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The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotesMany drugs of natural origin are hydrophobic and can pass through cell membranes. Hydrophobic molecules must be susceptible to active efflux systems if they are to be maintained at lower concentrations in cells than in their environment. Multi-drug resistance (MDR), often mediated by intrinsic membrane proteins that couple energy to drug efflux, provides this function. All eukaryotic genomes encode several gene families capable of encoding MDR functions, among which the ABC transporters are the largest. The number of candidate MDR genes means that study of the drug-resistance properties of an organism cannot be effectively carried out without taking a genomic perspective.

Abstract

Background: Many drugs of natural origin are hydrophobic and can pass through cell membranes.
Hydrophobic molecules must be susceptible to active efflux systems if they are to be maintained at
lower concentrations in cells than in their environment. Multi-drug resistance (MDR), often
mediated by intrinsic membrane proteins that couple energy to drug efflux, provides this function.
All eukaryotic genomes encode several gene families capable of encoding MDR functions, among
which the ABC transporters are the largest. The number of candidate MDR genes means that study
of the drug-resistance properties of an organism cannot be effectively carried out without taking a
genomic perspective.

Results: We have annotated sequences for all 60 ABC transporters from the Caenorhabditis
elegans genome, and performed a phylogenetic analysis of these along with the 49 human, 30 yeast,
and 57 fly ABC transporters currently available in GenBank. Classification according to a unified
nomenclature is presented. Comparison between genomes reveals much gene duplication and loss,
and surprisingly little orthology among analogous genes. Proteins capable of conferring MDR are
found in several distinct subfamilies and are likely to have arisen independently multiple times.

Conclusions: ABC transporter evolution fits a pattern expected from a process termed 'dynamic-
coherence'. This is an unusual result for such a highly conserved gene family as this one, present in
all domains of cellular life. Mechanistically, this may result from the broad substrate specificity of
some ABC proteins, which both reduces selection against gene loss, and leads to the facile sorting
of functions among paralogs following gene duplication.

Background
ATP-binding cassette (ABC) transporters are one of the larg-
est families of transport proteins constituting the single

largest gene family, comprising about 5% of the genome, in
Escherichia coli [1]. ABC transporters are grouped into sev-
eral structural classes, or subfamilies, on the basis of amino

Published: 11 February 2004

Genome Biology 2004, 5:R15

Received: 13 October 2003
Revised: 27 November 2003
Accepted: 13 January 2004

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2004/5/3/R15
Genome Biology 2004, 5:R15

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2004-5-3-r15
http://genomebiology.com/2004/5/3/R15
http://www.biomedcentral.com/info/about/charter/


R15.2 Genome Biology 2004,     Volume 5, Issue 3, Article R15       Sheps et al. http://genomebiology.com/2004/5/3/R15
acid sequence and domain organization [2] (Figure 1). The
presence of a strongly conserved ATP-binding motif defines
membership in the family and the basic functional organiza-
tion of an ABC transporter in the membrane is the same from
bacteria to humans, and in all subclasses [3-5]. A complex of
at least two ATP-binding domains, coupled to two blocks of
membrane-spanning helices, appears to be the minimum
requirement for a functional transporter. Often these
domains are found in tandem within a single molecule, but in
many cases are distributed across separate proteins that must
then assemble in the membrane. ABC transporters are collec-
tively able to accommodate an unusually large array of differ-
ent substrates. This diversity of function is manifest at the
family level, but also in individual members of the family, for
example those associated with multidrug resistance (MDR).

Decottignies and Goffeau [6] catalogued the entire ABC
transporter family of the yeast Saccharomyces cerevisiae and
in so doing delineated six of the major subgroups of eukaryo-
tic ABC transporters. Allikmets et al. [7] catalogued all the
then known 33 human ABC transporters, including those
known only from partial expressed sequence tag (EST)
sequences, and divided these into seven subfamilies. This
scheme has been adopted, with a revised nomenclature, by
the Human Genome Organisation (HUGO) [8] in order to
provide a unified nomenclature for both human and mouse
ABC transporters. Of these seven subfamilies, one, ABCA, has
no exact equivalent in the yeast genome [9,10]. Genes consid-
ered to be part of subfamily ABCA have been identified in the
slime mold Dictyostelium discoideum, as well as in malaria

parasites [11] and Caenorhabditis elegans (this paper). With
the completion of the human and Drosophila melanogaster
genomes, a joint summary of the ABC transporter comple-
ments of both genomes was published [12]. This identified a
new subfamily, ABCH, which appears to be the most diver-
gent yet. One, previously unclassified yeast ABC gene,
YDR061w [13], appears to be a structurally aberrant member
of subfamily H.

The phenotypes of five ABC transporter knockouts have been
reported in C. elegans. Four of these involve genes expected,
by homology to mammalian genes, to be involved in drug
resistance: three P-glycoproteins (Pgp-1, Pgp-3 and Pgp-4)
(subfamily B) and one multi-drug resistance protein (MRP)
[14,15] (subfamily C). These ABC transporter mutants are
associated with sensitivity to environmental insult [16]. Pgp-
3 mutant strains of C. elegans are more sensitive to the drugs
chloroquine and colchicine. Pgp-1 and mrp-1 strains are
hypersensitive to toxic pigments produced by some bacteria
[17]. All the nematode P-glycoproteins examined so far seem
to be highly expressed in intestinal cells [18], and in the excre-
tory cell, which functions somewhat like a kidney in C. ele-
gans. The mrp-1, pgp-1 and pgp-3 mutant strains have been
reported to be hypersensitive to the heavy metals cadmium
and arsenite [15]. The fifth reported knockout is of the prod-
uct of the ced-7 gene [19]. Mutant alleles of ced-7 cause a
defect in engulfment of the cell corpses left behind by apopto-
sis. ced-7 is a member of the ABCA subfamily, and has a sim-
ilar phenotype to the abca1 gene in humans. ABCA1 protein is
required for engulfment of apoptotic cells by macrophages
and is thought to regulate membrane fluidity through an
increase in phosphatidylserine exposure on the outer leaflet
of the cell membrane [20].

