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Abstract

Background: Cluster analysis is often used to infer regulatory modules or biological function by
associating unknown genes with other genes that have similar expression patterns and known
regulatory elements or functions. However, clustering results may not have any biological
relevance.

Results: We applied various clustering algorithms to microarray datasets with different sizes, and
we evaluated the clustering results by determining the fraction of gene pairs from the same clusters
that share at least one known common transcription factor. We used both yeast transcription
factor databases (SCPD, YPD) and chromatin immunoprecipitation (ChIP) data to evaluate our
clustering results. We showed that the ability to identify co-regulated genes from clustering results
is strongly dependent on the number of microarray experiments used in cluster analysis and the
accuracy of these associations plateaus at between 50 and 100 experiments on yeast data.
Moreover, the model-based clustering algorithm MCLUST consistently outperforms more
traditional methods in accurately assigning co-regulated genes to the same clusters on standardized
data.
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Conclusions: Our results are consistent with respect to independent evaluation criteria that
strengthen our confidence in our results. However, when one compares ChlP data to YPD, the
false-negative rate is approximately 80% using the recommended p-value of 0.001. In addition, we
showed that even with large numbers of experiments, the false-positive rate may exceed the true-
positive rate. In particular, even when all experiments are included, the best results produce
clusters with only a 28% true-positive rate using known gene transcription factor interactions.

Background assigned to groups (or clusters) based on their expression
Cluster analysis is a popular exploratory technique to analyze ~ patterns and no prior knowledge of the data is required. A
microarray data. It is often used for pattern discovery - to =~ common application of cluster analysis is to identify poten-
identify groups (or clusters) of genes or experiments with  tially meaningful relationships between genes or experiments
similar expression patterns. Cluster analysis is an unsuper-  or both [1-3].

vised learning approach in which genes or experiments are
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Transcription of a gene is determined by the interaction of
regulatory proteins (that is, transcription factors) with DNA
sequences in the gene's promoter region [4]. A common
application of cluster analysis is to identify potential tran-
scriptional modules, for example genes that share common
promoter sites. An example of this is the large-scale analysis
of gene expression as a function of cell cycle in yeast [5]. The
study focused on genes that behaved similarly to other genes
that are known to be regulated during the cell cycle. A total of
800 genes were found to be regulated during the cell cycle,
and 700 base pairs (bp) of genomic sequence immediately
upstream of the start codon for each of these 800 genes was
analyzed to identify potential binding sites for known or novel
factors that might control expression during the cell cycle.
The majority of the genes were shown to have good matches
to known cell-cycle transcription factor binding sites.

The approach pioneered by Spellman et al. [5] - for example
the meta-analysis of massive amounts of gene-expression
data to identify genes that are co-expressed followed by pro-
moter analysis - is now commonplace [6-10]. Cluster analysis
is often used to identify genes whose expression levels are
correlated across numerous experiments. However, using
cluster analysis to infer regulatory modules or biological func-
tion has its limitations. In general, cluster analysis always
returns clusters independent of the biological relevance of the
clusters. Microarray data can be quite noisy owing to meas-
urement errors and technical variations, and cluster analysis
will find patterns in noise as well as in signal. In this paper, we
address two main questions. The first is how often do we dis-
cover co-regulated genes (that is, genes that are regulated by
common transcription factors) from co-expressed genes (that
is, genes that share similar expression patterns). The second
asks how the following factors affect the likelihood of finding
co-regulated genes: the number of microarray experiments in
the microarray datasets; the clustering algorithm used; and
the diversity of experiments in a microarray dataset.

The primary thrust of this paper is to provide guidance to
researchers who wish to use cluster analysis of gene expres-
sion data to identify co-regulated genes. In particular, we pro-
vide an estimate of the accuracy of this association as a
function of the number of experiments used in cluster analy-
sis. This information is critical for researchers in assessing
how much effort (if any) should go into promoter analysis of
genes that cluster together in a fixed number of experiments.

Our approach

Our goal is to study the likelihood that co-expressed genes are
regulated by the same transcription factor(s). We define co-
expressed genes as genes that share similar expression pat-
terns as discovered by cluster analysis, and we define co-reg-
ulated genes as genes that are regulated by at least one
common known transcription factor. Our overall approach is
illustrated in Figure 1. In brief, we first defined a set of genes
that are controlled by known transcription factors. As there is
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Our overall approach. We applied different clustering algorithms to
cluster the genes in yeast microarray datasets with different sizes to
identify co-expressed genes. The level of co-regulation is evaluated using
yeast transcription factor databases (SCPD and YPD) and ChIP data. The
clustering results are then evaluated by determining the fraction of gene
pairs from the same clusters that share at least one known common
transcription factor.

