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T regulatory cell signatures<p>Comparison of the gene expression in human T regulatory cells and naïve cells using a T regulatory cell-specific microarray reveals cell-specific gene signatures.</p>

Abstract

Background: Naturally occurring CD4+CD25+ regulatory T cells (TReg) are involved in the
control of autoimmune diseases, transplantation tolerance, and anti-tumor immunity. Thus far,
genomic studies on TReg cells were restricted to murine systems, and requirements for their
development, maintenance, and mode of action in humans are poorly defined.

Results: To improve characterization of human TReg cells, we compiled a unique microarray
consisting of 350 TReg cell associated genes (Human TReg Chip) based on whole genome
transcription data from human and mouse TReg cells. TReg cell specific gene signatures were created
from 11 individual healthy donors. Statistical analysis identified 62 genes differentially expressed in
TReg cells, emphasizing some cross-species differences between mice and humans. Among them,
several 'old friends' (including FOXP3, CTLA4, and CCR7) that are known to be involved in TReg cell
function were recovered. Strikingly, the vast majority of genes identified had not previously been
associated with human TReg cells (including LGALS3, TIAF1, and TRAF1). Most of these 'new players'
however, have been described in the pathogenesis of autoimmunity. Real-time RT-PCR of selected
genes validated our microarray results. Pathway analysis was applied to extract signaling modules
underlying human TReg cell function.

Conclusion: The comprehensive set of genes reported here provides a defined starting point to
unravel the unique characteristics of human TReg cells. The Human TReg Chip constructed and
validated here is available to the scientific community and is a useful tool with which to study the
molecular mechanisms that orchestrate TReg cells under physiologic and diseased conditions.
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Background
One of the most striking capacities of the immune system is
its ability to discriminate between self and non-self, thereby
avoiding autoimmune responses while allowing effective
immunity against infections. Several mechanisms to main-
tain tolerance and immune homeostasis have evolved. On the
one hand, self-reactive T cells are deleted during their devel-
opment in the thymus in a process known as central toler-
ance. However, because this negative selection is incomplete,
self-reactive T cells that have escaped from this clonal dele-
tion must be controlled in the periphery. TReg cells actively
suppress activation and expansion of self-reactive escapees as
part of a process termed peripheral tolerance [1]. Thus, TReg

cells control the delicate balance between immunity and tol-
erance, explaining their important role in autoimmune dis-
eases, cancer, transplantation tolerance, and even allergy.

Several types of TReg cells exist. Naturally occurring TReg cells
express the cell surface molecule CD25 (IL2RA) [2] and the
transcriptional repressor FOXP3 (forkhead box P3), which is
central for their development and function. These cells
mature and migrate directly from the thymus and constitute
approximately 2-3% of total human CD4+ T cells [3-5]. Apart
from these naturally occurring thymus-derived TReg cells,
antigen presentation by immature dendritic cells, IL-10,
transforming growth factor-β, and possibly intrerferon-α
possess the capability to convert naïve CD4+CD25- or
CD8+CD25- T cells into regulatory T cells in the periphery [6-
9]. These CD4+ derived adaptive regulatory T cells are subdi-
vided into T regulatory 1 (TR1) and T helper 3 (Th3) cells,
according to their distinct cytokine profiles [10,11].

However, isolation of regulatory T cells remains difficult
because the availability of specific marker molecules is still
limited. Apart from CD25, additional surface molecules have
been reported to be associated with TReg cell function, such as
cytotoxic T lymphocyte associated antigen (CTLA)4 [12],
tumor necrosis factor receptor superfamily (TNFRSF) mem-
ber 18 (or GITR) [13], and selectin L (SELL or CD62L) [14].
However, all of these molecules are also expressed by naïve
CD4+CD25- T cells upon activation, thereby hampering dis-
crimination between regulatory and conventionally activated
CD4+ T cells. Furthermore, CD25 as well as other TReg cell
molecules (for instance, GITR and CTLA4) are not expressed
on all CD4+ T cells with regulatory function [15]. Recently,
new genes such as neuropillin 1 (Nrp1) for mouse and CD27
coexpression with CD25 for human were suggested as useful
markers to distinguish regulatory from effector T cells [16,17].
Like murine cells, human CD4+CD25+ TReg cells express sig-
nificantly more FOXP3 mRNA and protein than do
CD4+CD25- T cells. However, in contrast to data obtained
from mouse models, overexpression of FOXP3 in human
CD4+CD25- T cells alone is insufficient to generate potent
suppressor T cells in vitro, suggesting that additional factors
are required for the development, differentiation, and func-
tion of human TReg cells [18].

Microarrays have illustrated their potential to unravel gene
expression of various subsets of leukocytes. We and others
have successfully used this technology to create signatures of
murine regulatory T cells in different mouse models, contrib-
uting to a better understanding of the mechanisms underly-
ing TReg cell mediated tolerance and autoimmunity
[16,19,20]. Thus far these genomic studies on TReg cells have
been restricted to murine systems. However, differences
between humans and mice are highly suggestive and may
present obstacles in the transfer from mouse models to actual
human disease [21]. In this report we extend this approach to
the characterization of human TReg cells by studying 350 TReg

cell associated genes selected on the basis of whole-genome
transcription data from human and mouse TReg cells. Applica-
tion of our nonredundant Human TReg Chip to the study of
highly purified CD4+CD25+ TReg cells and their naïve
CD4+CD25- counterparts isolated from peripheral blood of
individual healthy donors revealed the presence of TReg cell
specific gene signatures. Combined with extensive pathway
analysis, we provide a comprehensive set of genes to unravel
the unique characteristics of human TReg cells under physio-
logical and diseased conditions.

Results and discussion
Development and validation of the Human TReg Chip
Whole-genome expression data from human and mouse
CD4+CD25+ and CD4+CD25- T cells, obtained using Affyme-
trix GeneChips (Affymetrix, Santa Clara, CA, USA), at the
genomic scale were used to compile a primary list of genes
involved in TReg cell function. CD4+ T cell subsets were iso-
lated from either human peripheral blood or murine spleno-
cytes and separated using FACS (fluorescence-activated cell
sorting)-based cell sorting at purities consistently greater
than 98%. Differential gene expression was determined using
statistical parameters, as described under Material and meth-
ods, below. (For more detailed information, See Additional
data file 1).

This primary data set from human TReg cells was extended for
genes that were affected by FOXP3 overexpression in cul-
tured human CD4+ Thcell lines. To this end, different
CD4+CD25- derived Th cell lines were generated by infection
with retroviruses encoding for FOXP3 and GFP (green fluo-
rescence protein) under the control of an internal ribosomal
entry side (IRES) or with an empty control vector that con-
tained only GFP. In these cells only FOXP3 overexpression
could partially induce a TReg phenotype in vitro (data not
shown). Using Affymetrix GeneChips, these genetically engi-
neered cells were compared with cells infected with Th GFP
control vector. In addition, we also analyzed a human TReg cell
line derived from human CD4+CD25+ T cells that maintained
a regulatory phenotype in vitro and compared its gene
expression profile with the control CD4+ Th cell line. For the
development of the Human TReg Chip we included those genes
in our primary data set that were differentially expressed in
Genome Biology 2006, 7:R54
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both experiments by more than twofold. (For more detailed
information, see Additional data file 2).