The term orthology is used to describe genes separated from
one another by speciation events while paralogy describes
those separated by gene duplication events [21]. Of particular
interest, from the point of view of functional annotation, are
the cases where a pair of genes, one from each of a pair of
organisms, are found. In these cases it is reasonable to pre-
sume that the orthologous genes may share a conserved func-
tion retained from the same single gene present in the
common ancestor of the two organisms. However, where a
single gene (or set of duplicated genes) in one genome is most
closely related to a set of duplicated (paralogous) genes in
another genome this is sometimes termed co-orthology [22],
and then no particular orthologous pair can be unambigu-
ously specified. In the case of co-orthologs the argument for
retention of analogous functions between members of the sets
of descendant genes is much weaker. Comparison of two com-
plete genomes, those of C. elegans and S. cerevisiae [23],
demonstrated a high fraction of ortholog pairs in gene fami-
lies involved in core biological functions. Specifically, Cher-
vitz et al. [23] found, when pairing conserved yeast genes with
their most similar worm homologs (subject to a BLAST score
cut-off of < 10-100), 57% of these highly conserved gene pairs

Structural diversity of ABC transportersFigure 1
Structural diversity of ABC transporters. Illustration of the various domain 
organizations found among members of the ABC transporter family in C. 
elegans. TM indicates a transmembrane domain typically containing six 
predicted membrane-spanning helices. ABC indicates an ATP-binding 
cassette domain. The color codes for each structure are used throughout 
the figures to show the lack of concordance between structural categories 
and families defined on the basis of sequence similarity.
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involved orthologous, rather than paralogous, pairs of genes.
In this category of core functions they included trafficking,
and, as possibly the largest family of trafficking genes in ani-
mal genomes, ABC transporters should be expected to share
in this high level of one-to-one correspondence between
genomes. We expected therefore that this would allow us to
assign predicted functions to newly discovered C. elegans
ABC proteins on the basis of their already-characterized
mammalian orthologs. Following a comprehensive phyloge-
netic analysis of ABC transporters from four eukaryote
genomes, we found that the frequency of orthologous pairs
among ABC transporters was substantially lower than we
expected. Particular domain organizations and substrate spe-
cificities seem to have evolved independently several times in
multiple lineages. This is expected to complicate the func-
tional analysis of ABC transporter function in newly charac-
terized genomes.

Results and discussion
Here we present a classification of all ABC transporters
encoded in the C. elegans genome, based on a phylogenetic
analysis which includes the 49 currently known human ABC
proteins for which there are reliable, public, sequence data.
We took the approach of analyzing primarily the conserved
ATP-binding cassettes from each protein, regardless of the
structural class from which the domain is drawn. This allows
evaluation of the evolutionary history of each protein in the
family, without biases that might result from gene-fusion
events resulting in convergent acquisition of similar domain
structures by distantly related proteins. In addition, we re-
evaluated the relationships of transporters within statistically
reliable clusters whose members are closely related enough
that structural variations do not lead to errors in alignment.
We did this to capture additional phylogenetic information,
which may be apparent in the less conservative transmem-
brane domains, at a level of analysis where it is less likely to
be misleading.

An example of our first-pass approach is given in Figure 2,
which shows an analysis of isolated ATP-binding cassette
domains from the human ABC transporters only. In particu-
lar, we find that all seven subfamilies recognized by Allikmets
et al. [7] are recovered with significant bootstrap support.
Their finding, that subfamily B is more closely related to the
carboxy-terminal component of subfamily C than the two
halves of ABCC molecules are with one another, is supported
by our results.

A collection of transporters
We found a total of 60 confirmed ABC transporters in the
annotated protein set derived from the C. elegans genome
sequence. This represents approximately 0.3% of the total
number of genes (approximately 19,000) in the worm
genome. Only 8 of the 60 predicted genes lack any corre-
sponding mRNA (Table 1), and only one (F56F4.6) is

structurally aberrant in a way that would suggest it is likely to
be a pseudogene.

Thirty ABC transporters are described in the yeast genome, or
approximately 0.5% of its approximately 6,000 proteins [13].
At present 49 human ABC transporters have been identified
and, at least partially, cloned. They are included here (Figures
3,4,5,6,7 and Table 2) to illustrate their relationships with
nematode proteins, which might then shed light on their bio-
logical roles. Inclusion of human as well as D. melanogaster
ABC transporters in our tree allows us to explicitly classify C.
elegans ABC transporters according to the current eight-sub-
family taxonomic scheme for ABC transporters [12].

Typing ABCs to subfamily
We define membership of a particular gene in an ABC trans-
porter subfamily primarily on the basis of the position of its
ATP-binding domains in our first phylogenetic tree (not
shown). Genes that fell unambiguously within a clade con-
taining genes already assigned to given subfamily, were
included in that subfamily. Where we could not assign a gene
to a particular clade with a significant bootstrap value, the
assignment was made on the basis of which subfamily's mem-
bers scored highest when that gene was used as query in a
BLAST search. The subfamilies are sometimes named accord-
ing to the well-characterized mammalian genes that typify
each of them, for example, P-gp (P-glycorprotein), MRP,
White gene homologs, RNAse L inhibitor, GCN20 homologs,
ABC1 and ALDP [7]. These correspond to the HUGO-defined
subfamilies B, C, G, E, F, A and D, respectively. Re-analysis of
the full-length sequences confirmed the placement all C. ele-
gans genes within the preexisting subfamilies, with substan-
tial bootstrap support (Figures 3,4,5,6,7).