both an abundance of yeast array data and many available
resources on yeast transcription factors such as yeast tran-
scription factor databases [11,12] and yeast chromatin immu-
noprecipitation (ChIP) data [13,14], we ran our experiments
on yeast data. Genes that share common transcription factors
are taken as our 'gold standards' for evaluating the ability of
cluster analysis to infer co-regulation. We then identified
large publicly available yeast microarray datasets, preproc-
essed these datasets to remove genes with many missing val-
ues and created randomly sampled subsets of the data on
which we performed cluster analysis. The randomly sampled
subsets with different numbers of microarray experiments
allow us to study the effect of the size of microarray datasets
on the likelihood of discovering co-regulated genes. We used
two publicly available yeast microarray datasets consisting of
hundreds of microarray experiments: the yeast compendium
data [2] and the yeast environmental stress data [15,16]. The
yeast compendium dataset [2] consists of 300 knock-out
microarray experiments, whereas the yeast environmental
stress dataset [15,16] consists of 225 concatenated time
course microarray experiments. We investigated the effect of
different clustering algorithms on identifying co-regulated
genes by applying different clustering algorithms to subsets of
these microarray datasets, including heuristic-based cluster-
ing algorithms such as hierarchical complete-link and hierar-
chical average-link algorithms, and model-based clustering
algorithms such as MCLUST [17-19] and the infinite mixture
model-based method (IMM) [20-22].

We used two independent sources of data to define co-regu-
lated genes: yeast transcription factor databases [11,12] and
yeast chromatin immunoprecipitation (ChIP) data [13,14].
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Transcription factor databases are based on published results
in the literature and are generally based on specific measures
of physical interactions between the transcription factor, pro-
moter, and some measure that the transcription factor truly
regulates the downstream gene. We used two different tran-
scription factor databases: the Saccharomyces cerevisiae
Promoter Database (SCPD) [11], and the Yeast Proteome
Database (YPD) [12]. The SCPD lists approximately 230 yeast
genes that are regulated by 9o transcription factors, while the
YPD lists approximately 580 yeast genes that are regulated by
120 transcription factors, as of November 2001. We extracted
two subsets of genes that are listed in the SCPD and YPD data-
bases from each of the yeast compendium [2] and the envi-
ronmental stress [15,16] microarray datasets. After
eliminating genes and experiments with many missing val-
ues, the two gene subsets from the compendium data evalu-
ated using SCPD and YPD consist of 215 genes under 273
experiments, and 537 genes under 258 experiments, respec-
tively. The two gene subsets from the environmental stress
data evaluated using SCPD and YPD consist of 205 genes
under 205 experiments, and 526 genes under 198 experi-
ments, respectively. The ChIP data represents a systematic
technique to determine target genes bound to a set of tran-
scription factors in vivo. However, the binding of a transcrip-
tion factor to the promoter sequence of a gene does not
necessarily imply that the transcription factor actually regu-
lates the gene. We evaluated the two gene subsets from each
of the yeast compendium and environmental stress datasets
using the ChIP data [14] in addition to the corresponding
transcription factor database. Two genes are considered co-
regulated if they are bound to at least one common transcrip-
tion factor in the ChIP data. The publicly available ChIP data
[14] adopts an error model in which a confidence value (p-
value) is assigned to each regulator-DNA interaction, and we
used the recommended p-value threshold of 0.001. In other
words, we assume that a gene binds to a given transcription
factor if the p-value is at most 0.001.

To assess the reliability of cluster analysis in the inference of
co-regulation, we evaluated the clustering results by comput-
ing the true positive rate (TP rate), which is defined as the
fraction of co-clustered gene pairs that share at least one com-
mon known transcription factor. A high TP rate indicates a
high level of co-regulation from a given clustering result. As
we do not have complete knowledge of all transcription fac-
tors, this TP rate is expected to be underestimated. Moreover,
we compared the TP rate from a clustering algorithm to that
from random partitions over a range of numbers of clusters
because the TP rate may be sensitive to the number of clusters
and/or the size distribution of clusters. Our primary evalua-
tion criterion is a z-score, which measures the significance of
the TP rate from a clustering result relative to the distribution
of TP rates from random partitions with the same number of
clusters and same cluster size distributions. Hence, the z-
score is a measure of how accurately cluster analysis infers co-
regulation relative to a random guess. A high z-score implies

Genome Biology 2004, Volume 5, Issue 7, Article R48

that the TP rate from the given clustering result is signifi-
cantly higher than those of random partitions, and hence,
indicates a high level of co-regulation.

Results

Effect of clustering algorithms

In order to study the effect of different clustering algorithms,
we applied different clustering algorithms to subsets of genes
listed in SCPD or YPD using all available experiments from
the compendium dataset and the environmental stress data-
set. For each dataset, we extracted two overlapping gene sub-
sets according to the genes listed in SCPD and YPD
respectively. For each of these four gene subsets, we evaluated
the proportion of co-regulated genes from clustering results
using two criteria: transcription factor databases (SCPD or
YPD) and ChIP data. Because we do not have perfect knowl-
edge of the optimal number of clusters, we applied each clus-
tering algorithm over a range of numbers of clusters.