In additionally, TReg cell associated genes identified by litera-
ture search were also included (Additional data file 3). In
summary, this resulted in the selection of 350 genes that were
arranged on an oligonucleotide microarray. Furthermore, 45
control genes were included in the primary microarray
design.

To obtain accurate and reliable transcription profiles, we val-
idated the Human TReg Chip in terms of cross-platform com-
parability, sensitivity, and reproducibility of measurements.
Relative expression data gained from the experiments inves-
tigating FOXP3 affected gene expression on Affymetrix Gene-
Chips, as described above, were used as reference data in a
cross-platform evaluation. Therefore, identical samples,
obtained either from FOXP3 infected CD4+CD25- T cells or
GFP expressing controls, were also hybridized to the Human
TReg Chip. Concordance of significantly regulated genes gen-
erated with the Human TReg Chip and the reference data was
81% (29/36; Figure 1a). Opposite regulation was observed
only for a few marginally regulated genes (7/36). The Affyme-
trix GeneChip data for the 350 genes included in the Human
TReg Chip is given in Additional data file 4). Furthermore, bac-
terial control genes at different concentrations were used to
monitor microarray system sensitivity and the spectrum of
linear signal measurement. A final concentration of 0.3
pmol/l was detectable, corresponding to approximately one
transcript in 500,000 or approximately one copy per cell.
Furthermore, we could demonstrate a linear regression
between signal intensity and concentration covering more
than three orders of magnitude (Figure 1b). To assess repro-
ducibility, identical samples were applied to different Human
TReg Chips and signal intensities were compared among each
other (Figure 1c). The median correlation coefficient obtained
from 52 log-log-plots was 0.98, which is well in line with com-
mercially available microarray formats [22,23] Finally, we

determined the accuracy of measurements expressed as coef-
ficient of variance calculated across eight replicates per gene.
As depicted in Figure 1d, the vast majority of signal intensities
(73%) calculated for the entire data set varied by less than
30%, reflecting the robustness of the applied microarray
approach.

Gene regulation in CD4+CD25+ TReg cells
To obtain accurate and reliable individual transcription pro-
files we isolated CD4+CD25+ regulatory and CD4+CD25- naïve
T cells from peripheral blood of 11 healthy donors using
MACS (Magnetic Cell Sorting) technology (Table 1). To esti-
mate the fraction of TReg cells in the CD4+CD25+ cell popula-
tion, we performed intracellular FOXP3 staining.
Approximately 80% of the CD4+CD25+ T cells were FOXP3
positive and exhibited regulatory T cell function in vitro
(Additional data file 5). Each sample was measured in at least
two independent microarray experiments. Using Statistical
Analysis of Microarrays (SAM) analysis, we identified 62
genes significantly differentially expressed in regulatory com-
pared to naïve T cells. Based on Gene Ontology and references
in the literature, genes were classified into functional catego-
ries such as cytokines/chemokines and their receptors (12
genes), cell cycle and proliferation (11), apoptosis (7), signal
transduction (9), and transcriptional regulation (10). A
detailed description of these genes is summarized in Table 2.
Among them, LGALS3, CCR7, IL2RA (CD25), CTLA4,
TRAF1, SATB1, and GZMK were additionally found to be
affected by retroviral overexpression of FOXP3 in CD4+ Th

cells (Figure 1a).

Two-dimensional hierarchical clustering analysis was applied
to arrange coexpressed genes and replicated experiments
next to each other (Figure 2). The transcriptional pattern
clearly separated CD4+CD25+ regulatory from CD4+CD25-

naïve T cells and distinguished between 32 upregulated and
30 downregulated genes.

Twenty-one of these 62 genes have already been described in
the literature as being associated with TReg cells of both mouse
and human origin, including FOXP3, CTLA4, IL2RA (CD25),
and ITGB2 (Figure 3). Recovery of these 'old friends' con-
firmed our nonredundant microarray approach, including
our cell separation strategy. Among the 62 genes, eight that
were previously only implicated in murine TReg cell biology
were also detected as being differentially expressed in human
TReg cells (LGALS1, IL7R, GATA3, SATB1, TNFRSF1B,
TNSF5, DGKA, and CCR5). Altogether, 15 genes were identi-
fied that were similarly regulated in mouse and human. Those
genes at the intersection of both organisms reflect high levels
of interspecies conservation during the evolutionary process,
thereby lending credibility to their important role in TReg cell
development and function (Figure 3). In addition to FOXP3,
CTLA4 and IL2RA, we also found the chemokine receptor 7
(CCR7), the transferring receptor (TFRC) and integrin beta 2
(ITGB2) genes in this intersection group between mouse and

Table 1

Characteristics of healthy volunteers

Donor Age Sex

A 58 Male

B 57 Female

C 27 Female

D 27 Female

E 36 Male

F 39 Male

G 39 Male

H 26 Female

I 62 Female

J 54 Female

K 26 Male
Genome Biology 2006, 7:R54



R54.4 Genome Biology 2006,     Volume 7, Issue 7, Article R54       Pfoertner et al. http://genomebiology.com/2006/7/7/R54
human. Furthermore, six genes previously associated with
human TReg cells were identified. Apart from the 'old friends',
we identified 41 'new players' that have not previously been
reported in the context of human TReg cells (Figure 3).

To verify the accuracy of our microarray data in more detail,
real-time RT-PCR (reverse transcription polymerase chain
reaction) was performed using the original samples. Refer-
ring to well characterized TReg cell genes (FOXP3, CTLA4, and
CCR7), we were able to confirm our approach (Figure 4). This
gave greater credence and reliability to the numerous addi-
tional genes that have not yet been reported in TReg cells. We
selected three of these 'new players' (TNFRSF1B, TRAF1,
LGALS3) and confirmed their TReg cell specific expression by
quantitative real-time RT-PCR (Figure 5). As shown, in gen-
eral PCR results correlated well with the differential gene
expression data obtained by application of the Human TReg

Chip. For a few donors variability in gene expression was
observed between microarray and quantitative RT-PCR data,
but the direction of change was consistent, lending confi-
dence to the reliability of the Human TReg Chip results. Quan-
titative differences in fold changes have previously been
described; in particular, an underestimation of real expres-
sion changes by microarray approach versus quantitative RT-
PCR has been reported [24,25].

Signaling modules in TReg cells
To elucidate potential pathway modules implicated in TReg

cell biology, we applied PathwayAssist, (Ariadne Genomics,
Rockville, MD, USA), software to our unique expression data-
set of human TReg cells from individual healthy donors. Map-
ping the 62 TReg cell specific genes yielded a network of 31
genes directly interacting with each other (data not shown).
These 31 genes provided a comprehensive framework for

Performance of the Human TReg ChipFigure 1
Performance of the Human TReg Chip. (a) Comparability to Affymetrix. Splitted samples (FOXP3 or GFP transfected T cells) were hybridized to Affymetrix 
HG_U133A microarrays and Human TReg Chips, respectively. Differentially expressed genes on the Affymetrix platform (regulation of at least 1.5-fold 
based on significant signal) were compared with those significant fold changes arising from the Human TReg Chip platform. As demonstrated, 29 out of 36 
genes exhibited similar regulation on the Human TReg Chip compared with Affymetrix, resulting in a correlation of 81%. (b) Hybridization controls. 
Normalized signal intensities versus concentration of used hybridization controls are plotted as means of 5 (1.5 pmol/l, 25 pmol/l and 100 pmol/l) and 59 
experiments applying the Human TReg Chip. Standard deviations are indicated by error bars. Linear regression yields a correlation coefficient of >0.96 
demonstrating a linear hybridization process covering more than three orders of magnitude of concentrations. (c) Reproducibility of the Human TReg Chip. 
The same sample was hybridized to several Human TReg Chips. A log-log plot of normalized signal intensities of two example selected slides is illustrated, 
showing that 99.7% of all signals are located along the bisecting line within the twofold range, reflecting low measurement noise in the data, even for low 
signal intensities. (d) Coefficients of variation (CV). The ratios of standard deviation and mean were calculated for each gene probed in eight replicates per 
microarray. CVs of all 59 experiments applying the Human TReg Chip contributing to the expression profile of human TReg cells are presented as means. As 
demonstrated, 73% of all signals have a CV below 0.3.
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Table 2