Instances of orthology
In the set of worm and human ABC transporters, only 8 of 49
possible pairs (16%) of sister genes contained a single human
protein and a nematode homolog (Table 3). Similarly, 10% of
ABC transporters were found in orthologous pairs when the
comparison is made between yeast and worm genomes. A
more comprehensive comparison of worm and yeast genomes
[23] came to the overall conclusion that 57% of genes in
highly conserved gene families were found in orthologous
pairs, and the study suggested that such gene families provide
a conserved core proteome which forms the basis of eukary-
ote biochemistry. ABC transporters are conserved in all
eukaryotic and prokaryotic genomes, so it is interesting to
note that they are found in orthologous pairs much less fre-
quently than most gene families that are roughly as well con-
served. Clearly, ABC transporter evolution has not been
typical of strongly conserved gene families, and while we
might have inferred that ABC-transporter-mediated metabo-
lism differs radically among eukaryotes, this seems improba-
ble, given the broadly comparable set of substrates associated
with ABC transporters in all eukaryotes where they have been
studied.
Genome Biology 2004, 5:R15
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Figure 2 (see legend on next page)
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Within the P-gp-related ABCB subfamily, the only one-to-one
pairings found between C. elegans and human genes are
those of W09D6.6 (Haf-5) and MTABC3 (B6), and
Y48G8AL.11 (Haf-6) and MABC1 (B8). These are both half-
transporters localized to the mitochondria. MTABC3 (B6) is
involved in iron homeostasis [24] and its rat ortholog, PRP, is
overexpressed during hepatocarcinogenesis [25]. Two other
mitochondrial ABC transporters in humans, MABC2 (B10)
and ABCB7, have orthologs in flies and/or yeast, but not
nematodes.

Among ABCC molecules, whose range of functions broadly
overlaps with P-gps, only C18C4.2 (Cft-1) and CFTR (C7) are
indicated as orthologs in our analysis. However, the bootstrap
value on this pairing is very low (51%, see Figure 5), so we can-
not attach much confidence to this observation. It may simply
be that C18C4.2 (Cft-1) is a highly divergent member of sub-
family C, and does not bear much functional similarity to
CFTR (C7). Although not forming simple pairs with any nem-
atode gene, human MRP5 (C5), a transporter of nucleotide
analogs [26,27], and ABCC11 and ABCC12 appear to be co-
orthologous to worm F14F4.3 (Mrp-5), which may provide
some hint as to the function of the latter.

All four of the C. elegans members of subfamilies E and F
(Figure 6) form strongly supported and unambiguous pairs
with their homologs in D. melanogaster, Homo sapiens, and
yeast. This unusually strong conservation, compared to the
other subfamilies of ABC genes, argues for involvement in
something indispensable, at least on an evolutionary times-
cale. The three genes in subfamily F, which lack transmem-
brane domains, are generally regarded as forming ribosome
associated proteins involved in regulation of mRNA transla-
tion, rather than transporters. The RNase L inhibitor (E1),
also known as the oligoadenylate-binding protein (OABP), is
thought to be involved in the regulation of the interferon-
induced antiviral response [28] that bears some similarities
to the mechanism thought to underlie the now common
molecular biology technique of double-stranded RNA-
directed interference (RNAi). It also seems to have a role in
muscle differentiation [29] in mammals. The critical role of
the RNase L inhibitor is underlined by its conservation even
in a highly reduced genome. In the rather minimal genome of
the endosymbiotic Guillardia theta nucleomorph (302 genes)

the RNase L inhibitor is the only ABC protein found [30]. The
yeast ortholog of the RNase L inhibitor protein, YDR091c, is
essential for growth, as is YER036c, the yeast ortholog of
T27E9.7/ABCF2 [31]. On the other hand GCN20, the yeast
version of F42A10.1/ABCF3, is not essential, although
mutants do have specific defects in translation.

Processes of gene duplication and loss
While the conservation of simple orthologous gene pairs is a
rare observation in our study, the numbers of genes in most
ABC transporter subfamilies are about the same, despite
numerous instances of gene duplication and loss. For
example, within ABCB the number of half-transporters in
each genome is almost identical. Furthermore, most mamma-
lian half-transporters in subfamily B are found in clusters of
functionally related, or at least co-localized, genes (the TAP
(B2 and B3) genes, and the four mitochondrial ABCB genes,
MABCs1 and 2 (B8 and B10), MTABC3 (B6) and ABCB7 [32]),
paired with similarly sized groups of C. elegans genes. Like-
wise the number of genes in subfamilies A, C and D is much
the same between genomes. However, it does appear that C.
elegans, relative to humans, has undergone a massive expan-
sion in the P-gp (full or pseudo-dimer configuration) subclass
of subfamily B, and subfamily G, the 'White-like' genes. The
likelihood that ABC transporter lineages have been lost
repeatedly in evolution is evident from the phylogeny. The
single group of P-gps in mammals contains only four mem-
bers, while C. elegans has 15 P-gps, of which only three are
closely related to their mammalian homologs. A literal read-
ing of the tree (Figure 4) would suggest the presence of five
additional P-gp lineages in the common ancestor of nema-
todes, flies and mammals that have been lost, independently,
in both mammals and flies. These losses, and the species-spe-
cific expansion of the remaining lineages of genes, underlines
the peculiarly dynamic composition of this group of multi-
functional transport proteins.

Conclusions
The completion of the C. elegans and D. melanogaster
genome projects [33,34] make it possible to analyze entire
gene families in metazoans. The advantage of performing a
combined analysis of all known ABC proteins from two organ-
isms is that it allows unambiguous identification of

Tree of human ATP-binding cassette domainsFigure 2 (see previous page)
Tree of human ATP-binding cassette domains. The evolution of the ABCB subfamily from within the ABCC subfamily, and the structural diversity of 
subfamily B is shown here. Each cluster of ABC domains within each subfamily, except for subfamily B, is collapsed to form a single, representative, branch; 
n-term: amino-terminal ABC; c-term: carboxy-terminal ABC. The phylogeny of ATP-binding cassettes from human ABC transporters was produced 
according the following procedure. Predicted amino-acid sequences were aligned using ClustalX [54]. Aligned sequences were used to generate matrices 
of mean distances among proteins, and these matrices were used to generate a phylogenetic tree according to the neighbor-joining algorithm [55], refined 
using the SPR branch-swapping technique under the minimum evolution criterion, implemented by PAUP*4.0b10 [56]. Bootstrapping [57] was used to 
determine the relative support for the various branches of the tree (1,000 replicates), and nodes with less than 50% support were collapsed to form 
polytomies. The structures of the proteins in which the domains are embedded are indicated according to the color scheme in Figure 1. It should be noted 
that branch lengths in the figures are not to scale and do not represent distances between protein sequences. The original alignment files are available as 
Additional data files 1-8.
Genome Biology 2004, 5:R15
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Table 1