Two typical results are shown in Figure 2a,b, which compare
the z-scores from different clustering algorithms (hierarchi-
cal average-link using correlation and Euclidean distance,
hierarchical complete-link using correlation and Euclidean
distance, MCLUST and IMM) on the yeast compendium data-
set with 215 genes and 273 experiments evaluated using
SCPD and ChIP data, respectively. The model-based cluster-
ing algorithm MCLUST with the equal-volume spherical
model and hierarchical complete-link with correlation as the
similarity measure produce the highest z-scores (hence, pro-
portion of co-regulated genes) over the entire range of
number of clusters (from 5 to 100), using either SCPD or ChIP
data as the evaluation criterion. Figure 2a,b also shows that
using correlation coefficient as the pairwise similarity meas-
ure produces significantly higher proportions of co-regulated
genes from clustering results than using Euclidean distance.
The results from MCLUST and IMM shown in Figure 2a,b
represent z-scores from the algorithms applied to the stand-
ardized data. Standardization of the data dramatically
increases the z-scores from model-based methods (see Figure
A.1.b in Additional data file 1). Standardization means that
the average expression value of each gene across all experi-
ments is subtracted from the expression value of each gene
and then divided by the standard deviation of its expression
levels across all experiments. It can be shown that correlation
and Euclidean distance are equivalent after standardization.

We observed similar results on another subset from the yeast
compendium dataset, and the two gene subsets from the envi-
ronmental stress data (see Figures A.2-A.4 in Additional data
file 1): MCLUST with the equal-volume spherical model on
the standardized data typically produces the highest z-scores
and using correlation as the similarity measure always pro-
duces higher z-scores than Euclidean distance. In addition,
the two independent evaluation criteria, transcription factor
databases (SCPD or YPD) and ChIP data, produce very
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(a) Figure 2

Effect of different clustering algorithms using all available microarray
experiments. We compared the ability of different clustering algorithms to
identify co-regulated genes using all 273 microarray experiments from the
subset of compendium data with 215 genes. The clustering algorithms we
compared include hierarchical average-link using correlation and Euclidean
distance as the similarity measure, hierarchical complete-link using
correlation and Euclidean distance as the similarity measure, and model-
based clustering algorithms MCLUST and IMM on standardized data. A
high z-score indicates a high proportion of co-regulated genes from
clustering results compared to those from random partitions with the
same numbers of clusters and cluster size distributions. Since the optimal
number of clusters is not known, we compared the performance of
clustering algorithms over a range of different numbers of clusters (from 5
to 100). (a) The transcription factor database SCPD is used as the
evaluation criterion for co-regulated genes. (b) ChlIP data is used as the
evaluation criterion for co-regulated genes. The model-based clustering
algorithm MCLUST produces relatively high z-scores using either SCPD or
ChlP as our evaluation criterion.
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(distance) on model-based clustering methods [21,23], we showed that
both MCLUST and IMM produced reasonable estimates of
(b) the numbers of clusters on microarray data. Using IMM, we
estimated that there are 25 clusters on the compendium data
subset with 215 genes and 273 experiments, 42 clusters on the
compendium dataset with 537 genes and 258 experiments, 16
clusters on the environmental stress dataset with 205 genes
and 205 experiments, and 34 clusters on the environmental
stress dataset with 526 genes and 198 experiments. On the
other hand, MCLUST does not offer any reasonable estimates

g of numbers of clusters in this case.
3
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Figure 3a shows a typical result comparing the median z-
scores from a given clustering algorithm (hierarchical com-
plete-link, in this case) on randomly sampled subsets with

Figure 2
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Figure 3

Effect of the number of microarray experiments on the compendium data
subset with 215 genes. We compared the extent of co-regulated genes
using different numbers of microarray experiments on the subset of
compendium data with 215 genes. In order to produce typical datasets
with E experiments (where E =5, 10, 20, 50, 100), we randomly sampled
(with replacement) 100 different subsets of E experiments from the
compendium data with 215 genes and 273 experiments. The ability to
identify co-regulated genes from clustering results is summarized by the
median z-scores over the 100 randomly sampled datasets. A high median
z-score indicates a high proportion of co-regulated genes from clustering
results compared to those from random partitions. (a) We compared the
median z-scores using different numbers of experiments (E) from
hierarchical complete-link over a range of different numbers of clusters
(from 5 to 100). The transcription factor database SCPD is used as the
evaluation criterion for co-regulated genes. The median z-scores generally
increase as E increases over different numbers of clusters. This shows that
higher proportions of co-regulated genes are identified on microarray
datasets with higher numbers of experiments. (b) Using SCPD as our
evaluation criterion, we compared the median z-scores using different
numbers of experiments (E) and different clustering algorithms
(hierarchical average-link and complete-link using correlation, model-
based clustering algorithms MCLUST and IMM on standardized data) on
the compendium data subset with 215 genes at 25 clusters. We estimated
the optimal number of clusters on this dataset to be 25 using IMM, and we
observed similar results at different numbers of clusters. (c) Using ChIP
data as our evaluation criterion, we compared the median z-scores using
different numbers of experiments (E) and different clustering algorithms
on the compendium data subset with 215 genes at 25 clusters. Using
either SCPD or ChlIP as our evaluation criterion, the median z-scores
typically increase as E increases, and MCLUST typically produces relatively
high median z-scores.

