA----HECKAI-XX-KWCPSKPHCGSAIRKI-EDGHDVVEV-----GCS---CGLQ-FCFSCLS---ESHSPCS-CLMWK-XX-KLCPKCSKPIQKR-DG-CNLMTCK-----CGQHFCWLC   140
AAt|NP_567966.1| CDVCMEDL-P-GDHMTRMD-CGHC-FCNNCWTEHFTVQINE-GQSKR--IRCMA----HQCNAI-XX-KWCPSTPHCGNAIRAE-DD--KLCEV-----ECS---CGLQ-FCFSCLC---QAHSPCS-CLMWE-XX-KLCPKCYKPVEKN-GG-CNLVRCI-----CGQCFCWLC   137
AAt|NP_179206.2| CDICVEDV-P-GYQLTRMD-CGHS-FCNNCWTGHFTVKINE-GQSKR--IICMA----HKCNAI-XX-KWCPSTPHCGNAIRVE-DD--ELCEV-----ECS---CGLQ-FCFSCSS---QAHSPCS-CVMWE-XX-KPCPKCHKPVEKN-GG-CNLVTCL-----CRQSFCWLC   137
ACe|AAB93645.3| CDICCSLG----E-LSGLS-CNHR-ACTQCWKAYLTNKIANNAQSE---IECMA----PNCKLL-XX-KWCPG-IDCGKAVR---VSHWEPRL-----VVCS---CGSR-FCFSCGH---DWHEPVN-CRLLK-XX-KECPKCMITIEKD-GG-CNHMTCKNT--ACRFEFCWMC   136
 ACe|AAB93643.1| CDICCSMD----E-LSGLS-CNHR-ACAECWQAYLTNKIVSDAQSE---IECMA----PNCKLL-XX-RWCPG-IDCGKAVK---VSHWEPRL-----VVCS---CGTC-FCFSCGQ---NWHEPLN-CRHLK-XX-KDCPKCMIPIEKN-GG-CNRMLCTNS--GCRYEFCWMC   136
 ACe|AAB93644.1| CDICCSMD----E-LSGLS-CNHR-ACAECWQAYLTNKIVSDAQSE---IECMA----PNCKLL-XX-KWCPG-VDCGRTVK---VSHGEPRL-----VVCT---CGSR-FCFSCGQ---DWHEPVN-CRLLK-XX-KECPKCMATIEKN-GG-CNQITCKNT--GCKFQFCWMC   136
ACe|AAB03121.2| CSVCAMDG---YTELPHLT-CGHC-FCEHCWKSHVESRLSE-GVASR--IECME----SECEVY-XX-KFCVG-NECPVIIRST-EVKPKR-------VTCMQ--CHTS-FCVKCGA---DYHAPTS-CETIK-XX-KDCPQCHSCIEKA-GG-CNHIQCTR----CRHHFCWMC   137
ACe|CAB70234.1| CDVCCSMT----R-LSGLA-CAHR-ACDECWKAYLTEKIVDVGQSE---IECMM----MDCKLL-XX-KWCPG-AGCGKAVKGE-PSDREP-------AVCT---CGER-FCFACAQ---DWHDPLS-CRHMK-XX-KPCPKCSVTIEKN-GG-CNHMSCKSS--SCRYEFCWLC   136
ADd|XP_636442.1| CLVCFSDVTK--QKAYSLQ-CNHS-YCIDCWYSYLAISVDS-GKTCL-YTKCIE----PNCKYV-XX-RWCTNPQSCSMAIHYSGVDLPNIIN-----VTCS---CNWR-FCFHCGD---EYHTPST-CVQVS-XX-KKCPKCKIHIEKN-EG-CAHLTCLN----CKHEFCWLC   142
ADd|XP_637482.1| CLICLEDYP--PTQTFALI-CNHR-YCLPCYKNYLEIKVSEGPECIY--TPCPA----PKCKVI-XX-KWCPA-PGCIYSIRCD-RK--ERKEA----VNCK---CGFQ-YCFNCNDYEIGDHMPCP-CSQVD-XX-KKCPECRSPIEKN-GG-CMHMTCRKNAGGCGFEFCWLC   146
ADd|XP_643727.1| CIVCFENQSN-DDSFYSLS-CGHGPYCKGCWKSYLHQEMQTCGGEII-HSKCIY----PLCNGK-XX-EFCPNP-SCGNAIRYSGVGRPNDV------VECH---CGTR-FCFSCGS---EKHNPVS-CAQLV-XX-KPCYHCGMPTERI-MG-CNHIICRKEQGGCGGEWCWMC   147
ADm|AAN11912.1| CGICFCSC---DE-LIGLG-CGHN-FCAACWKQYLANKTCSEGLANT--IKCPA----ANCEIL-XX-RWCPA-PNCSHAVK---AVCAEPRA-----VLCK---CGHE-FCFACGE---NWHEPAS-CSSLK-XX-KECPKCNVTIEKD-GG-CNHMVCKNP--SCRYDFCWVC   138
ADm|AAS65398.1| CEICFSQLP--PDSMAGLE-CGHR-FCMPCWHEYLSTKIVAEGLGQT--ISCAA----HGCDIL-XX-RWCPS-VDCTYAVK---VPYAEPRR-----VHCK---CGHV-FCFACGE---NWHDPVK-CRWLK-XX-KECPRCSVTIEKD-GG-CNHMVCKNQ--NCKNEFCWVC   140