Characterization of the 60 C. elegans ABC proteins

Subfamily ORF name/CGC name Chromosome GenBank 
accession 
number

Size (amino 
acids)

Predicted 
topology

cDNA if 
known

RNAi 
phenotype

A Abt C24F3.5/ Abt-1 IV CAA18775 1,429 (6TM-ABC)2 None

C48B4.4/ Ced-7 III NP_499115 1,704 (8TM-ABC)2 Complete None

F12B6.1/ Abt-2 I AAB54153 1,547 (6TM-ABC)2 Partial None

F55G11.9/ Abt-3 IV CAB05222 1,431 (8/4TM-
ABC)2

None

F56F4.6 I AAB54203 260 ABC None

Y39D8C.1/ Abt-4 V AAC69223 1,802 (6/8TM-
ABC)2

Partial None

Y53C10A.9/ Abt-5 I CAA22142 1,564 (6TM-ABC)2 Partial None

B Pgp (full 
molecules)

C05A9.1/ Pgp-5 X CAA94202 1,283 (6TM-ABC)2 Partial None

C34G6.4/ Pgp-2 I AAB52482 1,265 (6TM-ABC)2 Partial None

C47A10.1/ Pgp-9 V CAB03973 1,294 (6TM-ABC)2 Partial None

C54D1.1/ Pgp-10 X AAC48149 1,283 (4TM-ABC)2 Partial None

DH11.3/ Pgp-11 II CAA88940 1,270 (6TM-ABC)2 Partial None

F22E10.1/ Pgp-12 X CAA91799 1,318 (6TM-ABC)2 Partial None

F22E10.2/ Pgp-13 X CAA91800 1,291 (6TM-ABC)2 None

F22E10.3/ Pgp-14 X CAA91801 1,327 (6TM-ABC)2 Partial None

F22E10.4/ Pgp-15 X CAA91802 1,270 (6TM-ABC)2 None

F42E11.1/ Pgp-4 X CAA91463 1,266 (6TM-ABC)2 Partial None

K08E7.9/ Pgp-1 IV CAB01232 1,321 (6TM-ABC)2 Partial None

T21E8.1/ Pgp-6 X CAA94220 1,225 (6TM-ABC)2 Partial None

T21E8.2/ Pgp-7 X CAA94219 1,269 (6TM-ABC)2 None

T21E8.3/ Pgp-8 X CAA94203 1,243 (6TM-ABC)2 Partial None

ZK455.7/ Pgp-3 X CAA91467 1,268 (6TM-ABC)2 Partial None

Haf (half 
molecules)

C30H6.6/ Haf-1 IV CAB02812 586 4TM-ABC Partial None

F43E2.4/ Haf-2 II AAC71121 761 8TM-ABC Partial None

F57A10.3/ Haf-3 V CAB09418 733 6TM-ABC Partial None

W04C9.1/ Haf-4 I AAC68724 787 8TM-ABC Complete Weak 
embryonic 
lethality, slow 
growth

W09D6.6/ Haf-5 III CAB04947 801 8TM-ABC Complete None

Y48G8AL.11/ Haf-6 I AAK29911 565 4TM-NBF Partial

Y50E8A.16/ Haf-7 V CAB60586 807 6TM-ABC Partial

Y57G11C.1/ Haf-8 IV CAB16503 633 4TM-ABC None

ZK484.2/ Haf-9 I AAK39394 815 8TM-ABC Complete None

C Mrp/Cft C18C4.2/ Cft-1 V AAK52175 1247 (5/6TM-
NBF)2

Partial None

E03G2.2/ Mrp-3 X CAA92148 1,398 (6TM-ABC)2 Partial None

F14F4.3/ Mrp-5 X CAB54225 1,427 (6TM-ABC)2 Partial Slow growth, 
Clear

F20B6.3/ Mrp-6 X AAA82317 1,396 (6TM-ABC)2 Partial Egg laying 
defect

F21G4.2/ Mrp-4 X CAB02667 1,573 (10/6TM-
ABC)2

Partial None
Genome Biology 2004, 5:R15
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orthologous pairs of genes, as well as allowing the pattern of
evolution by a process of gene duplication, lineage sorting,
and functional convergence to be explicitly modeled.

Saurin et al. [35] surveyed the ABC transporters, considering
both eukaryotic and prokaryotic systems, and found that
there is a fundamental phylogenetic division among ABC
transporters involved in import versus export processes. The
importer class of ABCs is found only in prokaryotes, whereas
exporters are found in all domains of life [35]. However, that
survey, while covering all classes of ABC transporter, was not

comprehensive with respect to any of the organisms sur-
veyed. Most recently, Schriml and Dean [10] compared the
human ABC family to that of the mouse Mus musculus, and
found almost perfect identity between the two genomes. We
have integrated previous information with the complete
inventory of ABC transporters from the genome of the nema-
tode worm C. elegans. We find that most of the ABC trans-
porters in the worm can be classified into the existing human
transporter taxonomy. We find 60 ABC transporters in the
worm genome, representing an overall doubling in size of the
ABC transporter family relative to yeast, whose genome