different numbers of microarray experiments (E) over a range
of numbers of clusters on the compendium data subset with
215 genes evaluated using SCPD. Figure 3a shows that the
median z-scores (and hence, the proportions of co-regulated
gene pairs) increase as the number of microarray experi-
ments (E) increases for hierarchical complete-link over dif-
ferent numbers of clusters. We observed the same trend using
other clustering algorithms. In particular, the median z-
scores increase drastically from five experiments to 50 exper-
iments, and then the increase in median z-score starts to flat-
ten. We observed the same trend on all our datasets (two
different gene subsets from both the compendium and envi-
ronmental stress data) evaluated using either a transcription
factor database (SCPD or YPD) or ChIP data (see Figures B.1-
B.4 in Additional data file 1 for detailed results).

Figure 3b shows a typical result comparing the median z-
scores from different clustering algorithms (hierarchical
average-link using correlation, hierarchical complete-link
using correlation, MCLUST and IMM on standardized data)
over different sizes of microarray datasets (E = 5, 10, 20, 50,
100, and 273) at 25 clusters on the compendium data subset
with 215 genes evaluated using SCPD. Again, we observed
that the median z-scores increase as the numbers of microar-
ray experiments in the randomly sampled datasets (E)
increase. Moreover, the model-based algorithm MCLUST
produces the highest median z-scores (and hence, proportion
of co-regulated gene pairs) for E = 5, 10, 20, 50 and 100.

Genome Biology 2004, 5:R48
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Effect of the number of microarray experiments on the compendium data
subset with 537 genes. Using YPD as the evaluation criterion, we
compared the median z-scores using different numbers of experiments
and different clustering algorithms (hierarchical average-link and complete-
link using correlation, model-based clustering algorithms MCLUST and
IMM on standardized data) on the compendium data subset with 537
genes and 258 experiments at 40 clusters. The median z-scores (and
hence, proportions of co-regulated genes) increase as the number of
experiments increases, and MCLUST produces relatively high median z-
scores. We observed very similar results using ChlP data as the evaluation
criterion.

When all the experiments are used (E = 273), hierarchical
complete-link produces the highest median z-score. We
observed the same trend (that is MCLUST generally produces
the highest median z-scores) at other numbers of clusters.

We also compared the distribution of z-scores over the 100
randomly sampled subsets as a function of the size of the ran-
domly sampled subsets (E). Specifically, we created box-plots
of the z-scores over different sizes of randomly sampled data
(E) for a given clustering algorithm and a fixed number of
clusters. The medians and percentiles of the z-scores gener-
ally increase when there are more experiments in the subsets
(see Figure B.1.d in Additional data file 1). In other words, a
higher proportion of co-regulated genes are identified on
microarray datasets with a higher number of experiments.

Using ChIP data as the evaluation criterion, Figure 3¢ shows
a typical result comparing the median z-scores from different
clustering algorithms over different E at 25 clusters on the
compendium data subset with 215 genes. Both evaluation cri-
teria (SCPD and ChIP data) produce very similar results:
MCLUST generally produces the highest median z-scores and
the median z-scores increase as E increases. The only differ-
ence is that MCLUST produces higher z-scores than hierar-
chical complete-link using correlation with all 273
experiments when ChIP data is used as our evaluation crite-
rion instead of SCPD.

Effect of the number of microarray experiments on the environmental
stress data subset with 205 genes. Using SCPD as the evaluation criterion,
we compared the extent of co-regulated genes using different numbers of
microarray experiments on the subset of environmental stress data with
205 genes and 205 experiments at 20 clusters. The median z-scores (and
hence, proportions of co-regulated genes) increase as the number of
experiments increases, and MCLUST typically produces relatively high
median z-scores. We observed very similar results using ChIP data as the
evaluation criterion.

We observed the same results on all other datasets: the
median z-scores increase as E increases and MCLUST gener-
ally produces the highest median z-scores compared to other
clustering algorithms. For example, Figure 4 compares the
performance of different clustering algorithms (hierarchical
average-link using correlation, hierarchical complete-link
using correlation, and MCLUST on standardized data) over
different sizes of randomly sampled data (E = 5, 10, 20, 50,
100 and 258) on another gene subset from the compendium
data with 537 genes evaluated using YPD. Figures 5 and 6
show the results on the two gene subsets from the environ-
mental stress data evaluated using SCPD and YPD respec-
tively. The z-scores of IMM are not available on all the plots
because it is very computationally expensive to run IMM on
100 randomly sampled subsets for each E on each dataset. We
observed the same trends when ChIP data is used as the eval-
uation criterion (see Figures B.1-B.4 in Additional data file 1).