Genes differentially expressed in human CD4+CD25+ regulatory vs CD4+CD25- naive T cells

Gene symbol Gene name Autoimmunity

NINJ2 Ninjurin 2

ACTN1 Actinin, alpha 1 SLE, CHA

NELL2 NEL-like 2

ITGB2 Integrin, β2 UC, MC, COPD, T2D, AS, LAD-1, RA, ALPS, SLE

TIAF1 TGFB1-induced antiapoptotic factor 1

TP53INP1 Tumor protein p53 inducible nuclear protein 1

TRAF1a TNF receptor-associated factor 1

LGALS1 Galectin 1 JIA, RA, IBD

LGALS3a Galectin 3 RA, JIA

GZMA Granzyme A T1D, RA, SLE, IBD

GZMK Granzyme K

PTTG1 Pituitary tumor-transforming 1 Diabetes

TRIB1 Tribbles homolog 1

S100A10 S100 calcium binding protein A10

CEB1 Hect domain and RLD 5

SLAMF1 Signaling lymphocytic activation molecule family member 1 SLE, X-linked XLP, RA, MS

S100A4 S100 calcium binding protein A4 RA

PIM1 Pim-1 oncogene

ID2 Inhibitor of DNA binding 2 Diabetes

FHIT Fragile hisT1Dine triad gene

RBMS1 RNA binding motif, single stranded interacting protein 1

IFITM1 Interferon induced transmembrane protein 1

IL2RAa Interleukin 2 receptor, alpha T1D, profound cellular immunodefiency

TNFRSF1Ba Tumor necrosis factor receptor superfamily, member 1B MC, UC, MS, SLE

CCR5 Chemokine (C-C motif) receptor 5 MS, Grave's disease, RA

GPR2 Chemokine (C-C motif) receptor 10 Autoimmune skin diseases

IL2RB Interleukin 2 receptor, beta ITP, RA, osteoarthritis, hemolytic anemia

G1P2 Interferon, alpha-inducible protein

IL1RL2 Interleukin 1 receptor-like 2

IL7R Interleukin 7 receptor SCID, RA, SLE

CCR7a Chemokine (C-C motif) receptor 7 Diabetes, SLE, MS, RA, JIA

TNFSF5 CD40 ligand (TNF superfamily, member 5, hyper-IgM syndrome) HIGM1, Alzheimer disease, T1D, SLE, MS, AS, ITP

CCL5 Chemokine (C-C motif) ligand 5 EAT, MS, diabetes, SLE, RA

TNFRSF10B Tumor necrosis factor receptor superfamily, member 10b MS, RA

SDC4 Syndecan 4

CTLA4a Cytotoxic T-lymphocyte-associated protein 4 T1D, Grave's disease, SLE

TFRC Transferrin receptor

AKAP2 A kinase (PRKA) anchor protein 2

DGKA Diacylglycerol kinase, alpha

PITPNC1 PhosphaT1Dylinositol transfer protein, cytoplasmic 1

TRGV9 T cell receptor gamma variable 9

CD81 CD81 antigen

PECAM1 Platelet/endothelial cell adhesion molecule ITP, diabetes, AS, RA, CIA, MS

FOXP3 Forkhead box P3 IPEX, T1D

GATA3 GATA binding protein 3 RA, HDR syndrome

BHLHB2 Basic helix-loop-helix domain containing, class B, 2 SLE

SATB1 Special AT-rich sequence binding protein 1

STAT4 Signal transducer and activator of transcription 4 MC, EAE, UC, diabetes, COPD, SLE, arthritis
Genome Biology 2006, 7:R54
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further dissection into functional modules. These modules
point to mechanisms controlling diverse cellular processes
such as survival/apoptosis, T cell receptor signaling/activa-
tion/proliferation, and differentiation/maintenance of
human TReg cells and are described in the following text.

Genes controlling survival/apoptosis of TReg cells
Naturally occurring TReg cells survive clonal deletion during
their development in the thymus by escape from activation-
induced cell death. This protective mechanism appears to be
maintained in TReg cells encountered in the periphery because
we could identify a signaling module that counteracts apopto-
sis and mediates the release of survival factors (Figure 6a).

We found that FOXP3 induced upregulation of tumor necro-
sis factor receptor superfamily, member 1B (TNFRSF1B,
TNF-RII) upon retroviral overexpression in CD4+ Th cells
(Figure 1a). TNFRSF1B was also upregulated in the ex vivo
isolated CD4+CD25+ TReg cells from individual healthy donors
(Figure 2). TNFRSF1B belongs to a group of transmembrane
TNF receptor molecules characterized by TNF receptor-asso-
ciated factor (TRAF)-interacting motifs (TIMs). Activation of
TIM-containing TNF receptors leads to the recruitment of
TRAF family members and subsequent activation of signal
transduction pathways such as nuclear factor (NF)-κB, JNK,
p38, ERK (extracellular signal-regulated kinase), and PI3K
(phosphoinositide 3-kinase), which in turn influence immune
responses and increase the expression of survival factors
[26,27]. In accordance, we also found a significant upregula-

tion of TRAF1 inboth FOXP3 transduced CD4+ Th cells and ex
vivo isolated human CD4+CD25+ TReg cells.

This mechanism is linked to additional molecules that control
the nuclear translocation and, consequently, activity of TP53
(tumor protein p53), a tumor suppressor gene that induces
cell growth arrest or apoptosis [28]. Although TIAF1 (TGFB-
1 induced antiapoptotic factor 1) interacts with TP53 in the
cytosol and may participate in its nuclear translocation,
TP53INP1 (TP53 inducible nuclear protein 1) is engaged in
the regulation of TP53 activity in the nucleus [29,30]. Both
TP53INP1 and TIAF1 genes were found to be overexpressed
in the naturally occurring TReg cells in our study. Apart from
this, TIAF1 is known to be upregulated in Th2 compared with
Th1 lymphocytes, and a functional role as an apoptosis protec-
tor has been discussed [31].