 ADm|AAF46823.1| CPVCASSQL--GDKFYSLA-CGHS-FCKDCWTIYFETQIFQ-GISTQ--IGCMA----QMCNVR-XX-RFCPG-PNCQIIVQSS-EISAKR-------AICKA--CHTG-FCFRCGM---DYHAPTD-CQVIK-XX-KDCPKCHICIEKN-GG-CNHMQCFN----CKHDFCWMC   138
ADr|AAH53248.1| CGVCLQLVR--RDALLSLP-CQHS-FCKGCWEQHCTVLVKD-GVGVE--ISCMA----QDCSLR-XX-QLCPG-ADCPIVIQVQ-EPRARR-------VQCSR--CEEV-FCFKCRQ---MYHAPTD-CATIR-XX-KDCPKCNICIEKN-GG-CNHMQCSK----CKHDFCWMC   138
ADr|AAH67684.1| CQICYLNYP--NSYFTGLE-CGHK-FCMQCWGDYLTTKIIEEGMGQT--ISCPA----HNCDIL-XX-KWCPA-PDCHHVVK---VQYPDAKP-----VRCK---CGRQ-FCFNCGE---NWHDPVK-CKWLR-XX-KECPKCHVTIEKD-GG-CNHMVCRNQ--NCKAEFCWVC   140
ADr|XP_687241.1| CQICYLNYP--NSYFTGLE-CGHK-FCMQCWGDYLTTKIIEEGMGQT--ISCPA----HSCDIL-XX-KWCPA-PDCHHVVK---VQYPDAKP-----VRCK---CGRQ-FCFNCGE---NWHDPVK-CKWLR-XX-KECPKCHVTIEKD-GG-CNHMVCRNQ--NCKAEFCWVC   140
AGz|EAA76603.1| CDICCEDDD--GLESFAMK-CGHR-YCVDCYRHYLTQKIREEGEAAR--IQCPS----DGCGRI-XX-KWCPA-PDCPNALECG-VKKKDLGRIVPT-VECR---CGFR-FCFGCPN---PDHQPAP-CDLVK-XX-KECPKCNSTIEKN-GG-CNHMTCR----KCKYEFCWMC   144
AHs|AAH00422.1| CAVCMQFVR--KENLLSLA-CQHQ-FCRSCWEQHCSVLVKD-GVGVG--VSCMA----QDCPLR-XX-QLCPG-ADCPMVIRVQ-EPRARR-------VQCNR--CNEV-FCFKCRQ---MYHAPTD-CATIR-XX-KDCPKCNICIEKN-GG-CNHMQCSK----CKHDFCWMC   138
AHs|NP_055904.1| CPVCVSPLGC-DDDLPSLC-CMHY-CCKSCWNEYLTTRIEQ-NLVLN--CTCPI----ADCPAQ-XX-TWCTNPQGCDRILCRQ-GLGCGT--------TCSK--CGWA-SCFNCSFP--EAHYPAS-CGHMS-XX-KRCPSCQAPIEKN-EG-CLHMTCAK----CNHGFCWRC   140
AHs|AAH51877.1| CQICYLNYP--NSYFTGLE-CGHK-FCMQCWSEYLTTKIMEEGMGQT--ISCPA----HGCDIL-XX-KWCPA-PDCHHVVK---VQYPDAKP-----VRCK---CGRQ-FCFNCGE---NWHDPVK-CKWLK-XX-KECPKCHVTIEKD-GG-CNHMVCRNQ--NCKAEFCWVC   140
ANc|XP_327168.1| CDICCEDGD--GLESFAIK-CGHR-YCVDCYRQYLSQKIREEGEAAR--IQCPA----DGCNLI-XX-KWCPS-PDCANAVECG-VKKKDLTKVVPT-VSCL---CGHR-FCFGCIY---TDHQPAP-CELVK-XX-KECPKCNSTIEKN-GG-CNHMTCR----KCKYEFCWMC   144
ASp|CAB95997.1| CEICYDEG---CLPFFSAE-CDHE-FCLACYRQYLDSRISE-GESV---IQCPE----ESCTQI-XX-RWCPA-PDCEFAIECH-VTQASLSSVVPT-VTCN---CGKQ-FCFGCGH---DNHQPTI-CPLVK-XX-KECPKCSTTIEKN-GG-CNHMTCK----KCKYEFCWVC   141
BAm|XP_624683.1| CKICFVDKI--GEHCTQFLPCGHI-FCKDCITGYLEVRIKDGN-VQ--NIYCPEE----KCTS--XX-VYCPR-RSCQYPVSR----EPN--EQMA---NCPI--CQYA-FCVYCKM---VYHG-IEPCKVYS-XX-QKCPKCQAAIEKS-DG-CNKMVCWR----CNTFFCWLC   137
BAt|NP_174512.1| CCICFSES--AGIDFVKL-PCQHF-FCLKCMKTYTDIHVTEGT-VN--KLKCPDSK----CGE--XX--YCPR---CETPCIED---EEQ----L---ALCFK--CYFS-FCTLCKE---KRHVGVA-CMSPE-XX-KQCPSCKIAISRT-GG-CNKMVCNN----CGQYFCYRC   132
 BCe|AAB52683.1| CQVCFESQM--GQHCIKFQPCSHV-FCKSCTFNYY-ISIAKGF-VSKP-MSCLAE----GCENE-XX-MECPN-ENCQMVAYLT---DSQ--RNL---VECSY--CNYS-FCNLCKG---TFHG-VSRCKFRK-XX-KQCPKCLVYIEKD-EG-CNKMHCTK----CNASFCWLC   139