Diversity of microarray experiments

We investigated the effect of the diversity of experimental
conditions on the level of co-regulation from cluster analysis.
Specifically, we adopted a greedy algorithm to search for a
subset of E experiments with high diversity and another sub-
set of E experiments with low diversity from each of the com-
pendium and environmental stress datasets. For these
searches, diversity was defined as average pairwise correla-
tion in gene expression between experiments (the Materials
and methods section gives details of the greedy algorithm and

Genome Biology 2004, 5:R48
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Effect of the number of microarray experiments on the environmental
stress data subset with 526 genes. Using YPD as the evaluation criterion,
we compared the extent of co-regulated genes using different numbers of
microarray experiments on the subset of environmental stress data with
526 genes and 198 experiments at 30 clusters. The median z-scores
increase as the number of experiments increases, and MCLUST produces
relatively high median z-scores. We observed very similar results using
ChlP data as the evaluation criterion.

our definition of diversity). Cluster analysis was then applied
to these subsets with high and low diversities.

Contrary to our expectations, we did not observe any consist-
ent patterns between the diversity of experimental conditions
and the z-score. For example, relatively similar subsets of
knock-out experiments from the compendium data tend to
produce higher proportions of co-regulated genes than
diverse subsets of such experiments. On the other hand, rela-
tively diverse subsets of time-course experiments from the
environmental stress data tend to produce higher proportions
of co-regulated genes than similar subsets of such experi-
ments. It is possible that the diversity of experimental condi-
tions has a different effect on different types of microarray
datasets: the compendium dataset consists of knock-out
experiments, while the environmental stress dataset consists
of concatenated time-course experiments. However, we need
more evidence (in particular, more microarray datasets of dif-
ferent natures) to confirm this possibility. Another possible
reason for the inconsistent patterns is that our definition of
diversity in terms of average correlation between all pairs of
experiments may not be the best definition of diversity for
this purpose of grouping experiments that are likely to help
identify co-regulated genes. A third possible reason is that the
diversity of experimental conditions has no significant effect
on co-regulation at all. With our current results, we cannot
rule out this third possibility.

Genome Biology 2004, Volume 5, Issue 7, Article R48

Discussion

It is important to note that even when all experiments are
included, the best results produce clusters with only a 28%
true positive rate (see Figure E.1.a in Additional data file 1).
That is, most of the genes in a given cluster do not share a
common, known transcription factor. There are several possi-
ble reasons for this. First, with the present state of knowledge,
it is possible that genes in the same cluster do in fact share a
common transcription factor that is not (yet) represented in
the databases used as gold standards (YPD, SCPD and ChIP
data). We note for example, that when one compares ChIP
data to YPD, the false-negative rate is approximately 80%
using the recommended p-value of 0.001. That is, known
gene transcription factor interactions from YPD are identified
only about 20% of the time by ChIP (see Table F in Additional
data file 1). Hence, it is possible that our evaluation criteria all
underestimate the number of co-regulated genes in a cluster.
Second, gene regulation is more complex than accounted for
in our approach; for example, we define sharing a common
transcription factor as 'co-regulated’, and each gene belongs
to exactly one cluster in the clustering algorithms we consid-
ered. Individual genes are often regulated by multiple
transcription factors, some of which may enhance or repress
transcription. Hence, genes may be co-expressed as a result of
a combination of the effects of multiple transcription factors
that need not be shared across all genes. Third, genes may be
included in a cluster primarily because of noise (measure-
ment errors or technical variations) in the data rather than
true signal. Finally, the range of conditions under which the
experimental data was obtained may not produce changes in
gene expression that would result in segregation of genes into
appropriate clusters.

Even with the above caveats, our methodology simulates a
common approach of experimental biologists. That is, clus-
tering of diverse gene-expression datasets under the assump-
tion that co-regulated genes will co-cluster, followed by
attempts to identify the common transcription factors and
transcription factor binding sites. While this approach has
been very successful when applied to very large datasets (in
particular in yeast), it is clear that the accuracy of inference
should be highly dependent on the number of experimental
conditions included in the analysis. The motivation of our
study is to provide guidance as to the likelihood that this
approach will produce true- and false-positive results and to
study these rates as a function of the number of experiments
that are clustered.