We also identified S100A4 as being upregulated in the natu-
rally occurring TReg cells from our individual donors. S100A4
is a member of the S100 family of proteins containing two EF
hand calcium binding motifs. EF-hands are helix-loop-helix
motifs where the loop potentially binds Ca2+. Its expression is
TP53 dependent and S100A4 is involved in the regulation of
cell cycle progression and differentiation. Together with
S100B, S100A4 is hypothesized to control tetramerization of
TP53, leading to its nuclear translocation [32,33]. TP53 can
activate the extrinsic apoptotic pathway through the induc-
tion of TNF receptor family members such as FAS and
TNFRSF10B [28,34]. Both TNF receptors are characterized
by their cytoplasmic death domain, which is responsible for

STAT6 Signal transducer and activator of transcription 6 EAE, RA, autoimmune uveitis, diabetes

MYC v-myc Myelocytomatosis viral oncogene homolog Diabetes, RA, SLE

TCF7 Transcription factor 7 (T-cell specific, HMG-box) T1D

XBP1 X-box binding protein 1 T2D, RA

CNOT2 CCR4-NOT transcription complex, subunit 2

HLA-DMA Major histocompatibility complex, class II, DM alpha T1D, SLE, RA

HLA-DRB1 Major histocompatibility complex, class II, DR beta 1 RA, MS, sarcoidosis, Sjögren's syndrome, Grave's 
disease, T1D

HLA-DRB3 Major histocompatibility complex, class II, DR beta 3 SLE, RA, MS, sarcoidosis, Sjögren's syndrome, 
Grave's disease

GBP2 Guanylate binding protein 2, interferon-inducible

GBP5 Guanylate binding protein 5

SLC40A1 (a) Solute carrier family 40 (iron-regulated transporter), member 1

SHMT2 (b) Serine hydroxymethyltransferase 2 (mitochondrial)

EPSTI1 Epithelial stromal interaction 1

NOSIP Nitric oxide synthase interacting protein

aGenes that were additionally found to be induced upon retroviral over-expression of FOXP3 in CD4+CD25- T cells. ALPS, autoimmune 
lymphoproliferative syndrome; AS, atherosclerosis; CHA, autoimmune chronic active hepatitis; CIA, collagen-induced arthritis; COPD, chronic 
obstructive pulmonary disease; EAE, experimental autoimmune encephalomyelitis; EAT, experimental autoimmune thyroiditis; HIGM1, hyper-IgM 
immunodefiency syndrome type I; IPEX, immunodysregulation, polyendocrinopathy, and entheropathy, X-linked; JIA, juvenile idiopathic arthritis; IBD, 
inflammatory bowel disease; ITP, idiopathic thrombocytopenic purpura; LAD-1, leukocyte adhesion deficiency-1; MC, Morbus Crohn; MS, multiple 
sclerosis; RA, rheumatoid arthritis; SCID, severe combined immunodefiency; SLE, systemic lupus erythematosus; T1D, type I diabetes; T2D, type II 
diabetes; UC, ulcerative colitis; XLP, X-linked lymphoproliferative syndrome.

Table 2 (Continued)

Genes differentially expressed in human CD4+CD25+ regulatory vs CD4+CD25- naive T cells
Genome Biology 2006, 7:R54
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transmission of apoptotic signals. Activation of these recep-
tors leads to recruitment of intracellular death domain, con-
taining adaptors such as FAS-associated death domain
(FADD) and TNFR associated death domain (TRADD). These
molecules activate the caspase cascade and subsequently
induce apoptosis. The death domain clearly separates these
TNF receptors from TNFRSF1B [26]. As a potential conse-

quence of the assumed TP53 inactivation in TReg cells,
TNFRSF10B expression could be impaired.

Further evidence supporting this assumption was provided
by another direct target of TP53. Expression of PTTG1 (pitui-
tary tumor-transforming 1), which we found to be upregu-
lated in our naturally occurring TReg cells, can be directly
repressed by activated TP53 in colorectal cancer cells. RNAi

Transcriptional profiling of CD4+CD25+ TReg and CD4+CD25- naïve T cellsFigure 2
Transcriptional profiling of CD4+CD25+ TReg and CD4+CD25- naïve T cells. To identify molecular differences between regulatory and naïve human T cells, 
differential expression of 350 genes was investigated by application of our Human TReg Chip. Following data normalization, Statistical Analysis of 
Microarrays (SAM) was applied as a data mining tool to ascertain gene expression changes, identifying 62 significantly altered genes between both T cell 
subpopulations (delta = 2.46, median FDR [false discovery rate] = 0.48). After entering the generated data set into Genesis software, a two-dimensional 
hierarchical clustering analysis yielded the displayed transcriptional pattern, which discriminates between human regulatory and naïve T cells, and consists 
of 32 upregulated and 30 downregulated genes. Each row represents a gene probed on the Human TReg Chip; each column shows expression of the 62 
genes measured for each individual in the study. Red indicates genes that are expressed at higher levels compared with the mean signal intensities of all 
experiments, whereas downregulated genes are colored in green and black indicates signal intensities near the mean expression level.
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mediated knockdown of PTTG1 was sufficient to induce apop-
tosis, suggesting that repression of novel antiapoptotic genes
by active TP53 can significantly contribute to apoptosis [34].
Controversially, it has been reported that PTTG1 can activate
TP53 and BAX to increase apoptotic function, but this seems
to be rather an indirect effect of PTTG1 and is dependent on
other factors, such as MYC, which we found to be downregu-
lated in the naturally occurring human TReg cells [35]. Inter-
estingly, c-MYC is a direct downstream target of PTTG1,
which is part of the DNA-binding complex formed near the
transcription initiation site of the c-MYC promoter [36].

We have detected additional genes that are downregulated in
human TReg cells, affecting the activation status of TP53. In
lung cancer cells, it was shown that FHIT (fragile histidine
triad gene) mediates MDM2 inactivation. The antiapoptotic
molecule MDM2 is activated through the PI3K-AKT pathway,
leading to inactivation of TP53 [37]. Thus, downregulation of
FHIT also contributes to the inactive status of TP53.

Based on our data, we suggest that destabilization and
thereby inactivation of TP53 provokes a shift in TReg cells from
apoptotic sensitivity to protection and survival. It is tempting
to speculate that this mechanism allows TReg cells to survive
upon reactivation, whereas effector T cells underlie activa-
tion-induced cell death. This apoptotic process eliminates the
expanded pool of effector lymphocytes during the contraction
phase of the immune response and maintains lymphocyte
homeostasis. In accordance with our findings, murine TReg

cells were reported to be more resistant to apoptosis when
treated with dexamethasone or anti-CD95 antibody than
CD4+ total or CD4+CD25- effector T cells [38,39]. Moreover,
Fritzsching [40] and Wang [41] and their groups
demonstrated that human TReg cells are less sensitive to acti-
vation-induced cell death than their naïve counterparts.
Galectin-3 (LGALS3) is one of the best characterized mem-
bers of the evolutionary conserved family of galectins and was
found to be strongly upregulated in our ex vivo isolated TReg

cells (Figure 2). In addition, LGALS3 was also induced upon
FOXP3 overexpression in CD4+ Th cells (Figure 1a). This is of