BDr|NP_001002087.1| CGICYSEKL--GCDCLLFKECEHV-YCKACIKEYFQIQIKDGK-VQ--CLNCPEP----KCAS--XX-VYCPR-MSCCMAVMV----EPDSTMG-----ICPS--CRYA-FCTLCRR---SYHG-LSHCIATA-XX-KQCPCCGTNIQKA-HG-CNKMTCSS----CQKYFCWIC   137
BDr|XP_687162.1| CGICFTENL--GSSFVLFNECQHV-YCKTCVKDYFEIQIKDGK-VQ--FLSCPEA----ECTS--XX-VYCPR-KSCGMAVML----EPDRTMG-----ICPS--CKFV-FCTLCNR---VYHA-LALCNES--XX-KQCPTCGVKIQKD-MG-CDMMTCSS----CQQFFCWTC   136
BHs|NP_899648.1| CSICFCEKL--GSECMYFLECRHV-YCKACLKDYFEIQIRDGQ-VQ--CLNCPEP----KCPS--XX-VYCPR-PCCQLPVMQ----EPGCTMG-----ICSS--CNFA-FCTLCRL---TYHG-VSPCKVTA-XX-KSCPCCGTPIEKL-DG-CNKMTCTG----CMQYFCWIC   137
BSp|CAB65614.1| CNVCFDEFN--GTDCFQLTRCGHV-SCQSCLRDYYTMCIQEGM-FSQ--IKCIDL----DCGKD-XX--FCPR-SFCQGPSKRD--PGQK--LA-----ICQK--CDFA-FCSFCQAT---WHGDLSPCKLEG-XX-QRCPTCDRVVERI-DG-CCHMNCL-----CGTHFCFLC   137
CAm|XP_393708.2| CKLCLVDTS-LSK-TFKIEGCGCS-YCKDCMKAYIEFEIEEG--AY--EISCPD----AQCEH--XX-AWCPR-AGCETICSINS-TGSNGTPIGP--VHCPN--CSID-FCSICRE---SWHTG--PCSDIS-XX-KCCPMCSVPIEKD-EG-CAQMMCKR----CKHVFCWYC   141
CDr|AAH76084.1| CKLCLGEFP-LEQ-MTTISQCQCI-FCSLCLKQYVELLIKEGL-ET--AISCPD----SACPK--XX-TWCPS-SSCQAVCQLNE--AEVQLPQP---VQCPE--CSLR-FCSACRA---DCHTGQA-CQEML-XX-KRCPKCKVYIERD-EG-CAQMMCKN----CKHAFCWYC   141
CDr|CAI20730.1| CKLCLGEFP-LEQ-MTTITQCQCV-FCTMCLKQYVELLIKEGF-ET--AISCPD----SACPK--XX-TWCPS-STCQAVCQLKE--SDTVLPQL---VRCSV--CTLE-FCSACKA---SWHPDQD-CQENV-XX-KRCPKCKVYIERD-EG-CAQMMCKN----CKHAFCWYC   141
CHs|AAH50373.1| CKLCLGEYP-VEQ-MTTIAQCQCI-FCTLCLKQYVELLIKEGL-ET--AISCPD----AACPK--XX-TWCPA-STCQAVCQLQDVGLQTPQP-----VQCKA--CRME-FCSTCKA---SWHPGQG-CPETM-XX-KRCPKCKVYIERD-EG-CAQMMCKN----CKHAFCWYC   141
CHs|NP_877434.2| CKLCLCEQS-LDK-MTTLQECQCI-FCTACLKQYMQLAIREGC-GS--PITCPD----MVCLN--XX-TWCPV-ADCQTVCPVA-S-SDPGQPVL---VECPS--CHLK-FCSCCKD---AWHAEVS-CRDSQ-XX-KQCPVCRVYIERN-EG-CAQMMCKN----CKHTFCWYC   141
DAm|XP_623728.1| CPLCLAEL-PMEF-FPVVQSCHHR-SCYDCYQQYLKVEISESR--V--NIACP------ECSEP-XX-RWCPA-PDCSFAVIASGCASCP-K------LRCERPGCDSY-FCYHCKA---RWHPNQT-CDAAR-XX-KPCPRCQVLIVKMDDGSCNHMVCAV----CGAEFCWLC   141
DCe|AAK68189.1| CPLCAAKM-PGSA-FPKLKGCQHR-SCRACLRQYVELSITENR--V--EVPCP------ECSSY-XX-RWCPA-PDCGFVFIATKCAACP-Q------LKCQRPDCGTL-FCYHCKR---EWHSNQT-CDEAR-XX-KACPRCKTYIVKMDDGSCNHMVCTM----CNAEFCWLC   141
DDr|CAI21211.1| CPLCLLSQ-PRAH-FPRLSSCQHR-ACTDCLRQYLRIEISESR--V--GIACP------QCPEA-XX-RWCPA-PDCSYAVIAYGCAECP-K------LSCGREGCETE-FCYHCRQ---LWHPDQT-CDQAR-XX-KPCPRCGAYIMKTNDGSCNRMNCTV----CACQFCWLC   141
DDr|XP_690873.1| CPLCLVRQ-PAEQ-LPELQGCSHR-SCLCCLRQYLRIEITESR--V--QLSCP------ECAER-XX-RWCPA-PDCGFAVIASGCASCP-R------LVCRREGCGAE-FCYHCKQ---AWHPNQT-CDSAR-XX-KPCPRCGAYIIKMNDGSCNHMTCAV----CGCEFCWLC   141
DHs|NP_904355.1| CPLCLLRH-SKDR-FPDIMTCHHR-SCVDCLRQYLRIEISESR--V--NISCP------ECTER-XX-RWCPA-PDCGYAVIAFGCASCP-K------LTCGREGCGTE-FCYHCKQ---IWHPNQT-CDAAR-XX-KPCPRCAAYIIKMNDGSCNHMTCAV----CGCEFCWLC   141
EGz|EAA77947.1| CSVCFGEAEES---LETS--CGHI-YCNICFVNMCQSGESS-S-GDFS-IKCVG--ASDACKKI-XX-RYCPT-PDCDQVYRVS--SPEK--VPFM--FTCSR--CFTS-TCTACNAS----HPG-ISCSKNK-XX-KDCPKCTTAIQKS-EG-CNHMTCFA----CRTHICWVC   139
FGz|EAA76086.1| CIACAESA---HG---RA-PCGCN-YCVTCYRQIIRIGLRS---QEEFPPKC--------CK---XX-VYCYQ-GNCAAFIPP--DLKG----------RCPI--CPYK-TCVDCGEK---AHDGWP-CAEGD-XX-VNCPDCGRMIQLS-EA-CNHMTCP-----CGGEFCFLC   123
FGz|EAA77041.1| CGGCMNDFPE-DETAVMA--CTHE-FCEPCFSLMIERSLDG---SSAFPPRC--------CDI--XX-TYCSN-VECQTFIPPW-TIESD--I-----GYCPS--CPQR-TCAKCKNPE---HTGR--C-----XX-KPCPRCGQLINKT-SG-CEHVICP-----CGNEFCFHC   127
FGz|EAA77042.1| CLACGEDFPQ-SS-MIFAP-CSHL-FCKPCADNLVSLAMRD---EAYFPARC--------CDT--XX-VYCSS-EICATFIPPT-QIDSG--I-----GHCKR--CLTD-TCIACKAKA---HEGV--CG----XX-KRCSKCGHVIEKS-MG-CDHMVCL-----CGHRFCYAC   128