Our current study does not provide completely quantitative
results; for example, how many experiments are sufficient for
co-clustered genes to have x% probability of being co-regu-
lated? Ideally, we would like to minimize both false positives
and false negatives. However, we believe that it is of greater
importance to focus on false positives, because false positives
potentially lead to a waste of resources and effort to verify
nonexistent relationships, while false-negatives represent
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missed opportunities. We also do not provide reliable false-
negative rates because of our incomplete knowledge: the
transcription factor databases document known gene tran-
scription factor interactions, but they do not give any infor-
mation on known genes that are not regulated by given
transcription factors. It is also not clear how to determine the
p-value threshold for non-binding between genes and tran-
scription factors on ChIP data. Furthermore, our study does
not take the information limit of microarray data into consid-
eration. For example, the environmental stress data consist of
225 concatenated time course microarray experiments, while
the number of distinct experimental conditions is signifi-
cantly less than 225. However, our results show that the abil-
ity of clustering algorithms to identify co-regulated genes
increases dramatically as the number of microarray experi-
ments used in cluster analysis is increased. In general, the
ability to identify co-regulated genes in yeast datasets starts
to plateau when the number of microarray experiments is
greater than 50. In addition, our study indicates that the like-
lihood of correctly identifying co-regulated genes by cluster-
ing a small number (< 10) gene-expression experiments in
yeast is quite small, and that even with large numbers of
experiments, the false-positive rate may exceed the true-pos-
itive rate. For example, cluster analysis on five experiments
identifies co-regulated genes only 1.5- to 6-fold more accu-
rately than random assignment of genes to clusters on our
yeast datasets (Figures 3b,c, 4 and 5). Moreover, our results
were, for the most part, independent of the number of genes
in the datasets and the gold standards used. That is, using
SCPD, YPD, or ChIP data to identify which genes share a com-
mon transcription factor yielded very similar results in most
cases. Since we extracted different (but overlapping) subsets
of genes using the genes listed in SCPD and YPD for evalua-
tion, and each of these two gene subsets are independently
evaluated using ChIP data again, we have very strong confi-
dence that our observations and general results are highly
representative despite our incomplete knowledge of yeast
transcription factors.

Therefore, caution is indicated before embarking on compu-
tational approaches to identify putative transcription factor
binding sites in genes that co-cluster in small numbers of
experiments. In addition, prudence should be exercised
before embarking on expensive bench experiments to charac-
terize these putatively identified transcription factor binding
sites. Finally, it is worth noting that our current study focused
on yeast, which is a simple eukaryote consisting of only 6,200
genes. We would expect that the correspondence between co-
clustering and co-regulation would be lower in more complex
organisms. We are interested in extending our investigation
to other organisms, such as Escherichia coli and Caenorhab-
ditis elegans, both of which have fully sequenced genomes
and for which there are large microarray datasets and availa-
ble resources on their transcription factors. Another possible
extension to our work is the inclusion of tentative regulatory
sequences as our fourth evaluation criterion. A third direction
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of future work would be to derive mathematically the mean
and standard deviation of the distribution of the TP rates
from random partitions as a function of the number of clus-
ters and cluster sizes, so as to minimize the computational
running time of our study.

Conclusions

Our results demonstrate several important overall features.
First, the ability to identify co-regulated genes from co-
expressed genes is strongly dependent on the number of
microarray experiments used in cluster analysis, and the
accuracy of these associations plateaus at between 50 and 100
experiments. Second, the model-based clustering algorithm
MCLUST consistently outperforms more traditional methods
in accurately assigning co-regulated genes to the same clus-
ters. Third, using correlation as the similarity measure in
heuristic-based clustering algorithms generally produces rel-
atively higher proportions of co-regulated genes compared to
Euclidean distance. Fourth, our two independent evaluation
criteria for co-regulation (transcription factor databases and
ChIP data) produced similar conclusions.

Materials and methods

Microarray datasets

We used two publicly available yeast microarray datasets con-
sisting of hundreds of microarray experiments: the yeast
compendium data [2,24] and the yeast environmental stress
data [15,16,25,26]. The yeast compendium dataset [2] con-
sists of 300 two-color cDNA microarray experiments in which
the transcript levels of diverse mutations or chemically
treated culture in yeast were compared to that of a wild-type
or mock-treated cultures. The yeast environmental stress
dataset [15,16] consists of 225 concatenated time course
c¢DNA microarray experiments. These experiments represent
the temporal program of gene expression in response to
diverse environmental transitions (such as heat shock, hydro-
gen peroxide or nitrogen depletion) and to DNA-damaging
agents (the methylating agent methylmethane sulfonate and
ionizing radiation).