Old friends and new playersFigure 3
Old friends and new players. Genes differentially expressed in regulatory and naïve T cells, as identified by application of the Human TReg Chip. The upper 
half of the Venn diagram summarizes 'old friends'(namely, TReg cell associated genes that have previously been described in literature for either mouse or 
human). The lower half of the chart illustrates the new situation by showing all of the 'new players' of the TReg cell fingerprint. As demonstrated by the 
extended intersection, we identified eight genes, which formerly had only been implicated in mouse TReg cell immunology, as playing an additional role in 
human TRegcell activity (red arrow). Furthermore, our results expanded our knowledge on the transcriptional pattern characterizing human TReg cells by 
adding 41 new candidate genes (indicated by the red '+').
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Old friends: confirmation of microarray resultsFigure 4
Old friends: confirmation of microarray results. Real-time RT-PCR was 
performed for (a) FOXP3, (b) CTLA4, (c) CCR7, and RPS9 (data not 
shown) expression in MACS separated human CD4+CD25+ TReg and 
CD4+CD25- naïve T cells. Following normalization to RPS9, relative 
mRNA amounts in CD4+CD25+ TReg cells were adjusted to corresponding 
expression levels in CD4+CD25- naïve T cells and expressed as fold 
changes. Real-time RT-PCR results, indicated by black bars, were 
compared with fold changes arising from the Human TReg Chip 
(represented by grey bars). The healthy donors, randomly chosen, are 
specified by letters (see Table 1). RT-PCR, reverse transcription 
polymerase chain reaction.
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New players: confirmation of microarray resultsFigure 5
New players: confirmation of microarray results. Real-time RT-PCR was 
performed for (a) TNFRSF1B, (b) TRAF1, and (c) LGALS3 expression in 
MACS isolated human CD4+CD25+ TReg and CD4+CD25- naïve T cells. 
Fold changes were calculated as described for Figure 4. Real-time RT-PCR 
results (black bars) were compared with fold changes arising from the 
Human TReg Chip (white bars). The healthy donors are specified by letters 
(see Table 1). RT-PCR, reverse transcription polymerase chain reaction.
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Figure 6 (see legend on next page)
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special interest because LGALS3 is known to participate in
apoptosis control. Whereas its secretion triggers apoptotic
signal cascades in T cells [42], intracellular expressed
LGALS3 acts as an antiapoptotic molecule [43-45]. The
underlying mechanism was revealed in macrophages, sug-
gesting that LGALS3 may prevent alterations of the mito-
chondrial membrane and formation of reactive oxygen
species. Moreover, it has been reported that LGALS3 phos-
phorylation is necessary for its antiapoptotic activity. The
increased expression level of LGALS3 further supports our
idea of a shifted balance toward survival and fitness of TReg

cells.

Genes controlling T cell receptor signaling, activation, and 
proliferation of TReg cells
The second module that was revealed in the present study
involves genes controlling T cell receptor signaling, activa-
tion, and proliferation of human TReg cells (Figure 6b).
LGALS1 antagonizes T cell activation by partial
phosphorylation of the T cell receptor (TCR)-ζ chain [46], can
block secretion of proinflammatory cytokines such as IL-2,
and skews the balance towards a Th2-type cytokine profile
[47,48]. Dimeric LGALS1 triggers immunosuppressive IL-10
production in T cells, contributing to their immune regula-
tory function [49]. LGALS3 can potentially form complexes
on the TCR with N-glycans, thereby limiting the lateral mobil-
ity of the TCR and resulting in restricted TCR-mediated sign-
aling on T cells [42]. We therefore suggest that upregulation
of both galectins in TReg cells results in a modulation of their
cytokine profile, thereby allowing appropriate regulation of
effector cells and immune cell homeostasis.

This module also identified a set of genes, including CTLA4,
TNFRSF1B, and PIM1, that controls proliferation (Figure 6b).
CTLA4 plays a major role in inhibiting proliferation of TReg-
cells. It is an activation-induced homo-dimeric glycoprotein
receptor on T cells that interacts with the B7 ligands on the
surface of antigen-presenting cells (APCs). The mechanism of
T cell inactivation involves antagonism of CD28-dependent
costimulation and direct negative signaling through its cyto-
plasmic tail. When engaged by B7, CTLA4 plays a key role as
a negative regulator of T cell activation through down-regula-
tion of cytokine production by preventing the accumulation of
activator protein (AP)-1, NF-κB, and NFAT (nuclear factor of
activated T-cells) in the nucleus. CTLA4 was found to be
upregulated in our human TReg cells. Its expression has been
linked to enhanced suppressor activity and higher expression
of FOXP3 in human TReg cells. However, the blockade of
CTLA4 resulted in a significant but incomplete loss of sup-

pressor activity [50]. In addition to CTLA4, TNFRSF1B was
also found to be upregulated in the human TReg cells.
TNFRSF1B is known to costimulate TCR-mediated activation
in human T cells, thereby inducing activation markers, such
as CD25. In contrast to CD28 costimulation, crosslinking of
TNFRSF1B triggers different signaling pathways resulting in
a modified cytokine profile. TNFRSF1B has the capacity to
downregulate early TCR/CD28 induced calcium mobilization
and inhibits T cell functions such as IL-2 and IL-10 produc-
tion [51]. Compared with activated naïve T cells, the prolifer-
ation of TReg cells in response to IL-2 is quite low, although the
receptor for this cytokine is significantly upregulated. We
could identify a serine/threoninekinase called PIM1 that
directly transactivates NFAT at the end of the Ras signaling
cascade to facilitate IL-2 dependent proliferation and/or sur-
vival of lymphoid cells. Furthermore, PIM1 enhances NFAT-
dependent transactivation and IL-2 production in Jurkat T
cells [52]. Because PIM1 is downregulated in TReg cells from
individual healthy donors, we propose a reduced signal trans-
mission to NFAT mediating less responsiveness to IL-2
resulting in lower proliferation of TReg cells.

Genes controlling differentiation and maintenance of TReg cells
A third module extracted by our pathway analysis involves
genes controlling TReg cell differentiation and maintenance
upon maturation in the thymus (Figure 6b). The
differentiation of naïve T cells is induced by TCR activation
and either IL-12/STAT (signal transducer and activator of
transcription)4 or IL-4/STAT6 signaling pathways leading to
a Th1/Th2 lineage specification that is further directed by the
transcription factors T-bet and GATA3, respectively. STAT4
and STAT6 were both downregulated in the peripheral TReg

cells, indicating a potential inability to be transformed into Th

cells upon restimulation via their TCR (Figure 2). Coexpres-
sion of GATA3 and FOXP3, but the lack of T-bet, suggests
similarities in the gene expression profiles of Th2 and TReg

cells in humans.

In a recent study, transcription profiles of Th1 and Th2 cells
isolated from human cord blood were analyzed. Although the
overall concordance to our TReg cell data set is quite low, we
were able to detect a few genes similarly regulated in Th2 and
TReg versus naïve T cells (TCF7, GZMA, S100 family mem-
bers). However, a few genes exhibited opposite expression
behavior in Th2 cells compared with the TReg cells (SATB1 and
ACTN1 were upregulated in Th2 and down-regulated in TReg

cells). SATB1 and TCF7 are transcription factors that are
functionally similar to GATA3 and have important functions
in early thymocyte development [53,54]. For genes that were

Functional dissection of signaling modules in human TReg cellsFigure 6 (see previous page)
Functional dissection of signaling modules in human TReg cells. Schematic representation of potential signaling pathways involving genes that control (a) 
survival/apoptosis, and (b) TCR signaling/activation/proliferation and differentiation/maintenance of human regulatory T cells, thereby mediating TReg cell 
functionality. Transcriptional upregulation of genes in TReg versus naïve T cell is marked by red symbols, whereas green symbols represent downregulated 
genes. Symbols filled with grey depict unaffected genes or summarize pathway modules.
Genome Biology 2006, 7:R54
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differentially expressed in Th1 versus naïve T cells, we found
no similarities to our TReg cell data set [55]. In summary, these
data underline the concept that, like their murine homologs,
human TReg cells represent a separate lineage. They are
undergoing a unique differentiation pathway distinct from
those committing Th1 or Th2 cells, and are therefore equipped
with a tightly regulated set of transcription factors acting in
addition to FOXP3.