GAt|NP_180108.1| CSICFEETEG-ERMFFTTEKCVHR-HCFPCVKQYVEVKLLSGT--V--PT-CLDDG----CKF--XX-IYCPY-PNCSMLMSKT-ELSSESDLSN-D-RSCVK--CCGL-FCIDCKVPS---HSDLS-CAE---XX-RQCKMCRHMIELS-HA-CNHMTC-----RCGYQFCYQC   139
GAt|NP_179737.1| CCICRENTDA-DRMFF-TENCFHR-QCFSCVNRHVQRMLLCGI--S--PT-CLHFP----CNS--XX-IYCPY-RRCSMLMSKT-ALSRETDQSN-V-RACIK--CCRL-FCIDCKVPS---HAGLS-CVD---XX-RQCVQCSNLVELF-EG-CNHITC-----RCGFEFCYVC   138
GAt|NP_190133.1| CVICLEETKA-DRMFV-MDKCLHR-HCYPCVNQLVEVKLRNGT--V--PT-CLDYE----CKL--XX-IYCPY-INCSTLMSKT-EIS-RSNKSN-D-RACIK--CSGL-VCIDCKVPW---HSDLS-CAE---XX-RQCVKCRHLIELN-QG-CNHMTC-----RCGYQFCYKC   137
GAt|NP_190140.1| CKICLDDDIN-ENQMFCVGKCRHR-FCSDCMRRHIEVRLLEGS--V--MR-CPHYR----CKT--XX-IYCPN-SRCSALMSET-ELSISTKEDEVR-RCCFK--CGQI-FCIKCKVSW---HSNLS-CND---XX-RQCGKCQHMIELS-KG-CVQVKC-----RCGHKFCYRC   140
GAt|NP_190144.1| CSICSDDNFE-PELMFSVALCGHE-FCVECVKRHIEVRLLAGG--V--PR-CLHYQ----CES--XX-VYCPN-PRCSSLMSVT-KLSNSTREDVTM-RSCVK--CGEP-FCINCKLPW---HSNLS-CND---XX-RQCENCKNVIELS-EG-CMHITC-----RCGHQFCYKC   140
GAt|NP_190937.1| CEICVDSKSIIES-FR-IGGCSHF-YCNDCVSKYIAAKLQDNI--L--SIECPVSG----CSG--XX-FYCPY-KDCSALVFLE-ESEVKMKDSE-----CPH--CHRM-VCVECGTQW---HPEMT-CEE---XX-KRCPSCKFYIEKS-QG-CLYMKC-----RCGLAFCYNC   136
GAt|NP_973536.1| CTICFDDDIN-ADMMFYIDQCGHM-FCSECVKRHIEVSLLQGS--L--IT-CPSYR----CKS--XX-VYCPN-PTCSALMSVT-ELDQLTGS----KRCCVK--C-GESFCIKCKVPW---HDNLS-CKR---XX-RQCSKCKHMIELT-QG-CVRVIC-----RCGHEFCYGC   137
GAt|BAB08302.1| CSICSDKTDA-EHMLL-NDKCLHR-HCFSCVKQQVKVKLRSGI--V--PP-CLEDG----CKS--XX-IYCPY-RSCSMLMSKT-ELSREAEQSN--VRACIK--CSEL-FCIDCKVPW---HSDLS-CAD---XX-RQCSECKHMIELT-EG-CNHITC-----RCGYEFCYRC   138
HAt|NP_567206.1| CPICLSEVDD-G-YSLE--GCSHL-FCKACLLEQFEASMRN-FDAFP--ILCSH----IDCGAP-XX-RFCST-PDCPSIYRVA--GPQE--SGEP--FICGA--CHSE-TCTRCHLE---YHP-LITCERYK-XX-KECPICKSTIEKT-DG-CNHLQCR-----CGKHICWTC   138
HAt|NP_196599.2| CPICLSEVDD-G-YSLE--GCSHL-FCKACLLEQFEASMRN-FDAFP--ILCSH----IDCGAP-XX-RFCST-PDCPSVYRVA--GPQE--SGEP--FICGA--CHSE-ICTRCHLE---YHP-LITCERYK-XX-KECPICKSTIEKT-DG-CNHMKCR-----CGKHICWTC   138
UAm|XP_393719.2| CELCTGRFAM-SQ-IVSMLKCIHR-CCNECAKNYFTIQISDRN-IT--DAVCPF------C----XX-KWCIQ---CSSG-----FYADP--DQKR--LICPD--CRSV-TCAQCRRPWEKQHEGIT-CEQ---XX--DCPKCKFRYSLS-RGGCMHFTCS----QCKYEFCCGC   132
UDr|XP_696033.1| C-ICLCSPPQ----MVTMTHCSCT-FCESCFKKYFSSVIKEKN-IV--HAVCPL------C----XX-RWCAH---CCFG-----LLHEA--DRLR--MDCPS--CGKS-TCFKCKRPWAPQHEGIS-CEK---XX--DCPKCKFRFFLA-RGGCLHFRCT----QCQHEFCGGC   129
UHs|AAH12077.1| CAVCGWALPH-NR-MQALTSCECT-ICPDCFRQHFTIALKEKH-IT--DMVCPA------C----XX-LWCAQ---CSFG-----FIYER--EQLE--ATCPQ--CHQT-FCVRCKRQWEEQHRGRS-CED---XX--DCPKCKFSYALA-RGGCMHFHCT----QCRHQFCSGC   132
XAm|XP_393942.2| CPVCFVTYGP-REGVILR-DCLHM-FCRSCIANTIRYCEEA---EV----KCPYRDSEYTCES--XX-FHCKT-PDCPGWCIYD--DDVN-------NFLCPV--CGAN-NCLTCQAI----HTGKN-CKQYQ-XX-LACPTCAVVLMKK-WG-CDWLRCS----MCKTEICWVT   136
XDr|AAH74096.1| CAICFGTIMP-GEGAVLR-ECLHS-FCRDCLKGTVVNCLDA---EV----CCPYGDNAYACNC--XX-YHCKT-PDCAGWCIFE--DDVN-------EFKCDI--CNET-NCLLCKAI----HKGMN-CKEYQ-XX-MNCPKCQVIVQKK-DG-CDWICCL----MCKTEICWVT   136
XDr|XP_698411.1| CRICYVELES-GEGVLLR-ECLHC-FCKECLRSVILMSEDP---QV----ACPYRDESYACDC--XX-YHCAT-ADCPGWCVYE--DTVN-------TFHCPV--CKKQ-NCLLCKAI----HEGMN-CKQYQ-XX-MHCPQCGIIVQKK-EG-CDWLRCT----VCHTEICWVT   136
XHs|NP_112506.1| CPVCYSVLAP-GEAVVLR-ECLHT-FCRECLQGTIRNSQEA---EV----SCPFIDNTYSCSG--XX-YHCKT-PDCKGWCFFE--DDVN-------EFTCPV--CFHV-NCLLCKAI----HEQMN-CKEYQ-XX-MRCPQCQIVVQKK-DG-CDWIRCT----VCHTEICWVT   136
ZDd|XP_641886.1| CSVCADDLDSLNG--SYLP-CKHY-SCNDCWNQYLSLKVLE-GGATS--ITCMG----LKCPSV-XX-RWCPA-PKCGNALKAD-SQTEAT-------ALCS---CGFK-ICFKCKQ---ESHFPAD-CEKMK-XX-QDCPKCHSAIEKN-GG-CMHMTCK----KCKHEFCWIC   137