Evaluation criteria and microarray data pre-processing
We adopted two types of evaluation criteria for co-regulated
genes: yeast transcription factor databases [11,12] and yeast
ChIP data [13,14,27]. The SCPD [11] lists approximately 230
yeast genes that are regulated by 9o transcription factors,
while the YPD [12] lists approximately 580 yeast genes that
are regulated by 120 transcription factors as of November
2001. We extracted two subsets of genes from each of the
compendium and environmental stress datasets: one subset
of genes as listed in SCPD and another subset of genes as
listed in YPD. These gene subsets are selected on the basis of
the genes listed in SCPD and YPD. We did not pre-process the
microarray data with any filtering steps based on differential
expression or absolute levels of expression (see section G of
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Comparing YPD and SCPD

SCPD YPD Common
Number of distinct ORFs 235 584 156
Number of distinct transcription factors 108 120 34
Number of gene-transcription factor interactions 473 1,056 119

Additional data file 1 for a discussion of the effect of filtering).
After eliminating genes and experiments with lots of missing
values, the full compendium datasets evaluated using SCPD
and YPD consist of 215 genes under 2773 experiments, and 537
genes under 258 experiments respectively, and the full envi-
ronmental stress datasets evaluated using the SCPD and the
YPD consist of 205 genes under 205 experiments, and 526
genes under 198 experiments respectively. These data subsets
contain at most 1% missing expression values. As the current
implementations of the model-based clustering algorithms
(MCLUST and IMM) require the input data to have no miss-
ing values, we filled in the missing values using KNNimpute
[28] which imputes missing values using weighted average
expression levels from other genes with similar expression
patterns. To our surprise, most of the gene transcription fac-
tor interactions listed in YPD are not listed in SCPD and vice
versa. Table 1 shows that there are only 156 common genes
listed in both YPD and SCPD, and only 119 common gene
transcription factor interactions are listed in both YPD and
SCPD.

Because the gene transcription factor interactions from tran-
scription factor databases are incomplete, we independently
evaluated the extent of co-regulation of these four gene sub-
sets (two gene subsets from each of the compendium and
environmental stress data) using the yeast ChIP data [14],
which systematically identify target genes bound in vivo by a
set of 106 known transcription factors. The publicly available
ChIP data [14] adopts an error model in which a confidence
value (p-value) is assigned to each regulator-DNA interac-
tion. A p-value close to 0 implies that we have high confidence
that a gene of interest binds to a given transcription factor.
Lee et al. [14] recommended a p-value threshold of 0.001 to
minimize false positives and to maximize legitimate regula-
tor-DNA interactions.

There are 791 gene transcription factor interactions from YPD
for which both the gene names and the transcription factors
are present in the ChIP data [14]. Out of these 791 interac-
tions, only 20% (or 159) were detected by the ChIP data using
a p-value threshold of 0.001. On the other hand, there are 642
gene transcription factor interactions from the ChIP data [14]
using a p-value threshold of 0.001. Out of these 642 interac-
tions, only 34% (or 221) were reported in YPD. Therefore, the

gene transcription factor interactions inferred from the ChIP
data are quite different from those listed in YPD (see Table F
in Additional data file 1).

Measure of statistical significance

We evaluated the level of co-regulation of clustering results by
considering pairs of genes assigned to the same clusters and
counting the fraction of these gene pairs that share at least
one common known transcription factor. Specifically, we
defined the true-positive rate (TP rate) as

Number of gene pairs from the same c'usters and share at ‘east one common transcription factor
Number of gene pairs from the same c'usters

TP rate =

A high true-positive rate indicates a high proportion of co-
regulated genes from a given clustering result. However, as
we do not have complete knowledge of all transcription fac-
tors (for example, the gene-transcription factor interactions
listed in transcription factor databases are likely to be incom-
plete and the p-value threshold used in ChIP data may not be
optimal), the TP rates we computed are likely to be
underestimates.

As the TP rate may change as a function of the number and
size distribution of clusters, we compared the TP rate from a
clustering result to that from random partitions over a range
of numbers of clusters. Specifically, we randomly partitioned
the set of genes from a clustering result many times (typically
1,000 times in our experiments) to produce the same number
of clusters and cluster size distribution as the given clustering
result. We computed the TP rates of these random partitions
and compared the distribution of these TP rates from random
partitions to the TP rate of the given clustering result. The TP
rates from random partitions typically closely follow the nor-
mal distribution. Hence, we computed the mean p and stand-
ard deviation o for the distribution of TP rates from random
partitions. Let us denote the TP rate from a clustering result
as X. The z-score, z, associated with the TP rate is defined as

A high z-score implies that the TP rate from the given cluster-
ing result is significantly higher than those of random parti-
tions, and thus indicates a high level of co-regulation. We
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computed the z-scores as a function of clustering algorithm,
number of experiments and number of clusters.

Effect of the number of microarray experiments

To study the effect of the number of microarray experiments
on the likelihood of discovering co-regulated genes from clus-
tering results, we randomly sampled (with replacement) sub-
sets of E experiments from each of the four data subsets (two
gene subsets from each of the compendium and environmen-
tal stress data), where E = 5, 10, 20, 50, 100. We repeated this
random sampling procedure 100 times for each E on each
dataset.