Another important question is how TReg cell populations are
regulated and maintained in the periphery. There is growing
evidence favoring IL-7 as a master regulator of T cell homeos-
tasis, based on its essential role in the homeostatic expansion
of naïve T cells in response to low affinity antigens and its
capacity to enhance expansion of peripheral T cells dramati-
cally in response to high affinity antigens [56]. Analyzing a
clonal population of mouse CD4+CD25+ TReg cells, it was dem-
onstrated that these cells do not proliferate in response to
lymphopenia in the absence of the selecting self-peptide. This
was in contrast to the naïve T cell proliferation behavior
reflecting the lower IL-7 receptor (IL7R) expression levels in
regulatory compared with naïve T cells [57], which was also
supported by our data. Additionally, it was shown that
GATA3 blocks IL7R expression in early stages of T cell devel-
opment [58]. Because self-antigen presentation in combina-
tion with IL-7 expression promotes TReg cell proliferation, we
assume that this mechanism contributes to the specific accu-
mulation of TReg cells at sites where their self-antigen is
presented.

Apart from the 'old friends', our TReg cell signature comprises
41 'new players' that have not yet been described in TReg cells
at all. Because TReg cells have a far-reaching effect on our
health by influencing the outcome of infection, autoimmu-
nity, transplantation, and cancer, we studied whether these
new candidates have been reported to participate in these
processes. Interestingly, the vast majority of the genes identi-
fied in our study (51 out of 62) have been implicated in at least
one of these disease scenarios (Table 2).

Genes involved in autoimmune diseases
Autoimmunity occurs as a consequence of self-tolerance
breakdown, presumably resulting from a combination of
inherited polymorphisms (or DNA variations), acquired envi-
ronmental triggers, and stochastic events [59]. Analyzing our
transcriptional pattern of human TReg cells isolated from indi-
vidual healthy donors, we found that 32 of the genes identi-
fied are involved in the pathogenesis of diverse autoimmune
diseases (Table 2). We focus here on a few affected genes that
are central to the functional modules discussed above and
that might therefore influence disease pathogenesis.

We found TNFRSF1B to be 2.5-fold overexpressed in the nat-
urally occurring TReg cells compared with their naïve
counterparts. A single nucleotide polymorphism (SNP) in this
gene was reported to influence susceptibility to multiple scle-

rosis, a severe inflammatory autoimmune disorder of the cen-
tral nervous system [60]. In addition, Sashio and coworkers
[61] linked two other polymorphisms to the TNFRSF1B gene-
locus that increase susceptibility to Crohn's disease and ulcer-
ative colitis, which are both chronic inflammatory diseases of
the gastrointestinal tract. In Japanese patients, Morita and
coworkers identified another SNP in the TNFRSF1B gene
associated with systemic lupus erythematosus (SLE).

Type I diabetes is a T cell mediated inflammatory autoim-
mune disease of the endocrine pancreas, resulting in lack of
insulin caused by β cell destruction. We found 18 genes in our
human TReg cell signature that have been reported to contrib-
ute to pathogenesis of this disease, including granzyme A
(GZMA) [63], the CD40 ligand (TNFSF5) [64,65], CTLA4
[66], and the T-cell specific transcription factor 7 (TCF7) [67].
Furthermore, two polymorphisms in the HLA-DRB1 gene,
which we found to be overexpressed in TReg cells, have been
described to confer high-risk susceptibility [68].

Rheumatoid arthritis (RA) is a chronic inflammatory disorder
that affects the joints and is probably caused by autoimmune
mechanisms. Twenty-one TReg specific genes have been
described as susceptibility genes for RA. For example,
LGALS3 [69,70], GZMA [71], and the S100 calcium binding
protein A4 (S100A4) [72] have been described as highly
expressed in the synovial tissue and at sites of joint destruc-
tion contributing to the inflammatory process. The complex
genetic component of RA etiology was further demonstrated
by the discovery of multiple polymorphisms, for example in
genes of the chemokine receptor 5 (CCR5) [73] and of HLA-
DRB1 [74], conferring high risk susceptibility.

In mice deficient for STAT4, a gene we found to be downreg-
ulated in our human TReg cells, RA is suppressed because of
reduced levels of IL-12 and interferon interferon (IFN)-γ [75].
Interestingly, STAT4-/- mice were additionally almost com-
pletely protected from diabetes [76] and induction of experi-
mental allergic encephalomyelitis [77], underlining the
importance of STAT4 downregulation in TReg cells.

Because TReg cells are essential for the maintenance of self-
tolerance, SNPs or mutations that affect genes expressed in
TReg cells may result in the synthesis of aberrant mRNAs and
proteins, which in turn could impair TReg cell function and/or
development, leading to higher risks for autoimmunity. Addi-
tionally, failures in gene regulation resulting in inadequate
protein amounts could disturb appropriate TReg cell activity,
thereby probably contributing to the pathogenesis of autoim-
mune disorders.

Because most of the genes discussed here are central compo-
nents of the functional modules discussed above, it is conceiv-
able that the dysregulation of one or more of these genes
affect TReg cell activity in terms of survival/apoptosis, differ-
entiation, proliferation, and suppressor function, thereby
Genome Biology 2006, 7:R54
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promoting breakdown of self-tolerance and eventually lead-
ing to autoimmunity.

Conclusion
This study provides new insight into gene expression charac-
terizing human regulatory versus naïve T cells from individ-
ual healthy donors. Based on our nonredundant microarray
approach, we identified a comprehensive set of 62 'old
friends' and 'new players' that are differentially expressed in
TReg cells. Pathway analysis implicated most of these genes in
functional key modules of survival/apoptosis, TCR signaling/
activation/proliferation, and differentiation/maintenance of
TReg cells and might therefore represent promising new tar-
gets for therapeutic intervention. This is underlined by the
fact that these genes have been widely associated with diverse
clinical setting of autoimmune diseases. Functional
dissection of the modules under pathophysiological condi-
tions should help to unravel the remaining mysteries of
human TReg cells and is essential for future development of
new therapeutic approaches exploiting their potential in bal-
ancing peripheral tolerance.

Materials and methods
Blood samples from healthy donors
Blood samples were collected from 11 healthy donors after
informed consent had been obtained, in accordance with
institutional guidelines. The Ethics Committee of Hanover
Medical School approved the study protocol. Basic character-
istics of all donors are summarized in Table 1. None of the
donors suffered from allergies or autoimmune disease and all
were free from acute or chronic infections.

Purification of human CD4+ T cells
CD4+ T cells were prepared from peripheral blood of healthy
donors by centrifugation over Ficoll-Hypaque gradients (Bio-
chrom AG, Berlin, Germany) and MACS isolation using the
CD4+ T cell isolation kit and AutoMACS technology (Miltenyi
Biotech, Bergisch Gladbach, Germany). Subsequently, cells
were separated into CD4+CD25- and CD4+CD25+ T cells by
either using sorting on a MoFlo (DakoCytomation, Fort Col-
lins, CO, USA) to a purity in excess of 98% (for Affymetrix
studies) or an AutoMACS using the regulatory human T cell
isolation kit (Miltenyi Biotech). To increase purity of the
CD25- T cell fraction an additional separation step depleting
remaining CD25+ T cells was added, if necessary. For studies
on the Human TReg Chip purity of the enriched cell fractions
was above 90%, as determined by flow cytometry (the
remaining contaminating cells mainly represent CD16+/
CD56+ natural killer cells and, at lower levels, CD8+ T cells,
CD19+ B cells and CD14+ monocytes; Additional data file 6).
Isolated cells were either directly used for RNA purification or
pooled equivalently as indicated before RNA purification.