               ruler 1.......10........20........30........40........50........60........70........80........90.......100.......110.......120.......130.......140.......150.......160.......170.....



structures. The number of exons varies between one

(AtARI3) and 15 (AtARI5, AtARI7 and AtARI8). The AtARI

genes are differentially expressed during plant development

and in an organ-specific manner.

Splicing isoforms of RBR proteins are widespread [8-10]. At

least for some RBR proteins, alternative splicing leads to

shortened isoforms that control the cellular localization and

function of a respective parental larger isoform [9]. For the

rat transcription factor RBCK1, the RBR domain has a

crucial role in its transcriptional activity [11]. RBCK2 has

been identified as an alternative splice variant of RBCK1

that lacks the carboxy-terminal part of RBCK1, including

the RBR region [11]. Yoshimoto et al. [9] showed that

RBCK2 represses the transcriptional activity of RBCK1 by

tethering it within the cytoplasm. A similar alternative

splice variant lacking the RBR region has been reported

recently for parkin [12].

The genetic module coding for the RBR region has

apparently been reused in several gene contexts during

evolution and has been sequentially modified by point

mutations and insertions/deletions and shuffled into new

genomic locations. A retrotransposition-based mechanism

has been proposed to underlie these changes and evidence

hinting at this comes from Arabidopsis [8]. A putative

phylogenetic relationship between the RBR segments in

various taxonomic ranges is presented in Figure 2, and it is

notable that some RBR protein subfamilies are found only in

specific taxonomic groups (Additional data file 1); for

example, subfamilies C (such as RING finger protein 144), I

(IBR domain-containing protein 1, IBRDC1), P (parkin), U

(Ariadne-like E3 ubiquitin ligase, PAUL) and X (human

hepatitis B virus X-associated protein, XAP) have been

found only in animals. Several other subfamilies are specific

for fungi (subfamilies E and F) and plants (subfamilies G

and H). Besides the large number of RBR protein genes in

higher eukaryotes, they also notably occur in unicellular

eukaryotes and in entomopoxviruses and iridoviruses [7]

(Additional data file 1). Interestingly, there are no genes in

archaeal or eubacterial genomes that could truly be called

RBR family members.