Effect of clustering algorithms

There are numerous algorithms and associated programs to
perform cluster analysis (for example, hierarchical methods
[29], self-organizing maps [30], k-means [31], model-based
approaches [17-19,32,33]) and many of these techniques have
been applied to expression data (for example [1,6,20-
23,33,34]). In our previous work [20,21,23], we defined clus-
ter quality in terms of functional categories on real microar-
ray datasets and the true underlying clusters (or classes) on
synthetic datasets, and we showed that model-based cluster-
ing algorithms such as MCLUST [17-19] and the infinite mix-
ture model-based method (IMM) [20-22] typically produced
higher cluster quality than other heuristic-based clustering
methods. We now focus on comparing the likelihood of
assigning co-regulated genes to the same clusters from differ-
ent clustering methods. In particular, we studied the per-
formances of both heuristic-based clustering algorithms
(hierarchical complete-link and hierarchical average-link)
and model-based clustering algorithms (MCLUST and IMM).

Similarity measures and heuristic-based algorithms

Most heuristic-based clustering algorithms take the pairwise
similarities of objects (genes or experiments) as input and
create as output an organization of the objects grouped by
similarity to each other. There are many similarity measures,
among which the two most popular ones for gene-expression
data are correlation coefficient and Euclidean distance. Cor-
relation is a similarity measure, that is, a high correlation
coefficient implies high similarity, and it captures the direc-
tions of change of two expression profiles. Euclidean distance
is a dissimilarity measure, that is, a high distance implies low
similarity, and it measures both the magnitudes and direc-
tions of change between two expression profiles.

Hierarchical algorithms define a dendrogram (tree) relating
similar objects in the same subtrees. In agglomerative hierar-
chical algorithms (such as average-link and complete-link),
each object is initially assigned to its own subtree (cluster). In
each step, similar subtrees (clusters) are merged to form the
dendrogram. We obtain clusters from the dendrogram by
stopping the merging process when the desired number of
clusters (subtrees) is produced. Different definitions of clus-
ter similarity yield different clustering algorithms. In
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hierarchical complete-link algorithm, cluster similarity is
defined to be the minimum similarity between a pair of genes,
one from each of the two clusters. In hierarchical average-link
algorithm, the cluster similarity of two clusters is the average
pairwise similarity between genes in the two clusters.

MCLUST

The finite Gaussian mixture model-based approach assumes
that each cluster follows the multivariate normal distribution,
with model parameters that specify the location and property
of each cluster. Different models in MCLUST assume differ-
ent cluster properties (shape, volume and orientation). The
most constrained model is the equal-volume spherical model
in which all clusters are assumed to have equal-volume and
spherical in shape. The unconstrained model is the most gen-
eral model, in which the clusters can be elliptical and may
have different orientations and volumes. MCLUST imple-
ments the expectation-maximization (EM) algorithm for
clustering via finite Gaussian mixture models, as well as
model-based hierarchical clustering algorithms, with
optional cross-cluster constraints [19].

Infinite mixture model-based approach (IMM)

Medvedovic et al. [22] postulated an infinite Gaussian mix-
ture model for gene-expression data which incorporates an
error model for repeated measurements. Each cluster is
assumed to follow a multivariate normal distribution, and the
measured repeated expression levels are assumed to follow
another multivariate normal distribution. They used a Gibbs
sampler to estimate the posterior pairwise probabilities of co-
expression. These posterior pairwise probabilities are treated
as pairwise similarities, which are used as inputs to clustering
algorithms like hierarchical complete-link algorithm. Our
recent work showed that applying hierarchical complete-link
to these posterior pairwise probabilities using a particular
cluster similarity parameter (minimum distance = 0.9999)
yields reasonable estimates of the optimal number of clusters
[21]. In this work, IMM produced very reasonable estimates
of the optimal numbers of clusters for all our datasets.

Diversity of microarray experiments

We defined the diversity of a set of E microarray experiments
as the average correlation of all pairs of experiments in this
set of E experiments. A high correlation implies low diversity,
while a low correlation implies high diversity. To investigate
the effect of diversity of experimental conditions on the level
of co-regulation, we used a greedy algorithm to select a set of
E experiments with high diversity (low average correlation)
and another set of E experiments with low diversity (high
average correlation) from the compendium and environmen-
tal stress data subsets, where E = 5, 10, 15, 20, 30, 40, 50, 80,
100.

Let S be the current set of experiments. In the case of search-
ing for a set of E highly diverse experiments, we initialized S
with the pair of experiments with minimum pairwise
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correlation. After the initialization step, the following two
steps are repeated until there are E experiments in S. First,
search for an experiment e with minimum total correlation to
all the current experiments in S; then, add experiment e to the
set S. The greedy algorithm to search for a set of E experi-
ments with low diversity is very similar, except that experi-
ments with maximum correlation are added instead.

Additional data files

A pdf file (Additional data file 1) available with the online ver-
sion of this article gives the datasets used in this work. The
files and software are also available from our website [35].
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