F57C12.4/ Mrp-2 X AAB07022 1,525 (10/6TM-
ABC)2

Complete None

F57C12.5/ Mrp-1 X AAD31550 1,528 (12/6TM-
ABC)2

Complete None

Y43F8C.12/ Mrp-7 V CAA21622 1,119 (12/2TM-
ABC)2

Partial

Y75B8A.26/ Mrp-8 X CAA22110 1,144 (4/6TM-
ABC)2

Partial

D C44B7.8 II AAA68339 665 4TM-ABC Partial

C44B7.9 II AAA68340 661 4TM-ABC Partial None

C54G10.3 V CAA99810 660 6TM-ABC Complete None

T02D1.5 IV CAB0590 734 6TM-ABC Partial None

T10H9.5 V AAC19238 598 6TM-ABC Complete None

E Y39E4B.1 III CAB54424 610 ABC-ABC Partial Embryonic 
lethality

F F18E2.2 V CAA99835 622 ABC-ABC Partial None

F42A10.1 III AAA19072 712 ABC-ABC Partial None

T27E9.7/ GCN20-2 III CAB04880 622 ABC-ABC Complete None

G C05D10.3 III AAA20989 598 ABC-4TM Partial None

C10C6.5 IV CAB05682 610 ABC-6TM Partial None

C16C10.12 III CAA86750 610 ABC-4TM Partial None

F02E11.1 II AAB66050 658 ABC-4TM Partial None

F19B6.4 IV CAA93461 695 ABC-6TM Partial None

T26A5.1 III AAC77504 608 ABC-4TM Partial None

Y42G9A.6 III AAF60554 684 ABC-6TM Partial None

Y47D3A.11 III CAB57891 547 ABC-6TM Partial None

Y49E10.9 III CAB11549 454 ABC-4TM None

H C56E6.1 II AAA81093 1,667 ABC-12TM Larval arrest

C56E6.5 II AAA81094 595 ABC-6TM Partial None

Subfamily names given are according to the HUGO nomenclature (A-H) [33] as well as the CGC (Caenorhabditis Genetics Centre [61]) gene names 
for each subfamily. TM, transmembrane domain, where the number preceding it is the predicted number of membrane spanning helices or the 
number in the amino-terminal/carboxy-terminal TM domains, respectively. ABC, ATP-binding cassette. The existence of known cDNAs, whether 
complete or partial, is listed according to information in WormBase release WS112 [62]. RNAi phenotypes of genes on chromosome I are given 
according to [63], those on chromosomes II, IV, V and X are from [64], those of genes on chromosome III are from [65].

Table 1 (Continued)

Characterization of the 60 C. elegans ABC proteins
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contains one third as many protein-coding genes. No ABC
genes were found that could be classified among the bacterial
import proteins.

At least three subfamilies of ABC transporter contain mem-
bers capable of a conferring an MDR phenotype, and
transporters from at least two different subfamilies cause

Phylogenetic tree of ABCA proteins in three eukaryote genomesFigure 3
Phylogenetic tree of ABCA proteins in three eukaryote genomes. A phylogeny derived and displayed according to the procedure outlined in the legend to 
Figure 2, except that complete protein sequences were used, not just those of the ATP-binding cassettes. The genome of origin for each protein is 
indicated by prefixes before each gene name, according the following scheme: Ce, C. elegans; Dm, D. melanogaster; Hs, H. sapiens; Sc, S. cerevisiae.
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Phylogenetic tree of ABCB proteins in four eukaryote genomesFigure 4 (see following page)
Phylogenetic tree of ABCB proteins in four eukaryote genomes. A phylogeny derived and displayed according to the procedure outlined in the legend to 
Figure 3. Shown here is the division between the half transporters, which are most of the ABCB genes in mammals, and the full-transporters (called P-
glycoproteins (P-gps)) that have evolved from them. Four lineages of P-gps (exemplified by genes F22E10.1-4, T21E8.1-3, C47A10.1 and C54D1.1) have 
been lost in both flies and mammals, and of the two remaining P-gp lineages, one has been lost in each of the fly and human lines of descent. Subsequent 
duplications within the single remaining P-gp lineage in both flies and mammals have not been sufficient to keep pace with continuing P-gp duplications in 
the worm genome.
Genome Biology 2004, 5:R15
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Figure 4 (see legend on previous page)
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MDR in human tumors [36]. A multi-drug transporter is a
single protein capable of specifically recognizing several
structurally distinct classes of compounds, and which cata-
lyzes their efflux from the cell or sequestration in a

subcellular compartment. Proteins of the P-glycoprotein (P-
gp) group (ABCB) transport hydrophobic compounds and
function in transport of lipids and bile from the liver as well
as generally defending the body from toxic natural products

Phylogenetic tree of ABCC proteins in four eukaryote genomesFigure 5
Phylogenetic tree of ABCC proteins in four eukaryote genomes. A phylogeny derived and displayed according to the procedure outlined in the legend of 
Figure 3.
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in the diet [37]. P-gps are also a component of the blood-brain
barrier and function in tolerance of drugs normally minimally
toxic to mammals, such as ivermectin [38]. Multi-drug resist-
ance mediated by MRP group (ABCC) proteins depends on a
slightly different mechanism. MRPs seem to function by co-
transporting toxic compounds with glutathione, or as glutath-
ione conjugates [36]. An MDR phenotype is also associated
with some members of the ABCG group of transporters, in
both yeast [39] and humans [40]. The MDR phenotype

appears to have evolved not just once, but at least three times
in the history of ABC transporters. Given the distribution of
MDR-causing and non-MDR genes among mammalian P-
gps; it seems reasonable to infer that MDR genes may well
have arisen more than once among the P-gps themselves. It
has been observed [41,42] that the entire ABC transporter
family is characterized by a highly adaptable common mech-
anism for coupling substrate binding to ATP hydrolysis and
extrusion. It has been pointed out that, because P-gp

Phylogenetic trees of ABCD, ABCE, and ABCF proteins in four eukaryote genomesFigure 6
Phylogenetic trees of ABCD, ABCE, and ABCF proteins in four eukaryote genomes. Phylogenies derived and displayed according to the procedure 
outlined in the legend of Figure 3.
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Phylogenetic trees of ABCG and ABCH proteins in four eukaryote genomesFigure 7
Phylogenetic trees of ABCG and ABCH proteins in four eukaryote genomes. Phylogenies derived and displayed according to the procedure outlined in the 
legend of Figure 3.
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Table 2