Purification of murine CD4+ T cells
For Affymetrix GeneChip experiments, red blood cell
depleted splenocytes from BALB/c mice were labeled with
anti-CD4 and anti-CD25. Labeled cells were separated with a
MoFlo and purity was in excess of 98%. Isolated cells were
pooled equivalently (three independent individuals) and sub-
sequently used for RNA purification.

Propagation and stimulation of CD4+ T cell lines
CD4+CD25+ TReg cells were stimulated once with plate-bound
anti-CD3 (TR66, 1 µg/ml), soluble anti-CD28 (CD28.2, 1 µg/
ml; BD Bioscience, San Jose, CA, USA), and 50 U/ml recom-
binant human IL-2 (Proleukin; provided by P Wagner, Chiron
Corporation, Emeryville, CA, USA), and thereafter weekly
with irradiated allogeneic EBV-transformed B cells (LG2-
EBV; provided by T Boon, LICR, Brussels, Belgium).
CD4+CD25- T cells were stimulated directly with irradiated
LG2-EBV cells. Culture medium was Iscove's modified
Dulbecco's medium, with 10% fetal calf serum,100 U/ml pen-
icillin/streptomycin, and nonessential amino acids (PAA
Laboratories, Linz, Austria). Human peripheral blood was
obtained after informed consent had been obtained, in
accordance with institutional guidelines. Antibodies for
immunostaining were PE-, FITC-, APC-, and CyChrom-con-
jugated antibodies against CD4 (RPA-T4), CD25 (M-A251; all
from BD Bioscience), and FOXP3 (PCH101; eBioscine Inc.,
San Diego, CA, USA) and respective isotype controls. Anti-
CD3ε (TR66, produced from hybridoma supernatants) and
anti-CD28 (CD28.2; BD Bioscience) were used for T cell
stimulation.

Retroviral transduction of human effector CD4+ T cells
The cDNA encoding human FOXP3 was amplified from
cDNA of TReg cells using high fidelity PFU polymerase
(Promega) and specific primers (FOXP3: 5'-GAC AAG GAC
CCG ATG CCC A-3' and 5'-TCA GGG GCC AGG TGT AGG GT-
3'). The PCR product was cloned into pCR4.1 TOPO (Invitro-
gen, Carlsbad, CA, USA), sequenced, and inserted into a
pMSCV-based retroviral vector encoding an enhanced GFP
under the control of an IRES sequence. The amphotropic
PT67 packaging cell line (provided by M. Wirth, GBF, Braun-
schweig, Germany) was used for transfection. Filtrated (0.45
µm) virus-containing supernatant supplemented with 8 mg/
ml sequabrene (Sigma-Aldrich, Munich, Germany) was
applied to Th cells at day 2 after allogeneic stimulation by cen-
trifugation at 5000 × g for 60 minutes at room temperature.
Cells were expanded thereafter with 50 U/ml IL-2, and GFP-
expressing cells were sorted 1-2 weeks later using a FACS-
Vantage (BD Bioscience).

Flow cytometric analysis
To confirm purity of the separated cell fractions, regulatory
and naïve T cells were analyzed by multicolor FACS using the
following antibodies: anti-CD4-FITC and anti-CD25-PE
(Miltenyi Biotec). Flow cytometry was done using a FACSCal-
ibur applying CellQuest software (BD Bioscience).
Genome Biology 2006, 7:R54
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Real-time RT-PCR
CD4+CD25+ regulatory and CD4+CD25- naïve T cells were iso-
lated by MACS technology as described above. After cell lysis,
RNA was extracted from both cell populations applying the
RNeasy kit (Qiagen, Hilden, Germany). cDNA was synthe-
sized using oligo(dT) primers and random hexamers by
SuperScript II Reverse Transcriptase (Invitrogen, Karlsruhe,
Germany). Quantitative real-time RT-PCR was performed in
an ABI PRISM cycler (Applied Biosystems, Foster City, CA,
USA) using a SYBR Green PCR kit from Stratagene (La Jolla,
CA, USA) and specific primers optimized to amplify 90-230
base pair fragments from the different genes analyzed. A
threshold was set in the linear part of the amplification curve,
and the number of cycles needed to reach it was calculated for
every gene. Relative mRNA levels were determined by using
included standard curves for each individual gene and further
normalization to RPS9 as a housekeeping gene. Melting
curves established the purity of the amplified band. Primer
sequences are summarized in Table 3.

Preparation of the Human TReg Chip
A total of 395 oligonucleotides were deposited onto CodeLink
activated slides (Amersham Biosciences, Freiburg, Germany)
at a concentration of 25 µmol/l in 1.5× sodium phosphate
buffer in a contact-dependent manner using a MicroGrid TAS
II spotter (BioRobotics, Freiburg, Germany). All 50-mers
were amino-modified at the 5'-end enabling covalent linkage
to reactive ester groups provided by the glass surface. Cou-
pling of DNA was ensured by overnight incubation in a
saturated sodium chloride chamber, and blocking residual
reactive groups was done as recommended by the manufac-
turer [78]. Until used, slides were maintained in a desiccated
environment. To ensure complete spotting, SYBR-Green

staining of three randomly selected Human TReg Chips of each
printing batch was performed as previously described [79].

Design of the Human TReg Chip
Each probe in our microarray consists of a single 50 mer oli-
gonucleotide, because utility and performance of 50 mer oli-
gonucleotide microarrays was previously established [80].
The Human TReg Chip consists of 350 oligonucleotides prob-
ing genes specific for TReg cells and 31 oligonucleotides repre-
senting housekeeping genes consulted for normalization.
Furthermore, many control oligonucleotides are included:
two 5'-3' controls to ensure RNA integrity, four bacterial
hybridization controls to examine a linear hybridization
process, five spike-in controls to check sample preparation,
one positive control (Arabidopsis thaliana) for simpler grid
finding, and finally 32 negative controls to calculate the back-
ground level. Altogether, we immobilize eight replicates per
oligonucleotide, split into two separated arrays per slide, each
containing 1,600 spots. Genes probed on the Human TReg

Chip were selected by extensive analyses of literature and pre-
viously conducted Affymetrix microarray experiments.
Design and synthesis of the oligonucleotides were performed
by MWG using the Affymetrix probe sets as reference. Our
Human TReg Chip will be made available to the scientific com-
munity on our website [81].