Characteristic structural features
The whole RBR segment typically contains some 200

consecutive amino acids. The ring-like sequence domains

tend to get smaller going from the amino to the carboxyl

terminus - N-RING around 60 residues, IBR around 50

residues, and C-RING around 40 residues [1,2]. Loops on

the amino-terminal side of the RBR region have a higher

sequence and size variability. In contrast, the

cysteine/histidine positions are more strongly conserved in

N-RING and the IBR. Substitutions with non-cysteine or

non-histidine residues at cysteine/histidine pattern positions

are observed only in the C-RING domain, which is known to

bind only one zinc ion. Some RBR proteins seem to remain

functional without C-RING, but parkin and others

apparently require this part of the RBR region for their

correct function as E3 ubiquitin ligases [2].

Unfortunately, little direct structural information is

available for the RBR region. Capili et al. [3] reported the

three-dimensional structure (PDB accession number 1WD2)

of the C-RING in the human Ariadne protein HHARI

(residues 326-395 of UNIPROT accession number Q9Y4X5,

subfamily A1/Ari1), which folds into a novel structure

binding a single zinc ion (Figure 3a). Also, a three-

dimensional structure (PDB 1WIM, structure report unpub-

lished) that essentially represents the N-RING (residues

20-100) in the human UbcM4-interacting protein 4 (subfamily

C/RNF144; UNIPROT accession number P50876) is very

similar to a classical ring-finger domain (Figure 3b). No

structural information is known for any IBR domain.

As well as conservation within the RBR segment, the

sequence architecture conserved among distant taxa is an

important criterion for the classification of RBR proteins, as

shown in Figure 4. The functional significance of the

additional segments and their cooperation with the RBR

part of the sequence is most often not clear, and is certainly

an urgent research task for the near future. For example, it

would be of interest to determine whether the two hydro-

phobic regions in the dorfins (subfamily D), each the length

of a transmembrane helix, do function as membrane-attach-

ment modules or whether they are critical for protein

complex formation. The available data are conflicting. The

two long transmembrane helices (each 30-35 residues long

with conserved prolines) are predicted by the programs

TMHMM [13] and DAS-TMfilter [14,15] at the carboxy-

terminal side of the dorfin RBR region. A carboxy-terminal

deletion that includes the hydrophobic segment but leaves

the RBR region untouched results in an enzyme unable to

bind ubiquitinated substrates [16], suggesting that this

region is responsible for ubiquitin binding. On the other

hand, localization of the protein near the nuclear membrane

and the centrosome, co-localization with vimentin, and inter-

action with the calcium-sensing receptor CaR (an integral

membrane protein) support membrane-embedding [16,17].

RNF144 (subfamily C) and IBRDC1 (subfamily I) also have a

predicted transmembrane helix at the carboxy-terminal side

of the RBR region, and localization at the Golgi membrane

has been shown for RNF144 [18].

The combination of the RBR region with domains and motifs

known from the ubiquitination pathway (such as ubiquitin-

associated UBA, ubiquitin UBQ, and ubiquitin-interacting

motif, UIM) is not a real surprise, whereas the association

with helicase domains (DEXDc and HELICc), nucleic-acid-

binding domains (KH and RRM) and protein-binding domains

(RWD, Armadillo/HEAT repeats and ankyrin segments)

would make sense in the context of the involvement of RBR

http://genomebiology.com/2007/8/3/209                                                  Genome Biology 2007, Volume 8, Issue 3, Article 209 Eisenhaber et al. 209.3

Genome Biology 2007, 8:209



209.4 Genome Biology 2007, Volume 8, Issue 3, Article 209 Eisenhaber et al. http://genomebiology.com/2007/8/3/209

Genome Biology 2007, 8:209

Figure 2
Phylogenetic tree of RBR domain segments. A grand alignment of RBR segments from 102 proteins representative of the most populated subgroups was
used to create the tree. We used the program SEAVIEW and the tool ATV from the Forester package [71-73]. Each entry is labeled as in Figure 1.
Typically, subfamily members cluster nicely together and the phylogenetic relationships within subfamilies are determined with significance. Closer to the
root of the tree, the branching becomes increasingly uncertain. Some groups of fungal and protozoan sequences are more heterogeneous and appear at
several tree positions. The D. discoideum sequence XP_646567.1 does not appear together with other ARA54 sequences but was assigned to the group
‘B (ARA54)’ because of the RWD domain in the sequence architecture.
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Figure 4
Sequence architecture of RBR proteins. The detailed sequence architecture
of the subfamilies of RBR proteins is shown. The globular domains (such as
cullin) and non-globular regions (negative-charge clusters or proline-rich
regions) are color-coded as shown in the key. It should be noted that the
typical sequence architecture is shown. There are several exceptions: for
example, PAUL proteins mostly contain three additional zinc fingers, but a
few representatives have only one. Similarly, dorfins have two predicted
hydrophobic helices with the exception of the protozoan members, which
have only one or none. The two sequences of the Fungi1 group are very
diverse and have only the RBR segment in common. Among the Plant1
representatives, one protein contains two RRM domains instead of the
usual two KH domains. Domain accession numbers: APC10, PF03256;
cullin, SM00182; DEXDc, SM00487; IBR, SM00647; RWD, SM00591;
DUF1605, PF07717; HA2, PF04408; HELICc, SM00490; KH, SM00322;
RRM, SM 00360; ANK, SM002481; UBA, SM00165; UBQ, SM00213; UIM,
SM00726; and ZnF_RBZ, SM00547. The first two letters ‘PF’ and ‘SM’
indicate the PFAM and SMART databases, respectively.
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Figure 3
Structures of ring domains in the RBR segments. The structure graphics
were generated with the program VMD [74]. The backbone trace and the
secondary structure are shown as ribbons and the zinc ions as red
spheres. (a) Carboxy-terminal part of the RBR region (C-RING) in the
human Ariadne-1 homolog protein HHARI (PDB accession number
1WD2; residues 326-395 of UNIPROT accession number Q9Y4X5;
subfamily A1/Ari1). (b) The N-RING of the RBR segment of the human
UbcM4-interacting protein 4 (PDB accession number 1WIM; residues 20-
100 of UNIPROT accession number P50876; subfamily C/RNF144).