Alphabetic list, by taxon, of protein sequences used in this study

S. cerevisiae Accession 
number

D. melanogaster Accession 
number

C. elegans Accession 
number

H. sapiens Accession 
number

ADP1 NP_009937 171D11.2 AAF45509 C05A9.1 CAA94202 ABCA1 NP_005493

ATM1 NP_014030 Atet AAF51027 C05D10.3 AAA20989 ABCA2 NP_001597

BPT1 NP_013086 Brown AAF47020 C10C6.5 CAB05682 ABCA3 CAA65825

CAF16 NP_116625 CG10226 AAF50670 C16C10.12 CAA86750 ABCA5 NP_061142

GCN20 NP_116664 CG10441 AAF53737 C18C4.2 AAK52175 ABCA6 NP_525023

MDL1 NP_013289 CG10505 AAF46706 C24F3.5 CAA18775 ABCA7 AF328787

MDL2 NP_015053 CG11069 AAF56361 C30H6.6 CAB02812 ABCA8 AB020629

PDR10 NP_014973 CG11147 AAF52284 C34G6.4 AAB52482 ABCA9 NP_525022

PDR11 NP_012252 CG11460 AAF55727 C44B7.8 AAA68339 ABCA10 XP_085647

PDR12 NP_015267 CG11897 AAF56869 C44B7.9 AAA68340 ABCA12 NP_056472

PDR15 NP_010694 CG11898 AAF56870 C47A10.1 CAB03973 ABCA13 NP_689914

PDR5 NP_014796 CG12703 AAF49018 C48B4.4 CAA82384 ABCB5 AAO73470

PXA1 NP_015178 CG14709 AAF54656 C54D1.1 AAC48149 ABCB7 AB005289

PXA2 NP_012733 CG1494 AAF50838 C54G10.3 CAA99810 ABCB9 AC002486

SNQ2 NP_010294 CG1703 AAF48069 C56E6.1 AAA81093 ABCC10 NP_258261

Ste6 NP_012713 CG1718 AAF50837 C56E6.5 AAA81092 ABCC11 NP_149163

YBT1 NP_013052 CG17338 AAF53736 DH11.3 CAA88940 ABCC12 NM_033226

YCF1 NP_010419 CG17646 AAF51341 E03G2.2 CAA92148 ABCC13 NP_742021

YDR061w NP_010346 CG1801 AAF50836 F02E11.1 AAB66050 ABCF1 AAH34488

YDR091C NP_010376 CG1819 AAF50847 F12B6.1 AAB54153 ABCF2 NP_005683

yEF3 NP_013350 CG1824 AAF48177 F14F4.3 CAB54225 ABCF3 NP_060828

yEFB P53978 CG18633 AAF56360 F18E2.2 CAA99835 ABCG5 AF320293

YER036C NP_010953 CG2316 AAF59367 F19B6.4 CAA93461 ABCG8 AF320294

YHL035C NP_011828 CG3164 AAF51548 F20B6.3 AAA82317 ABCR (A4) AF001945

YKR103W NP_013030 CG3327 AAF51122 F21G4.2 CAB02667 ALDP (D1) CAA79922

YNR070w NP_014468 CG4225 AAF55241 F22E10.1 CAA91799 ALDR (D2) NP_005155

YOL075C NP_014567 CG4562 AAF55707 F22E10.2 CAA91800 BCRP (G2) XP_032425

YOR011w NP_878167 CG4794 AAF55726 F22E10.3 CAA91801 BSEP (B11) AF091582

YOR1 NP_011797 CG4822 AAF51552 F22E10.4 CAA91802 CFTR (C7) AAC13657

YPL226W S65245 CG5651 AAF50342 F42A10.1 AAA19072 MABC1 (B8) AF047690

CG5789 AAF56312 F42E11.1 CAA91463 MABC2 (B10) XP_001871

CG5853 AAF52835 F43E2.4 AAC71121 MDR1 (B1) 4505769

CG5944 AAF49305 F55G11.9 CAB05222 MDR3 (B4) AAA36207

CG6052 AAF49312 F56F4.6 AAB54203 MRP1 (C1) AAB46616

CG6162 AAF56584 F57A10.3 CAB09418 MRP2 (C2) CAA65259

CG6214 AAF53223 F57C12.4 AAB07022 MRP3 (C3) AB010887

CG7346 AAF50035 F57C12.5 AAD31550 MRP4 (C4) NP_005836

CG7491 AAF53328 K08E7.9 CAB01232 MRP5 (C5) AAB71758

CG7627 AAF52648 T02D1.5 CAB05909 MRP6 (C6) AF076622

CG7806 AAF52639 T10H9.5 AAC19238 MTABC3 (B6) NP_005680

CG7955 AAF47525 T21E8.1 CAA94220 PMP69 (D4) AF009746

CG8473 AAF48511 T21E8.2 CAA94219 PMP70 (D3) CAA41416

CG8799 AAF58947 T21E8.3 CAA94203 RNAse LI (E1) CAA53972

CG8908 AAF57490 T26A5.1 AAC77504 SUR1 (C8) AAB02278

CG9270 AAF53950 T27E9.7 CAB04880 SUR2 (C9) AF061323

CG9281 AAF48493 W04C9.1 AAC68724 TAP1 (B2) CAA40741

CG9330 AAF49142 W09D6.6 CAB04947 TAP2 (B3) AAA59841
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recognizes substrate directly within the cytoplasmic leaflet of
the plasma membrane [43], it does so at a much higher effec-
tive substrate concentration than would be the case if it rec-
ognized aqueous substrate. As a result, P-gp drug-binding
sites can operate at relatively low affinity, and this, in turn,
facilitates recognition of multiple substrates. This flexibility
may be the key to explaining the range of tasks performed by
ABC transporters, but also their apparently anomalous evolu-
tionary history.

The mammalian P-gps include proteins capable of producing
an MDR phenotype (MDR1 (B1)), as well as members with,
apparently, specificity restricted to single physiological sub-
strates such as phosphatidylcholine (MDR3 (B4)). As none of
these have simple, orthologous, relationships with any of the
C. elegans P-gps, no detailed predictions of function in nem-
atode P-gps can be drawn on the basis of phylogeny alone. C.
elegans P-gps do differ from one another in their ability to
cause resistance to various environmental toxins [16], with no
apparent correlation between phenotype and genetic distance
from their mammalian homologs. Both human abca1 and
nematode ced-7 mutants present similar apoptotic pheno-
types, despite their rather distant relationship (Figure 3).
ABCA1 mutations also cause defects in high-density lipopro-
tein cholesterol transport, and it is still an open question as to
whether the analogous function of these two homologs in
apoptosis accurately predicts a sharing of other functions.
Similar limitations on the extent to which function may be
predicted from sequence alone are likely to obtain in those
subfamilies whose members are noted for variability and
multiplicity of function, that is, subfamilies A, B, C and G.