Sample preparation, hybridization, washing, staining 
and scanning
Quality and integrity of the total RNA isolated from 1-2 × 105

CD4+CD25+ and CD4+CD25- T cells was controlled by run-
ning all samples on an Agilent Technologies 2100 Bioanalyzer
(Agilent Technologies, Waldbronn, Germany). Samples were
prepared by applying a double-linear amplification method in
accordance with the Eberwine protocol[82] and modified by

Table 3

Primer sequences used in real-time RT-PCR

Gene Primers

FOXP3 5'-GAA CGC CAT CCG CCA CAA CCT GA-3'

5'-CCC TGC CCC CAC CAC CTC TGC-3'

CTLA4 5'-TGC AGC AGT TAG TTC GGG GTT GTT-3'

5'-CTG GCT CTG TTG GGG GCA TTT TC-3'

CCR7 5'-TGG CCT GCA GGA AAC ACC-3'

5'-GGG AGA CTT CTT GGC TTG GTG AG-3'

RPS9 5'-CGC AGG CGC AGA CGG TGG AAG C-3'

5'-CGA AGG GTC TCC GCG GGG TCA CAT-3'

TNFRSF1B 5'-GTA GCC TTG CCC GGA TTC TGG-3'

5'-ACC CTG CCC CTG CTC TGC TA-3'

TRAF1 5'-GGG GCA TAA ACT TTC CTC TTC C-3'

5'-TTT GGG GTT ATA CAT TGC TCA GTG-3'

LGALS3 5'-CCT TTG CCT GGG GGA GTG GTG-3'

5'-TGA AGC GTG GGT TAA AGT GGA AGG-3'

RT-PCR, reverse transcription polymerase chain reaction.
Genome Biology 2006, 7:R54
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Affymetrix. Briefly, the first round of RNA amplification was
performed without biotinylated nucleotides using the
Promega P1300 RiboMax Kit for T7 amplification (Promega,
Mannheim, Germany). After clean up of the precipitated
aRNA synthesis of second round, first-strand cDNA was done
using random hexamers (Pharmacia, Freiburg, Germany).
Subsequent second-strand cDNA was prepared as in the first
round but integrating an additional RNAse H incubation step
to digest the aRNA before annealing of the T7T23V primer.
The second round of RNA amplification was performed as an
in vitro transcription assay in the presence of biotinylated
UTP using the GeneChip® Expression 3'-Amplification Rea-
gents Kit for IVT Labeling (Affymetrix). The concentration of
the obtained biotin-labeled cRNA was determined by ultravi-
olet absorbance and its quality as means of product length
distribution was again checked using the Agilent Bioanalyzer.
In all cases, 15 µg of each biotinylated cRNA preparation was
fragmented and placed in a hybridization cocktail containing
four biotinylated hybridization controls (BioB, BioC, BioD,
and Cre). Samples were hybridized to individual Human TReg

Chips for 16 hours at 42°C using a Lucidea Slidepro (Amer-
sham Biosciences). After hybridization the microarrays were
washed as recommended in the manufacturer's instructions
(CodeLink Expression Bioarray System; Amersham Bio-
sciences), stained with Cy5-streptavidin (Amersham Bio-
sciences), and read using an arrayWorXe scanner (Applied
Precision, Issaquah, WA, USA).

Affymetrix GeneChip assay
Samples were amplified for GeneChip analysis according to
the recommended protocols by the manufacturer. In all cases,
10 µg of each biotinylated cRNA preparation was fragmented
and placed in a hybridization cocktail containing four bioti-
nylated hybridization controls (BioB, BioC, BioD, and Cre), as
recommended by the manufacturer. Samples were hybridized
to an identical lot of Affymetrix GeneChips for 16 hours. After
hybridization the GeneChips were washed, stained with SA-
PE, and read using an Affymetrix GeneChip fluidic station
and scanner.

Criteria for  Human TReg Chip gene collection
Differentially expressed genes between CD4+CD25+ and
CD4+CD25- measured on Affymetrix GeneChips were
selected according to predefined categories deduced from
three parameters calculated by MAS 5 software: fold change
(FC), change p value (pValue), and signal intensity difference
(SID). Category A is defined as an FC above 2, pValue <0.001
(for increased) or >0.999 (for decreased), and SID above 200.
Category B is defined as FC above 2, pValue <0.01 (for
increased) and >0.99 (for decreased), and SID above100. Cat-
egory C is defined as FC above 1.5, pValue <0.001 (for
increased) and >0.999 (for decreased), and SID above 40.

The likelihood of a significant regulation decreases from cat-
egory A to C. Preferentially, most of the selected genes col-
lected for the Human TReg Chip are categorized as A. Selection

was performed by collecting genes that were significantly reg-
ulated in human cells, genes that were similarly regulated
between mouse and human, genes that were found to be reg-
ulated only in mouse cells and referenced in the literature,
and genes that were significantly affected by FOXP3 overex-
pression in cultured Th cell lines. Also considered were genes
known for their impact in mouse and human regulatory T cell
development.

Data analysis Human TReg Chip
Signal intensities were qualified and quantified by means of
Imagene software v5.5.2 (BioDiscovery, Los Angeles, CA,
USA). Spots of poor quality (flag = 3) were excluded from
further analysis. To adjust arrays from different experiments,
data normalization based on median signal intensities of the
housekeeping genes was carried out as proposed using the
following formula:

Where SInormalized is the normalized signal intensity, In is the
mean signal intensity of gene n, Bn is the mean background
intensity of gene n, and <ln house> is the median signal
intensity from housekeeping genes expressed as ln (logarithm
naturalis).

Differences in gene expression among CD4+CD25+ regulatory
and CD4+CD25- naïve T cells were determined statistically by
corrected t test analysis using the SAM tool [83]. Differen-
tially expressed genes were defined using the following SAM
parameters: delta = 2.46 and median FDR (false discovery
rate) = 0.48. For two-dimensional hierarchic clustering anal-
ysis Genesis software v1.4.0 was applied [84].

Accession numbers
The entire data sets are deposited in a MIAME compliant for-
mat at Gene Expression Omnibus (GEO) [85]. Data derived
from the Human TReg Chip are available under the series
accession number GSE3882 (platform ID, GPL3110).

Data derived from Affymetrix GeneChip system and used as
reference and selection data sets are published at GEO under
series accession number GSE4527 (FOXP3 and GFP trans-
duced CD4+ Th cells) and GSE4571 (representing data from
CD4+CD25+ and CD4+CD25- T cellsisolated by cell sorting
from human peripheral blood and CD4+CD25+ and
CD4+CD25- T cells isolated by cell sorting from spleen pre-
pared from BALB/C mice).
Additional File 1Click here for fileAdditional File 2Click here for fileAdditional File 3Click here for fileAdditional File 4Click here for fileAdditional File 5Click here for fileAdditional File 6Click here for file

Additional data files
The following additional data are available with the online
version of this paper: An Excel spreadsheet containing lists of
differentially expressed genes in murine and human
CD4+CD25+ T cells versus CD4+CD25- T cells obtained from
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whole-genome Affymetrix GeneChips (Additional file 1); an
Excel spreadsheet containing a list of genes that were likewise
affected by Foxp3 overexpression in CD4+ Th cell lines and
CD4+CD25+ derived TReg cell lines compared with their
appropriate controls (data obtained using whole-genome
Affymetrix GeneChip HG-U133A; Additional data file 2); an
Excel spreadsheet containing a list of known genes that were
previously discussed in the literature within the context of
human and murine regulatory T cells (Additional data file 3);
an Excel spreadsheet containing relative expression datafrom
Foxp3 overexpressing CD4+ Th cell lines versus their GFP
tranduced CD4+ Th controls obtained from whole genome
Affymetrix GeneChip HG-U133A (data are presented for
genes that are also accessible on the Human TReg Chip; Addi-
tional data file 4); a Word file presenting data for the regula-
tory phenotype and the amount of Foxp3+ cells within MACS
purified human CD4+CD25+ T cells (Additional data file 5);
and a Word table describing the phenotype of contaminating
cells within MACS purified CD4+CD25+ and CD4+CD25- T
cells (Additional data file 6).
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