(a)
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proteins in the regulation of gene expression. A functional

link between ubiquitination and RNA metabolism appears to

be a general phenomenon [19].

Localization and function
RBR proteins fulfill diverse functions, ranging from the

control of protein quality to the regulation of translation and

signaling [10,20-22]. This diversity is highlighted by the

manner in which some RBR proteins were originally dis-

covered. Protein-protein interaction studies first attracted

attention to the RBR proteins. For example, XAP3 [23] and

rat RBCK1 [11] were discovered with the regulatory domain

of protein kinase C-β-interacting protein as a bait, and the

Ariadne proteins were found as interaction partners of

ubiquitin-conjugating enzymes (E2s) in fruit flies, mice and

humans [24-27]. The putative Ariadne-like E3 ubiquitin

ligase PAUL appeared in a complex extracted with the

cytoplasmic domain of the muscle-specific kinase (MuSK) as

bait [28]. Parkin is the best characterized RBR protein

functionally [29,30]. In a clinical context, mutations in the

gene encoding parkin are associated with sporadic early-

onset parkinsonism and autosomal recessive juvenile

parkinsonism [29-30] and parkin has recently also been

associated with susceptibility to intracellular pathogens such

as Salmonella typhi, S. paratyphi and Mycobacterium

leprae and cancer [31-35]. Several other RBR proteins are

involved in human neurodegenerative diseases,

susceptibility to infections, and cancer [2, 21,36,37].

E3 ubiquitin ligase activity has been reported for 15 RBR

proteins, and 25 of their substrates and more than 70

interactors have been identified so far (Figure 5; Additional

data file 1). As typical E3 enzymes, RBR proteins interact

with ubiquitin-conjugating enzymes (E2s) and catalyze the

covalent attachment of ubiquitin to target proteins [38]. For

most of the characterized RBR proteins, the N-RING is

essential for recruiting specific E2s and binding substrates.

There are exceptions to this rule, however, and substrate

interactions have been defined for non-RBR regions as well

(Figure 5; Additional data file 1). RBR proteins are

considered single-molecule E3 ubiquitin ligases (E3s).

However, parkin and the parkin-like cytoplasmic protein

(PARC) interact with components of the SCF-like E3 ubiquitin

ligase complex, such as cullin and F-box proteins [39,40].

Parkin and dorfin protect dopaminergic neurons from the

consequences of mitochondrial damage [41-43] and from

harmful levels of aggregation-prone proteins by ubiquitin-

mediated proteasomal degradation and/or subcellular

tethering of such proteins [29,30,44]. They are also

involved in the endoplasmic reticulum-associated

degradation pathway (ERAD). This is supported by their

interaction with E2s associated with the endoplasmic

reticulum and by their role in promoting the degradation of

unfolded or misfolded forms of transmembrane proteins,

such as the parkin-associated endothelin receptor-like

receptor (Pael-R) [45], synaptotagmin XI [46], the AAA-

ATPase valosin-containing protein [47], and the dopamine

transporter [48], before they accumulate in the endoplasmic

reticulum. Moreover, plasma membrane receptors such as

the Toll-like receptors TLR4 and TLR9 are substrates for the

RBR protein TRIAD3A [10]. This led to the hypothesis that

TRIAD3A controls the intensity and duration of pro-

inflammatory responses mediated by Toll signaling. A recent

study proposes a novel role for parkin in regulating signaling

from the epidermal growth factor receptor (EGFR) through

its ability to bind EGFR and the EGFR pathway substrate 15

(EPS15) and to ubiquitinate EPS15, consequently regulating

the internalization and degradation of EGFR [22].

At least three RBR proteins are involved in the regulation of

the cell cycle and apoptosis. PARC acts as negative regulator

of the tumor suppressor protein p53. Overexpression of

PARC was shown to sequester p53 in the cytoplasm without

ubiquitinating it for degradation [49]. In contrast, the RBR

protein p53RFP, a member of the RNF144 subfamily (C),

targets an inhibitor of cell cycle progression (p21WAF1) for

degradation. The zinc finger protein inhibiting NF-κB protein

(ZIN), a splicing variant of TRIAD3, similarly supports the

degradation of an inhibitor of NF-κB activation (RIP).

Overexpression of p53RFP or RIP induces apoptosis [50,51].

The protein Vif, encoded by the human immunodeficiency

virus (HIV), induces the translocation of ZIN to the nucleus,

suggesting that RBR proteins might be attractive candidates

for interfering with virus replication. Vif is important for the

assembly of HIV-1 particles and the stability of the reverse

transcription complex [37]. Another possible regulator of

virus infection is the RBR protein heme-oxidized IRP2

ubiquitin ligase (HOIL-1), which interacts with the X protein

of hepatitis B virus and enhances its ability to activate

X-responsive promoters [23].

RBR proteins of the Ariadne subfamily are probably

involved in translational regulation, as the Ariadne-sub-

family protein HHARI ubiquitinates the eukaryotic mRNA

cap-binding protein 4EHP [20], which apparently alters the

binding efficiency of 4EHP to mRNA caps. 4EHP ubiquitina-

tion may also be a signal for the intracellular compart-

mentalization of specific mRNA populations.