Schriml and Dean [10] speculated that the distinct clustering
of amino- and carboxy-terminal halves of ABCA proteins sug-
gests that full ABC transporters have generally evolved from
half-transporters. The pattern of structural change within the

closely related subfamilies ABCD, ABCC and ABCB does sug-
gest that the half-transporter configuration was the ancestral
one for at least these three subfamilies (Figure 2). It also
reveals instances where half-transporters have evolved from
duplicated genes, as in the origination of ABCB from a
fragment of an ABCC gene, and that, in turn, some ABCB
genes have duplicated again, in giving rise to the P-gp genes.

A comprehensive comparison of worm and yeast genomes
[23] noted that while most of the nematode genome did not
closely resemble that of yeast, there was a strongly conserved
20% of the nematode genome that had a high degree of hom-
ology to a corresponding 40% of the yeast genome. Within
this highly conserved subset of genes, there was a very fre-
quent finding of orthology between members of the two
genomes. As many as 57% of the most closely related gene
pairs contained exactly one worm and one yeast gene. The
obvious inference is that one corresponding gene was present
in the common ancestor of the two species. Their overall pic-
ture of genome evolution is one in which a conserved cadre of
proteins performs core biological functions required by all
eukaryotes. These would remain essentially invariant
throughout eukaryotes, and one expects analogous functions
to be carried out by orthologous genes across large evolution-
ary distances. These gene families are presumably protected
over the long run by their essential and irreplaceable roles in
basic biochemical functions required by all organisms. How-
ever, as Chervitz et al. [23] point out, only a minority of gene
families fit this mode, with most genes belonging to poorly
conserved or taxonomically restricted families.

We expected that the frequency of simple orthologous gene
pairs typical of highly conserved gene families shared by both
yeast and worm would hold true for our comparison between
nematode and human versions of such a highly conserved
gene family as ABC transporters. However, this generality

CG9663 AAF51130 Y39D8C.1 AAC69223 WHITE 1 (G1) AAC51098

CG9664 AAF51131 Y39E4B.1 CAB54424 WHITE 2 (G4) NP_071452

CG9892 AAF51223 Y42G9A.6 NP_498332

CG9990 AAF56807 Y43F8C.12 CAA21622

Mdr49 AAF58437 Y47D3A.11 CAB57891

Mdr50 AAF58271 Y48G8AL.11 AAK29911

Mdr65 AAF50669 Y49E10.9 CAB11549

Scarlet AAF49455 Y50E8A.16 CAB60586

Sur AAF52866 Y53C10A.9 CAA22142

White AAF45826 Y57G11C.1 CAB16503

Y75B8A.26 CAA22110

ZK455.7 CAA91467

ZK484.2 AAK39394

Table 2 (Continued)

Alphabetic list, by taxon, of protein sequences used in this study
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clearly does not apply to ABC transporters, despite their
strong conservation across all domains of life. It seems rea-
sonable to suppose that the rather loose relationship between
substrate specificity and amino acid sequence that
characterizes ABC transporters allows for much more poten-
tial exchange and sorting of biological functions among
homologous genes than is typical. In turn, this pervasive pre-
adaptation for functional overlap enables organisms to sur-
vive the occasional loss of substantial numbers of ABC trans-
porters and to rapidly re-evolve lost functionality by co-
opting homologous genes.

The evolutionary dynamic we propose here is reminiscent of
an explanation put forward by Huynen et al. [44] to explain a
pattern observed in a comparative analysis of 11 microbial
genomes. They found that the frequency distribution of gene-
family sizes within each completely sequenced genome
tended to follow a power-law distribution across a 30-fold
range of genome sizes. Their model is one in which genes are
duplicated or deleted randomly in time, but the gene families
are coherent with respect to the probability of duplication or
deletion in each time unit in the simulation. In other words,
the probability of duplicating or deleting a gene may change
over time, but every member of a gene family always has the
same probability of duplication or deletion as every other
member of the family. So, whereas a given family can be
either favored for expansion or targeted for deletion in a given
time period, all members of the family are equally favored or
disfavored by selection at the same time. Huynen et al. argued
that this property of 'dynamic coherence' in a gene family
could arise if all gene-family members have more or less the
same function, so that they are all favored or disfavored by
selection at the same time, depending on how much that func-
tion is needed.

Under a power-law distribution, gene families would tend to
be subject to fluctuations of a size on the same order as the
gene-family size itself [44]. We should then expect that

typical gene families will have undergone very substantial
episodes of expansion and near-extinction, and in Huynen et
al.'s model all gene families do become extinct within a finite
time. It is evident that ABC transporters are highly atypical
for a strongly conserved gene family, in that the family as a
whole is highly conserved across genomes despite being sub-
ject to the same large fluctuations in size, which would tend to
eventually eliminate gene families whose members are not
individually indispensable. It should be noted that the ABC
family does not seem uniformly subject to one or the other
mode of evolution. Subfamilies E and F, which are not
involved with transport, but rather have roles in translation
and gene regulation, fit the 'strongly conserved' [23] model
very well, retaining simple orthologous relationships over
long spans of time. Only the transporter subfamilies them-
selves, because of their highly adaptable substrate-recogni-
tion capability, are subject to large fluctuations in size. We
propose that finding large sets of paralogous genes, and infre-
quently conserved orthologs, in a gene family reflects ongoing
cycles of gene loss and reacquisition of analogous functions in
distantly related, newly expanded, lineages. Furthermore, we
suggest that this is in fact the expected outcome of dynamic
coherence, a mode shared, perhaps, by most of the less-con-
servative gene families, as well as the ABC genes.