RBR proteins can be recruited by their interaction partners

to particular subcellular compartments. For example,

RBCK1 is translocated to the nucleus via an interaction with

its RBR-domain-deficient splicing variant RBCK2 [9]. Such

nucleo-cytoplasmic shuttling is frequent with RBR proteins

and is supported by the protein-interaction map of

Drosophila [52], which revealed an interaction of the RBR

protein ARI-2 with a classical nuclear transport receptor,

karyopherin 3. On the other hand, some RBR members may

be able to regulate nucleo-cytoplasmic transport themselves.
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Figure 5
Known interactors with the RBR protein. The interacting proteins for each region are boxed and are preceded by the name of the subfamily of RBR
proteins with which they interact: A, Ariadne; A3, Parc; B, ARA54; D, dorfin; P, parkin; C, RNF144; X, XAP; U, Paul; T, TRIAD3. The additional amino-
terminal domains present in some subfamilies of RBR proteins are highlighted in light blue and indicated by the domain abbreviation with the subfamily in
which they are found in parentheses. UBL, ubiquitin-like domain; UBA, ubiquitin-associated domain; ZnF_RBZ, zinc finger; cullin, cullin-like domain;
ARM/HEAT, Armadillo and HEAT repeats; APC10, anaphase-promoting complex subunit 10. A carboxy-terminal hydrophobic segment is present in the
dorfins. Additional substrates and interactors are listed in Additional data file 1.
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For example, parkin interacts with and ubiquitinates

Ran-binding protein 2 (RanBP2), which is related to the

small ubiquitin-related modifier (SUMO) E3 ligase family

and is a component of the nuclear pore complex [53].

Binding of parkin to SUMO-1 enhances parkin’s nuclear

translocation and auto-ubiquitination, indicating that both

its E3 activity and subcellular localization are modulated

through association with SUMO-1 [54].

Mechanisms of regulation
RBR proteins are also subject to posttranslational regulation

that predominantly tends to inhibit their E3 activity.

Parkin’s stability is controlled by the RING finger domain E3

ligase FLRF/Nrdp1, which interacts with the amino terminus

and reduces parkin’s half-life and enzymatic activity [55].

Auto-ubiquitination has been shown to inhibit E3 activity in

members of the Ariadne, androgen receptor-associated

protein 54 (ARA54), RNF144, dorfin, parkin and TRIAD3

subfamilies [10,16,49,56-62] (Additional data file 1).

Parkin’s E3 activity is also suppressed through the binding

of the chaperone-like protein 14-3-3η to its linker region

(Figure 5). 14-3-3η is released from this inhibitory complex

upon its tight binding of α-synuclein. Thus, parkin’s activity

is mutually regulated by 14-3-3η and α-synuclein [63]. A

comparable antagonistic regulation of parkin by the carboxyl

terminus of the Hsc-70-interacting protein (CHIP) and the

chaperone Hsp70 is involved in the degradation of unfolded

Pael-R [45]. Whereas Hsp70 inhibits parkin’s E3 activity by

forming a complex with unfolded Pael-R and parkin, CHIP

induces the dissociation of Hsp70 and enhances parkin’s

activity and the degradation of Pael-R. Parkin is also

inhibited through its enhanced sequestration to protein

aggregates on interaction with Bcl-2-associated athanogene

5 (BAG5) and Hsp70 [64].

Phosphorylation is involved in the negative regulation of

parkin, as stress-induced reduction of phosphorylation

results in an increase in its activity [65]. Parkin is controlled

by nitric-oxid (NO) modifications in a biphasic manner

[66,67]. Within the first two hours of S-nitrosylation,

parkin’s catalytic activity increases. Then it declines

gradually and is inhibited 24 hours after NO exposure [68].

Whereas phosphorylation and S-nitrosylation are reversible,

a novel irreversible covalent adduct, a dopamine-derived

catechol modification of parkin, has been detected that

decreases E3 activity and solubility. Parkin is particularly

sensitive to this modification, as the adduct could not be

transferred to the Ariadne-subfamily member HHARI [69].

Frontiers
RBR proteins and their interaction partners appear to be

involved in nearly all major cellular events: transcription

and RNA metabolism, translation, subcellular tethering,

regulation of posttranslational modification and protein

stability, cellular and stress signaling, cell-cycle control, and

the course of microbial infection. These glimpses into the

diverse functions of RBR proteins have mainly been gained

by detailed analyses of the multipurpose neuroprotective

agent parkin, some ten other animal RBR proteins and a

single member in Arabidopsis. Essentially nothing is known

about the remaining 350 or so RBR proteins, in particular

the animal-specific IBRDC1, and the plant-, fungus-,

protozoa- and virus-specific subfamilies (H, G, F, E, Z and

S). It is likely that some of these RBR proteins also have E3

activities. It is not yet clear, however, whether RBR proteins

act as single molecules and/or in SCF-like E3 ligase complexes,

and whether they catalyze mono- or polyubiquitination and

lysine 48- or 63-types of linkages. Apart from the E3 ligase

function, RBR segments might serve as activation domains,

interact with cytoskeletal components, and act as tethering

modules. Therefore, one future challenge is to analyze their

changing subcellular distributions.

Several RBR proteins are associated with neurodegenerative

and infectious diseases, and the three-dimensional struc-

tures of the IBR and the complete RBR domain, and

knowledge of the residues responsible for interactions and

structural stabilizations, will be a prerequisite for identifying

specific target sites for the possible design of therapeutic

drugs. Future work should reveal the functional significance

of the additional domains and their cooperation with the

RBR domain. This is particularly important for members of

the neglected organism-specific subfamilies, as these are

found in organisms that pose pathogenic, agricultural and

aquacultural threats (for example, the human pathogenic

protozoan Entamoeba histolytica and fungus Aspergillus

fumigatus, the plant pathogenic fungi Gibberella zeae and

Magnaporthe grisea, and the fish and amphibian viruses

lymphocystis disease virus and grouper iridovirus). More

surprises and astonishing and valuable discoveries are

expected from the future analysis of RBR proteins.

Additional data file
Additional data file 1, containing supplementary tables and

additional references, is available online.
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