We expect that future functional studies, to determine the
extent of parallel and convergent evolution among ABC
transporters, will eventually allow us to discern the funda-
mental roles of ABC transporters that ensure their long-term
survival as a group. Also of interest will be whether the func-
tional suites of genes fulfilling these roles are bounded in any
way that resembles the phylogenetic subdivisions into which
we presently categorize these proteins.

Materials and methods
Identification of ABC transporter genes
A computer file, WormPep16 [45], containing 16,332 protein
sequences predicted from the completed C. elegans genome
was searched using the FASTA program [46]. Our initial
query sequences were those of known C. elegans ABC
proteins (for example, Pgp-1, the D. melanogaster white gene
homolog T26A5.1, and so on). Matching protein sequences
returned by FASTA were checked by BLAST [47], using either
the NCBI [48] or Baylor College of Medicine (BCM) servers
[49]. Only those with highly significant matches to annotated
ABC proteins in the sequence database were retained. The
most poorly matched, verified ABC protein from each FASTA
run was used as the query sequence for an additional FASTA
search, and this process was repeated until no new ABC pro-
teins were found. At a later stage in the analysis, representa-
tive members of different ABC transporter subfamilies were
used as query sequences to search the updated WormPep81
file using a BLAST server at the Sanger Centre [45]. Searches
were conducted using multiple queries until all proteins
already included in our dataset were found. No additional

Table 3

Frequency of orthologous pairs among ABC transporters

Sc Ce Dm Hs

Sc 10% 17% 10%

Ce 3 14% 16%

Dm 5 8 22%

Hs 5 8 11

Numbers below the diagonal represent the number of orthologous 
pairs of ABC transporters, according to our phylogeny, found in 
pairwise comparisons between each of the four genomes in this study. 
Percentages above the diagonal are calculated from the corresponding 
number given for that pair, divided by the smaller of the two counts of 
ABC transporters in that pair of genomes. Ce, C. elegans; Dm, D. 
melanogaster; Hs, H. sapiens; Sc, S. cerevisiae.
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ABC proteins were identified, though some sequences were
found to have been included in our dataset twice under differ-
ent names. These redundant sequences were eliminated.
FASTA searches were run on a SUN Microsystems
UltraSPARC 5 computer. All other computer operations were
carried out on an Apple Power Macintosh G3. Yeast and
human ABC transporter sequences were obtained from NCBI
and are described in the literature [10,13].

Identification of ABC protein features
BLAST + Beauty searches on the BCM server identified the
location of the conserved Walker A and ABC signature motifs
(Prosite motifs [50] PS00017 and PS00211, respectively)
associated with the ATP-binding cassette(s) of each protein.
The number and positions of transmembrane domains in
each ABC protein were predicted by using TopPred II v1.3
[51] and then vetting the program's results by eye to exclude
spurious transmembrane segments. Chromosomal locations
of each ABC protein in the C. elegans genome were looked up
in the C. elegans database AceDB [52].

Phylogenetic analyses
Using the information derived from each protein sequence
(as above) we extracted only the sequence of each predicted
ATP-binding cytoplasmic domain. These domains were
assembled into a single file using the SeqApp1.9 multiple
sequence editor [53], and aligned using ClustalX [54]. In
those cases where two ATP-binding cassettes (ABCs) are
present in a single protein with no intervening transmem-
brane domains (Subfamilies E and F, see Figure 1), the entire
sequence was divided into two at an arbitrary point halfway
between the two predicted ABC domains. As a result, 'two-
domain' proteins are represented twice in our initial analysis.
Once this approach had been used to assign genes to particu-
lar well-supported subgroups, we realigned the sequences
and reanalyzed the relationships within each group using full-
length amino acid sequence data.

Aligned sequences were used to generate matrices of mean
distances between proteins, and these matrices were used to
generate phylogenetic trees according to the neighbour-
joining algorithm [55], refined using the SPR branch-swap-
ping technique under the minimum evolution criterion,
implemented by PAUP*4.0b10 [56]. Bootstrapping (1,000
replicates) was done according to the method of Felsenstein
[57], using the same parameters described above. Phyloge-
netic trees were visualized and manipulated using TreeView
1.6.2 [58] and MacClade 3.0.4 [59].

Additional data files
The following additional data are included with the online
version of this article: the protein sequence alignments for the
ABCA subfamily (Additional data file 1), the ABCB subfamily
(Additional data file 2), the ABCC subfamily (Additional data
file 3), the ABCD subfamily (Additional data file 4), the ABCE

and ABCF subfamilies (Additional data file 5), the ABCG sub-
family (Additional data file 6), the ABCH subfamily (Addi-
tional data file 7), and the protein sequences from the
nucleotide-binding folds only (Additional data file 8). In
addition to the four genomes discussed in this paper, mouse
(M. musculus) ABC transporter genes are included in some of
these alignments. All eight files are in Nexus format, which is
a plain-text format designed for use with the programs PAUP
[56] and MacClade [59]. A Nexus Data Editor for Windows is
also available [60].
Additional data file 1The protein sequence alignments for the ABCA subfamilyThe protein sequence alignments for the ABCA subfamilyClick here for additional data fileAdditional data file 2The protein sequence alignments for the ABCB subfamilyThe protein sequence alignments for the ABCB subfamilyClick here for additional data fileAdditional data file 3The protein sequence alignments for the ABCC subfamilyThe protein sequence alignments for the ABCC subfamilyClick here for additional data fileAdditional data file 4The protein sequence alignments for the ABCD subfamilyThe protein sequence alignments for the ABCD subfamilyClick here for additional data fileAdditional data file 5The protein sequence alignments for the ABCE and ABCF subfamiliesThe protein sequence alignments for the ABCE and ABCF subfamiliesClick here for additional data fileAdditional data file 6The protein sequence alignments for the ABCG subfamilyThe protein sequence alignments for the ABCG subfamilyClick here for additional data fileAdditional data file 7The protein sequence alignments for the ABCH subfamilyThe protein sequence alignments for the ABCH subfamilyClick here for additional data fileAdditional data file 8The protein sequences from the nucleotide-binding folds onlyThe protein sequences from the nucleotide-binding folds onlyClick here for additional data file
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